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Abstract 
English as a Second Language (ESL) learners often encounter un-
known words that hinder their text comprehension. Automatically 
detecting these words as users read can enable computing systems 
to provide just-in-time definitions, synonyms, or contextual expla-
nations, thereby helping users learn vocabulary in a natural and 
seamless manner. This paper presents EyeLingo, a transformer-
based machine learning method that predicts the probability of 
unknown words based on text content and eye gaze trajectory in 
real time with high accuracy. A 20-participant user study revealed 
that our method can achieve an accuracy of 97.6%, and an F1-score 
of 71.1%. We implemented a real-time reading assistance proto-
type to show the effectiveness of EyeLingo. The user study shows 
improvement in willingness to use and usefulness compared to 
baseline methods. 

∗denotes as the corresponding author. 
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1 Introduction 
Unknown words can greatly reduce reading fluency and worsen 
the reading experience of non-native speakers [31, 37]. By auto-
matically detecting these unknown words as users read, computing 
systems can assist users in reading and language comprehension, 
and provide just-in-time word explanations for learning vocabu-
lary. Because unknown words vary among users, many previous 
works were based on the explicit expression of intention by users, 
such as mouse clicks [15] or looking at words intentionally [7, 14]. 
To facilitate a more natural reading experience, other methods 
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Figure 1: Our method locates the content the user is reading in real-time through gaze, and inputs the gaze data and text data to 
the transform-based model to detect unknown words. 

use gaze characteristics such as fixation duration, number of fix-
ations, and saccade length [17, 41] to detect unknown words au-
tomatically, since there is a correlation between gaze and word 
difficulty [25]. Previous research shows that fixation, the main-
taining of the gaze on a single location, happens when people are 
processing phrases [25]. However, these gaze-based methods have 
two major challenges affecting their accuracy and ease of deploy-
ment. First, these methods require dedicated and costly eye-tracking 
hardware to obtain accurate eye movement data for these features. 
Moreover, even with professional eye trackers, measuring gaze is 
inherently inaccurate due to complicated eye motions, making it 
hard to precisely map a gaze point to the word in the text being 
read [3]. To reduce reliance on gaze information, other works seek 
to compensate or replace inaccurate eye-tracking data on commer-
cial devices by incorporating text [12, 16, 20, 24], click [15] and 
motion data [19]. 

Besides the cognitive process reflected by gaze, inherent lin-
guistic information about words is also crucial for identifying un-
known words. With the development of Natural Language Pro-
cessing (NLP) technology, pre-trained language models (PLMs) 
demonstrate a powerful ability to capture rich linguistic informa-
tion [11, 29] which is strongly related to word difficulty [18]. We 
explore how to take advantage of the language model in addition to 
gaze to make unknown word detection accurate, easily accessible, 
and more applicable. We present a real-time unknown word de-
tection method that locates a region of interest based on gaze and 
then integrates linguistic information provided by PLM and gaze 
trajectory to predict unknown words using a transformer-based 
model. In this way the inaccuracy of the gaze-based method can 
be compensated by the probabilities distributed on words derived 
from the language model. 

As shown in Fig. 1, we tackle the problem of unknown word 
detection with two modalities of information, gaze and text. To pro-
cess gaze patterns, we utilize the cutting-edge transformer-based 
encoder-decoder model with cross-attention modules to learn the 
positional information based on gaze trajectory and text layout. For 
linguistic information, we apply RoBERTa to the text in the region 
of interest with several crucial word-level knowledge embeddings 
(term frequency, part-of-speech, etc.). By jointly training the mod-
els above on our collected dataset, our approach surpasses existing 
methods with 71.1% F1-scores and 97.6% accuracy for unknown 

word detection. With our method, real-time language learning assis-
tance and just-in-time vocabulary acquisition tools can be enabled. 

In this paper, we first verified the feasibility of our approach 
on the dataset collected by a professional eye tracker. We also 
applied our unknown word detection method to the relatively noisy 
webcam-based gaze data to show the robustness of our method 
with commodity deployments. Then, we conducted experiments to 
analyze the contribution of gaze and PLM. Finally, we implemented 
a reading assistance prototype to evaluate our method in a real 
world setting where data is processed in real time and investigate 
its usefulness and users’ subjective experience. 

Contributions in this work are summarized as follows: 

(1) We propose an unknown word detection method (EyeLingo) 
that leverages gaze to locate a region of interest and then 
classifies wrods based on linguistic characteristics provided 
by a pre-trained language model and gaze encoding derived 
from a transformer-based model. It achieves an accuracy of 
97.6% and an F1-score of 71.1%. 

(2) We analyze the contributions of gaze and the pre-trained lan-
guage model. Unknown word detection is mainly based on 
linguistic characteristics provided by a pre-trained language 
model. Gaze provides user-dependent and timely informa-
tion to detect different unknown words for different users 
in a real-time manner. 

(3) We build a reading assistance prototype and conduct a real-
time evaluation. The result shows that the F1-score is 56.5%. 
The user study shows improvement in willingness to use 
and usefulness compared to the traditional method. 

2 Related Work 
In this section, we illustrate how gaze behavior is related to cogni-
tive processes in reading and examine the reading behavior analysis 
enabled by gaze tracking. Then, we explain the limitations of the 
gaze-based unknown word detection method and how the previous 
works improved their performance. After that, we analyze the gaps 
in detecting unknown words accurately. 
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2.1 Gaze in Reading 
Reading as a cognitive process affects eye movement [25]. When 
people are reading, the eyes follow the text through small ampli-
tudes, ballistic motions called saccades. The pauses between two sac-
cades are called a fixation [24]. According to the eye-mind hypothe-
sis, the fixation on a word persists during its processing phase [25]. 
Consequently, fixation duration can be a metric for identifying dif-
ficult words and measuring cognitive processes in reading. For this 
reason, previous research combines fixation duration with other 
gaze features to predict reading comprehension [8, 33, 39], detecting 
mind wandering [6], identifying interest [13], and detecting atten-
tion [21, 26, 46] in reading. Other works facilitate natural language 
processing tasks such as named entity recognition and sequence 
classification by integrating gaze into neural network [1, 2, 22, 30]. 
Besides, some researches also improve the prediction of gaze behav-
ior such as scanpath and calibration process based on the connection 
between gaze and text [10, 27, 42]. However, most of these works 
focus on paragraph-level and sentence-level tasks rather than word 
detection. 

Extended periods of fixation on the focal word suggest difficul-
ties in word identification [24], forming the theoretical basis for 
the detection of unknown words via gaze. However, it is hard to 
achieve high accuracy only based on the fixation because of the 
inaccuracy of gaze-tracking hardware, algorithms, and the ambigu-
ous relationship between gaze patterns and the cognitive processes 
of understanding words. The highest accuracy of eye tracking is 
around 0.3◦ (2.6 mm when the distance is 50 cm) under optimal 
conditions, but the accuracy can easily be affected by the calibration 
performance and user posture [28]. Thus, how to accurately match 
the gaze point to the focused text is a problem. Additionally, other 
researchers pointed out that the processing of words can occur 
when they are not held in fixation [36]. 

Although there is a strong correlation between gaze behavior 
and word difficulty, the above limitations make it difficult to achieve 
high accuracy in detecting unknown words based only on gaze. 
Previous gaze-based unknown word detection methods improve 
their accuracy by combining multiple gaze features and leveraging 
text information such as word length and word rarity [16, 20]. 

2.2 Unknown Word Detection 
According to the importance of gaze in analyzing reading behav-
ior as explained above, most of the related works are gaze-based. 
iDict [24] detects unknown words based on gaze duration and word 
frequency and sets a threshold to trigger a gloss or margin note on 
unknown words. It successfully detects 36.5% of unknown words. 
Later works extend iDict by replacing the threshold function with 
machine learning. Hiroka et al. [20] uses several gaze features such 
as first gaze duration, number of fixations, and number of regres-
sions and feeds them into support vector machines (SVM) to classify 
the unknown word. Their model performs best (F1-score of 55.6%) 
when adding linguistics features including word length and word 
rarity. Similarly, Garain et al. [16] also take both gaze and linguistics 
features into consideration to achieve the best F1-score of 86% on 
a single user using an SVM. However, each of these methods rely 
on a professional eye tracker to obtain sufficiently accurate gaze 
data to extract gaze features and match these features to the words. 

Even with a dedicated eye tracker, it is still difficult to accurately 
assign each gaze point to the corresponding line due to the verti-
cal error [38, 45]. Therefore, in their experiment, the line spacing 
was set between 3.0 to 6.0 to better distinguish lines based on the 
y-value. The large line spacing makes it difficult for their method to 
be applied in real-world scenarios, considering that the line spacing 
of text we usually read is mostly between 1.0 and 2.0. Moreover, 
their data preprocessing that relies on global gaze coordination 
makes them even harder to be applied in a real-time application. 

Apart from gaze, other reading behaviors such as mouse clicks 
and hand motion can be used to detect unknown words. Ehara et 
al. [15] gives users potential highlights in advance and analyzes 
users’ feedback based on their clicks on the web page. Predictions 
are improved based on this feedback, reaching an accuracy of up to 
80.01%. Higashimura et al. [19] targets at vocabulary acquisition on 
smartphones and identifies unknown words utilizing the motion 
data obtained from the inertia sensors on smartphones. The estima-
tion improves through the reading and the AUPR is about 0.3. Both 
methods are device-specific and only applicable to a single user as 
they need to be optimized based on personalized iterative feedback 
for higher accuracy. 

In summary, the current best-performing detection methods 
combine gaze and text data. However, these current methods still 
rely on heavy gaze data preprocessing and special experimental 
settings. A real-time method that is robust to relatively inaccurate 
gaze data can promote the availability of unknown-word detection. 
Since word difficulty is highly dependent on linguistic features[18], 
we seek to build upon the rapid development of natural language 
processing (NLP) technology [43] in recent years to yield a solution. 
Pre-trained language models such as [11, 29] encompass extensive 
text information for downstream applications. We harness their 
capabilities in a new architecture to increase the tolerance of in-
accuracy in gaze tracking. We propose a transformer-based model 
that requires linguistic information provided by PLM from a region 
of interest around the target words and learns the gaze pattern 
automatically from gaze trajectory and text position. 

3 Unknown Word Detection Method 
In this section, we explain why we chose gaze and PLM to detect 
unknown words. Then we describe how we collected and processed 
the data. Finally, we explain the architecture of our method in detail. 

3.1 Method Justification 
Even though whether a word is unknown to a user is subjective, 
linguistic priors related to word difficulty are helpful in unknown 
word prediction. Therefore, we assume a user’s unknown word 
can be predicted based on (1) linguistic characteristics related to 
word difficulty, such as frequency, contextual distinctiveness, and 
COCA (Corpus of Contemporary American English) range, and 
(2) user-dependent factors which can be reflected by gaze trajec-
tory. Therefore, we integrate text and gaze information to detect 
unknown words as shown in Fig. 2: 

(1) Linguistic characteristics of the target word’s tokens and 
the textual context in the region of interest are captured 
by RoBERTa. RoBERTa is an effective and efficient language 
model for natural language understanding, ideally fitting our 
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Figure 2: Methodology for Detecting Unknown Words Using Integrated Text and Gaze Information. This integrated approach 
leverages both linguistic and user-dependent factors to effectively identify unknown words. 

expectations, based on its proven performance in capturing 
complex linguistic features, such as contextual embeddings, 
syntactic structures, and semantic relationships. Prior re-
search demonstrated that models like RoBERTa outperform 
traditional methods in tasks requiring a deep understand-
ing of natural language [29]. Considering that the context 
around the word influences word difficulty [18], we applied 
RoBERTa to all the text in the region of interest. Besides, as 
we aim at deploying EyeLingo to end-user devices like lap-
tops, we do not consider using billion-level large language 
models for efficiency reasons. Meanwhile, generative models 
are also unsuitable in our use case, as our task is to identify 
users’ unknown words in the given text rather than gener-
ating new content. Therefore, we choose RoBERTa instead 
of GPT. The model details related to this are explained in 
Section 3.2.2. 

(2) Word-level knowledge of the target word such as term fre-
quency, part of speech and named entity recognition are 
applied to enhance the performance. The tokenization is re-
quired to use RoBERTa. The word-level linguistic characteris-
tics are partially lost during tokenization. Thus, we introduce 
word-level knowledge to compensate for the loss. The model 
details related to this are explained in Section 3.2.3. 

(3) Gaze pattern is automatically learned from gaze trajectory 
and text position by the model adapted from T5, one of the 
top encoder-decoder transformer-based architectures. Gaze 
patterns can reflect a user’s cognitive process, indicating 
whether the user encounters an unknown word [25]. Con-
sidering the complexity of gaze patterns and the variability 
between users, we want to automatically learn these patterns 
using machine learning models based on gaze trajectory and 
text position. The encoder-decoder model can learn complex 
relationships between different types of sequential data. T5 
has demonstrated cutting-edge performance on a wide range 
of tasks and is capable of capturing complex patterns and 
dependencies within input sequences [34]. We take out the 
output of the last encoder layer as the positional encoding 

which represents the relationship between the gaze trajec-
tory and text position. The model details related to this are 
explained in Section 3.2.1. 

Our method has three main advantages compared to previous 
works: 

(1) EyeLingo has a higher tolerance for the noise of gaze data 
and has better performance by leveraging language mod-
els’ ability to capture linguistic characteristics to reduce the 
reliance on gaze (results in Section 4.2 and Section 4.4). 

(2) EyeLingo eliminates tedious feature engineering by auto-
matically learning gaze patterns based on gaze trajectory 
and text coordinates (detailed explanations in Section 3.2.1 
and results in Section 4.3). 

(3) EyeLingo enables real-time detection by only relying on the 
local information in the region of interest, which is benefit 
from the low reliance on gaze (results in Section 5). 

3.2 Unknown Word Detection Model 
The goal of our model is to classify whether a word is an un-
known word or not using both gaze information and text informa-
tion. We use the encoder-decoder architecture to encode positional 
gaze and text information into the vector space. We also leverage 
RoBERTa [29] to integrate with text information. Moreover, we 
also add the prior knowledge to take the use of the word-level 
information. The overall architecture of our model is shown in 
Fig. 3. 

3.2.1 Positional Data Encoding. To accurately capture the correla-
tion between the user’s gaze and the document, we adapt the model 
architecture from T5 [34], the state-of-the-art encoder-decoder lan-
guage model to process the positional data from those two modal-
ities, where the encoder learns to capture the user’s gaze pattern 
and the decoder is expected to predict whether a token belongs 
to an unknown word of the user, based on the encoder’s outputs 
and the tokens’ positional data. For the encoder part, we feed the 
raw and the moving averaged gaze trace to let the model cap-
ture both the fine-grained and general positional information from 
the user’s behavior. As for the decoder part, instead of using the 
token-level positional data as the inputs only, we also calculate the 
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Figure 3: Our model includes an encoder-decoder model to encode positional data, a pre-trained RoBERTa to encode text 
information, and learnable embeddings to encode the knowledge. The concatenation of these three matrices is input to a binary 
classifier. 

averaged gaze-token distance 𝑑 (𝑔, 𝑤 ) and the gaze duration 𝑡 (𝑔, 𝑤 ) 
(the length of the time when the user’s gaze lives in the bounding 
box of the token) for each token 𝑤 

𝑑 (𝑔, 𝑤 ) = 
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𝑡 (𝑔, 𝑤 ) = |{(𝑔𝑖 𝑥 , 𝑔 𝑖 𝑦 ) |1 ≤ 𝑖 ≤ 𝑁𝑔 ∧𝑤 𝑠 𝑥 ≤ 𝑔𝑖 𝑥 ≤ 𝑤 𝑡 𝑥 ∧𝑤 𝑠 𝑦 ≤ 𝑔 𝑖 𝑦 ≤ 𝑤 𝑡 𝑦 }| 
(2) 

where 𝑁𝑔 is the number of gaze samples within the sliding win-
dow, 𝑤 𝑠 𝑥 , 𝑤 𝑡 𝑥 , 𝑤 𝑠𝑦 , 𝑤 𝑡𝑦 are the coordinates of the bounding box of the 
token 𝑤 , and 𝑔𝑥 and 𝑔𝑦 are the user’s gaze trace on x and y axis, re-
spectively. Overall, this encoder-decoder model can be summarized 
as 

𝐻𝑔 = Encoder(𝑔𝑥 , 𝑔𝑦 , 𝑔
𝑟𝑎𝑤 
𝑥 , 𝑔 𝑟𝑎𝑤 

𝑦 ) (3) 
𝑃 = Decoder(𝐻𝑔, 𝑤𝑥 , 𝑤𝑦 , 𝑑 (𝑔, 𝑤 ), 𝑡 (𝑔, 𝑤 )) (4) 

where𝑔𝑥 , 𝑔𝑦 are the moving-averaged gaze positional data, 𝑔𝑟𝑎𝑤 
𝑥 , 𝑔𝑟𝑎𝑤 

𝑦

are the raw gaze data without filters applied, 𝑤𝑥 , 𝑤 𝑦 are the po-
sitions of each token, and 𝐻𝑔 is the final encoder outputs, which 
is used as the inputs (more specifically, keys and values) of the 
cross-attention modules in decoder layers. 

3.2.2 Textual Information Capturing. We utilize a pre-trained RoBERTa, 
a widely used pre-trained language model based on the transformer 
architecture, to encode the text information. The layer consists of 
a self-attention module and a feed-forward layer. The structure 
can help the model better encode the text by using the surround-
ing text to establish the context. It encodes text data 𝑠 ∈ R𝑛𝑡 𝑥 𝑡 to 
𝑍 ∈ R𝑛𝑡 𝑥 𝑡 ×𝑛𝑟 , in which 𝑛𝑟 is the hidden dimension of RoBERTa. 

𝑍 = RoBERTa(𝑠 ) (5) 

3.2.3 Knowledge-grounded Enhancement. The pre-trained language 
model takes tokens instead of words as input. Word-level informa-
tion may be lost during tokenization. Therefore, we introduce word-
level knowledge including the term frequencies, part of speech [4], 
and named entity recognition [23] to utilize word-level information. 
These features are encoded into a knowledge matrix 𝐾 ∈ R𝑛𝑡 𝑥 𝑡 ×𝑛𝑘 . 

3.2.4 Training. We combine the encodings of the three modules’ 
outputs as the inputs for the final classifier layer, a logistic regres-
sion module for binary classification. We fully fine-tune our model, 
including the positional encoder-decoder module, the RoBERTa 
pre-trained module, the knowledge embeddings, along with the 
final classifier on our dataset. It shall be noticed that the task of 
unknown word detection is significantly class imbalanced, where 
on average there are 15 times more negative tokens (known words) 
than positive ones (unknown words). To mitigate this issue, we 
use the focal binary entropy loss for our model’s training which 
re-weights the loss term for more robust training: 

𝐻 = [𝑃 ; 𝑍 ; 𝐾 ] (6) 
𝑝 = 𝜎 (𝑊𝑜 · 𝐻 + 𝑏𝑜 ) (7) 

L(𝑝, 𝑦) = −𝛼 𝑦 (1 − 𝑝)𝛾 log(𝑝 ) − (1 − 𝛼 ) (1 − 𝑦)𝑝 𝛾 log(1 − 𝑝 ) (8) 

where 𝑝 is the model’s prediction logits, ˆ 𝑦 is the ground truth, while 
𝛼 and 𝛾 are the hyper-parameters that control the weight between 
the two classes and the speed of the model’s focus on difficult 
examples, respectively. 

3.3 Data Preparation 
3.3.1 Implementation. We built a system to collect gaze data from 
eye trackers and webcams at the same time. We used Tobii Pro 
Nano1 eye tracker whose sampling rate is 60Hz and streamed its 

1https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-nano 

https://1https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-nano
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data to the computer through a Python script. The accuracy of the 
optimal conditions of Tobii Nano eye tracker is 0.3◦ . For webcam 
data, we used a SeeSo2 , a remote eye tracking platform, by integrat-
ing it into our PDF reader. To get text information including their 
contents and positions, we built a web-based PDF reader based on 
an open source Github repository3 . This platform can record gaze 
data using Seeso, retrieve text information when users finish read-
ing, and record users’ clicks while they are labeling their unknown 
words after the reading. 

The laptops we used were Macbook Pro (CPU: Apple M1 Pro, 
RAM: 16 GB, Storage: 512 GB, Screen Size: 14.2 inches, Resolution: 
1512×982)4 and Huawei MateBook D14 2022 (CPU: i5-1155G7, RAM: 
16 GB, Storage: 512 GB, Screen Size: 14 inches, Resolution: 1920 × 
1080)5 . The height of the line is 20.63 pixels on Macbook and 20.74 
on Matebook, so the height of each line of text is approximately 4.1 
mm on the MacBook and about 3.3 mm on the MateBook during 
the experiment. According to the Tobii calibration requirement6 , 
the distance between the participant’s face and the screen during 
the experiment is about 50 − 60 cm. Thus, the 10-point font size 
can be converted to 0.39◦ − 0.47◦ on a MacBook and 0.32◦ − 0.39◦ 

on a MateBook. 

3.3.2 Participant and Material. We recruited a total of 20 under-
graduate and graduate students (5 females, 15 males) whose second 
language is English. Their Vocabulary Levels Test (VLT) scores 
ranged from 7 to 30 (𝑀 = 20.24, 𝑆 𝐷 = 7.15). The VLT is widely 
used to measure the vocabulary level of English learners [32, 40]. 
We chose the 5000-word frequency level group because the TOEFL 
reading materials we used for the user study presume a vocabulary 
knowledge of approximately 4500 words [9]. Their ages range from 
21 to 26 years old (M = 22.85, SD = 1.65). Among them, 16 peo-
ple wore glasses during data collection and 4 did not. The reading 
materials contain 120 articles of TOEFL and GRE reading with an 
average length of 363 words per article and 43534 words in total. 
We organized the text into a common paper format, which is single-
spaced and has two columns. The font is Times New Roman and 
the font size is 10. 

3.3.3 Experiment Design and Procedure. To increase text diversity, 
we divided twenty participants into four groups, and participants in 
each group read the same 30 articles. These 30 articles were divided 
into 3 days to read, which took about an hour each day. There 
was a calibration session before data collection for each participant 
each day to calibrate both the eye tracker and webcam eye tracker. 
Participants can take a break whenever they feel fatigued. Typically, 
participants take a break after reading 3-5 articles. If they chose to 
take a break, there would be a re-calibration before the collection 
was restarted, considering that the person’s sitting posture had a 
great impact on the accuracy of eye tracking. The average reading 
time per article is 2.88 minutes (𝑆𝐷 = 1.01), which means the 
continuous reading time ranges from 8 to 14 minutes after one 
calibration. 

2https://seeso.io/
3https://github.com/zotero/pdf-reader
4https://support.apple.com/en-us/111902
5https://consumer.huawei.com/en/laptops/matebook-d-14-2022/specs/
6https://connect.tobii.com/s/article/how-to-position-participants-and-the-eye-
tracker?language=en_US 

Figure 4: (A) During data collection, users are seated at a 
distance of approximately 50-60 cm from the screen, as in-
structed by the Tobii calibration interface. The eye tracker 
and webcam simultaneously collect data. (B) The data collec-
tion platform includes a Python script to read eye tracker 
data and a web-based PDF reader to read webcam data and 
record word labeling. 

Following the previous work [16], we separated the collection 
of gaze data and the labeling of unknown words in order to avoid 
mouse clicks from affecting the user’s normal eye movement be-
havior when reading. Participants read each article twice. During 
the first pass, eye movement data were collected while participants 
were reading. In the second pass, participants were asked to mark 
the unknown words they encountered in the first pass, and eye 
movement data were not collected for the second pass. Partici-
pants started the second pass right after the first pass to restore 
the feelings of the first time and help participants recall as much 
as possible the unknown words they encountered in the first pass. 
In addition, before participants read each article for the first time, 
the experimenter clicked a button to download all the words on 
the current page along with their corresponding coordinates. Dur-
ing the second pass, participants were required not to zoom or 
move the webpage to ensure that the positions of the text remained 
unchanged. 

3.3.4 Data Preprocessing. To support real-time unknown word 
detection, we used a sliding time window to segment the data. 
The length of the window is 1 second, and the overlap between 
the two windows is zero. The data processing includes two steps. 

https://connect.tobii.com/s/article/how-to-position-participants-and-the-eye-tracker?language=en_US
https://connect.tobii.com/s/article/how-to-position-participants-and-the-eye-tracker?language=en_US
https://4https://support.apple.com/en-us/111902
https://3https://github.com/zotero/pdf-reader
https://2https://seeso.io
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Figure 5: A bounding box is derived from the gaze coordination within a 1-second sliding window. The gaze data, token-level 
text data, and word-level knowledge data are calculated for each candidate word in the bounding box. 

First, we located the text the user read within 1 second using the 
coordination of the gaze sequence. Then, we processed the raw 
gaze data and text data into 3 types of information which are gaze, 
text, and knowledge for each word in the sliding window. 

As shown in the left part of Fig. 5, we firstly de-noised the gaze 
data to locate the content the user is reading by getting the bounding 
box of the gaze coordination. Blinking can cause sudden changes 
in gaze data in the y direction, which will cause the bounding box 
to be abnormally large. We removed these outliers to avoid the 
extra-large bounding boxes. We analyzed the distribution of the 
range of the y-coordinates of the gaze data within 1 second. When 
the distance between a small subset of the data in a window and the 
other part of the data exceeds the width of three lines, we removed 
the smaller portion of the data. If the y-coordinates of all data in 
the window fluctuated greatly, we ignored this window. 

After getting the bounding box of 1s gaze (red dotted box in 
Fig. 5), all the words except the function word (such as articles 
and conjunctions) in the box were regarded as the word candidate. 
For gaze data, the 1-second window was extended to the 3-second 
window by adding one second before and after the window. The 
consideration for this extension is that the word identification 
span is about 7-8 characters [35] and the average reading speed 
of participants is 2.51 words per second. We applied the moving 
average filter and re-sampled the gaze data collected by webcam 
but not eye tracker, because webcam-based data is more noisy and 
the sampling rate of it varies from 24Hz to 27Hz. For text data, we 
tokenized the content within the 1-second window. We also added 
prior knowledge such as the term frequencies, part of speech, and 
named entity recognition to each candidate word. In the example 
shown in Fig. 5, finally we got 3 samples from this 1-second window 
which are 3 words with their gaze data, token-level text data, and 
word-level knowledge. Labels of these words are directly derived 
from the mouse click file. 

Compared with the data collected with eye trackers, the data 
collected with the webcam is noisier, and the data quality is more 
affected by the user’s sitting posture. Therefore, we aligned the data 
of the first article read by the user in each session with the coordi-
nates of the article and applied the parameters of this alignment to 
other articles in this session. 

4 Experiment 
In this section, we systematically evaluated our model. First, we 
present the results of our model on eye tracker data and webcam 
data. Second, we analyzed the contributions of gaze and the pre-
trained language model (PLM) separately. Finally, we discuss several 
important aspects for practical applications, including the model’s 
generalizability, latency, and memory consumption. 

4.1 Experiment Settings 
4.1.1 Training and Evaluation of EyeLingo. The statistics of our 
collected dataset are shown in Table 1. In the default setting (main 
model), the data from all users and all articles are mixed and divided 
into training set, development set and testing set according to 8:1:1. 
We fully fine-tuned our model for 30 epochs with a batch size of 32 
on our dataset. The learning rate of the positional encoder-decoder 
model is set as 1e-3, while the rest of the model’s learning rate, 
including the RoBERTa backbone, knowledge embeddings, and the 
classifier are set as 2e-5. The sample rate of the user’s gaze is set as 
60 Hz, with a maximum length of 3 seconds, while the maximum 
number of context tokens is set as 64. 

We report word-level accuracy, precision, recall, and F1-score 
in our experiments. In detail, a word is recognized as unknown if 
there exists at least one token within it predicted as positive. We 
report the F1 score on the test dataset, after selecting the best model 
based on the F1 score on the dev set throughout training with early 
stopping, with the binary classification threshold searched between 
0 to 1 with the step of 0.01. The result is shown in Table 2. 

4.1.2 Baseline. We compared our method to an SVM baseline im-
plemented according to [16] and three simple baselines. For distance 
and fixation heuristics baseline, the distance and fixation time calcu-
lation follow those described in Section 3.2.1. The only difference is 
that we use the bounding box of words instead of tokens in this case. 
The logistic regression model is trained with these two features 
above, plus word term frequency, part of speech, and named entity 
tags. Results are shown in Table 2. 

When implementing the SVM baseline, we used four gaze fea-
tures (number of forward gaze points, number of backward gaze 
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Table 1: Statistics of our collected data. 

#Users #Documents #Train Data #Dev Data #Test Data #Tokens #Unknown Tokens 

20 120 9,802 980 980 380,524 25,233 

Table 2: The Main Results of our method compared to heuristic and logistic regression baselines, backed with eye tracker and 
webcam collected user gaze data. Our model on the eye tracker data performs the best (highlighted in bold). 

Device Method Accuracy (%) F1 (%) Precision (%) Recall (%) 

Eye tracker Distance heuristics 76.6 20.6 13.3 45.5 
Eye tracker Fixation heuristics 82.4 22.9 16.2 39.1 
Eye tracker Logistic regression 96.6 23.4 15.9 44.5 
Eye tracker SVM [16] 83.0 29.9 20.3 56.7 

Eye tracker Ours (main model) 97.6 71.1 63.3 79.0 
Webcam Ours (main model) 97.3 65.1 60.3 69.7 

points, duration of forward reading, duration of backward read-
ing) plus two linguistic features (word length, word frequency) 
mentioned in [16]. Because the articles we chose are longer than 
those in previous work, there were lots of rereads, making it diffi-
cult to determine whether it is a new line or not based on sudden 
changes in the x value. In addition, due to the smaller line spac-
ing, correcting the line number based on the y value is impossible. 
Therefore, we only assigned line numbers to the gaze based on 
which line was closest to the gaze coordination and used a median 
filter to remove outliers. When choosing the parameters for SVM, 
we did the grid search and used the best one for the evaluation. 
The result we reported was trained using SVM (RBF kernel, C=0.01, 
gamma=0.1) with a class weight ratio of 6:1 between positive and 
negative classes. 

4.1.3 Ablation Study. As shown in Table 3, we conducted ablation 
studies on our method by removing the contextual encoding (the 
use of PLMs), gaze encoding (the positional encoder-decoder), and 
the knowledge embeddings, respectively. When ablating the text 
encoding component (the PLM), we remove the text information in 
the inputs and discard the text encoding in our model. The model 
should predict the users’ unknown words based on their gaze trajec-
tories’ relationship to texts’ positions plus prior knowledge. When 
the gaze encoding is ablated, corresponding positional data and 
modules in Fig. 3 are removed. Similarly, knowledge-oriented inputs 
and embeddings will be removed when we do knowledge embed-
ding ablation. As these ablations directly remove corresponding 
components in our model, each would reduce our model’s parame-
ter size. To further demonstrate our model succeeds in unknown 
word detection due to leveraging pre-trained RoBERTa weights 
rather than simply scaling the model’s size up, we add an extra 
ablation (“w/o pretrained RoBERTa”) where the RoBERTa model 
parameters are added to the model but randomly initialized. 

4.1.4 N-Gram Baseline. Due to the overlap of unknown words 
between the training set and test set, the model might exhibit a 
shortcut by memorizing the unknown words in the training set. 
To examine the impact of this shortcut on model performance, we 
implemented an n-gram-based baseline to simulate the scenario 

where the model "memorizes" the unknown words. During predic-
tion, if the current word combined with its preceding 𝑛 − 1 words 
forms an n-gram appearing in the training set while also with the 
current word being labeled as unknown, the current word is classi-
fied as an unknown word at inference time. The larger the 𝑛, the 
more contextual information the n-gram baseline utilized. Since 
the degree of overlap in unknown words between the training and 
test sets varies across the main, cross-user, and cross-document 
settings, we applied the n-gram baseline (𝑛 = 1, 2, 3) to each of these 
settings individually (Table 4). 

4.2 Model Performance 
The main results of our experiment are shown in Table 2, the F1-
score, precision and recall of our model that was trained and tested 
on data collected by eye tracker are 71.1%, 63.3% and 79.0%. Our 
model significantly outperforms the heuristic baseline (F1-score 
22.9%), logistic regression (F1-score 23.4%) and the previous work 
based on SVM [16] (F1-score 29.9%). The performance of SVM is 
much worse than that presented in their paper. This could be caused 
by the smaller line space, which made it harder to assign the gaze to 
the word correctly. Besides, the document we used was more than 
two times longer than theirs, which led to a longer reading time 
(2.88 minutes per document and 8-14 minutes per reading session) 
and more posture changes of participants. This could worsen the 
tracking accuracy of eye tracker. Compared to their method, our 
method relies less on the gaze modality and PLMs also provide rich 
linguistic characteristics, thus improving the performance. 

We also tested our model on the relatively inaccurate gaze data 
collected using a webcam (Fig. 6). To quantitatively compare the 
quality of gaze data collected by the eye tracker and webcam, we 
calculated the median absolute error (MAE) between these two 
types of gaze data. Since the sampling rate of the webcam is lower 
than that of the eye tracker, we applied cubic spline interpolation 
to the gaze coordination collected by webcam. The MAE in the 
x-direction is 115.99 pixels (𝑆𝐷 = 46.32). In the y-direction, the 
MAE is 67.25 pixels (𝑆 𝐷 = 32.28). Considering that the height 
of the text is 20.63 pixels per line, the data from the webcam is 
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Table 3: Ablation study with eye tracker collected gaze data. 

Method Accuracy (%) F1 (%) Precision (%) Recall (%) 

Ours (main model) 97.6 71.1 63.3 79.0 

w/o textual encoding 96.6 16.2 8.1 91.4 
w/o gaze encoding 97.5 68.5 63.5 74.4 

w/o knowledge embedding 97.6 69.2 68.4 70.0 
w/o pretrained RoBERTa 97.7 67.6 61.9 74.6 

Figure 6: (A) Gaze data collected by a Tobii eye tracker. (B) 
Gaze data collected by a webcam. 

noisier compared to the data obtained from the eye tracker. The 
model trained and tested on the relatively inaccurate gaze data 
collected using a Webcam (Fig. 6) also achieves a high F1-score 
(65.1%) compared to baselines, even though slightly worse compared 
to our method trained on eye tracker collected data. This is another 
evidence that our method has a higher tolerance for the noise of 
gaze data. This result also opens the potential for more accessible 
solutions than previously possible. 

4.3 Contribution of Gaze 
Firstly, we analyzed the differences in unknown words among users 
to demonstrate that the user-dependent gaze feature is necessary 
for correctly identifying unknown words for different users. We 
computed the Jaccard similarity matrix for all users. Users were 
divided into four groups because different groups of users read dif-
ferent documents. The average cross-user Jaccard similarity score 
is 0.24 and 77.5% of user-paired scores are below 0.3. The low Jac-
card similarity score indicates that different users have different 
unknown words even reading the same document. Only relying on 
textual information cannot identify differences between users, so it 
is necessary to use the user-dependent gaze features. 

Then, we removed the gaze encoding in the ablation study to 
determine the extent of the contribution of gaze to unknown word 

Figure 7: Jaccard similarity of unknown words between users. 

detection. After removing the gaze, the recall drops from 79.0% to 
74.4% while the precision remains almost the same. This phenom-
enon implies that gaze is helpful for identifying an individual’s 
unknown words based on the user’s unique behaviors and patterns. 

We also analyzed some cases to verify that gaze can help reflect 
differences between users and correctly predict unknown words in 
real time. We plotted the clip of gaze trajectory within 3 seconds 
(1-second gaze to locate the region of interest and additional 2-
second gaze for features) and the corresponding text in the region 
of interest. In Case 1 shown in Fig. 8, the word "ignominious" is an 
unknown word for user B but is not an unknown word for user A. 
There is a noticeable dwell on "ignominious" in B’s case which can 
facilitate the model to detect it as an unknown word correctly. The 
model captured this information because it predicted correctly in 
both cases. 

Another case is shown in Fig. 9 in which the gaze in A and B 
are from the same user but in two consecutive seconds. The model 
correctly detects ’undergo’ in the first second (A) and ’necrosis’ in 
the second second (B) when the user’s regions of interest in two 
consecutive seconds both contain ’undergo’ and ’necrosis’. This 
result also indicates that our model learned gaze features and gaze 
plays an important role in real-time detection. 
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Figure 8: Case 1: (A) The word "ignominious" is not an un-
known word for user A. (B) The word "ignominious" is an 
unknown word for user B. 

Figure 9: Case 2: (A) The word "undergo" was detected in 
the first second. (B) The word "necrosis" was detected in the 
second second. 

4.4 Contribution of PLM 
To identify the contribution of the pre-trained language model, 
we separately remove the "pre-trained" weights ("w/o pre-trained 
RoBERTa" in Fig. 3) by randomly initializing RoBERTa weights and 
remove the whole language model ("w/o textual encoding" in Fig. 3) 
by removing the RoBERTa weights. When initializing the RoBERTa 
randomly ("w/o pre-trained RoBERTa"), the F1-score decreases from 
71.1% to 67.6% which indicates that the linguistic characteristics of 
words learned by the PLM help EyeLingo to detect unknown words 
more accurately. After entirely removing the RoBERTa parameters 
("w/o textual encoding"), the F1-score significantly dropped to 22.0%, 
proving the effectiveness of using PLMs for better capturing the 
contextual information of the documents in the task of unknown 
word detection. The reason why the F1-score of "w/o pre-trained 
RoBERTa" is relatively high compared to "w/o textual encoding" is 
that the number of parameters remains constant in this case though 
the initialization is random, allowing RoBERTa to learn linguistic 
features incrementally during training. 

Table 4: N-gram baseline (n=1, 2, 3) for main, cross-user and 
cross-document settings. 

Method F1 (%) Precision (%) Recall (%) 

Main 1-gram 23.8 14.0 79.9 
Main 2-gram 51.9 38.5 79.4 
Main 3-gram 30.8 29.0 32.9 
Cross-user 1-gram 19.3 11.4 62.5 
Cross-user 2-gram 39.9 31.3 55.7 
Cross-user 3-gram 19.1 16.9 22.1 
Cross-doc 1-gram 7.9 4.9 21.0 
Cross-doc 2-gram 5.9 9.0 4.5 
Cross-doc 3-gram 3.5 4.8 2.8 

Due to the overlap of unknown words between the training and 
test sets, we implemented an n-gram baseline as another naive 
baseline to simulate the scenario where the model ’memorizes’ the 
unknown words to analyze the effect of this shortcut. As shown in 
Table 4, the results are best when 𝑛 = 2, with an F1 score of 51.9%. 
This result is lower than our model (71.1%), indicating that merely 
memorizing words is insufficient. In contrast, our model leverages 
the PLM to provide a more comprehensive understanding of the 
linguistic information from context. Moreover, another interesting 
phenomenon is that the F1 score of the 2-gram baseline (51.9%) is 
higher than the gaze-based SVM baseline (29.9%). This suggests 
that textual information contributes more than gaze data when the 
line space is so small that the gaze is not accurate enough to locate 
individual words. 

We also conducted the ablation study to the cross-document 
setting when the overlap of unknown words between the training 
and test sets is very small (Jaccard Similarity is 0.006). As shown 
in Table 6, removing gaze leads to a drop in performance, but it 
is less significant compared to the drop caused by the absence of 
pre-training. 

Synthesizing the insights from these three experiments, we con-
clude that gaze is indispensable for locating regions of interest and 
providing real-time detection, and it also improves the model per-
formance. However, the linguistic information introduced by the 
PLM plays the primary role in enhancing the model performance. 

4.5 Cross-User and Cross-Document 
Generalizability 

We evaluate our method with the cross-user generalizability with 
the leave-one-user-out setting, where the data collected from 18 
randomly-selected users are set as the training dataset, while the 
rest of the two user’s data are used as the dev and test sets. We 
find that in cross-user settings, the F1 score of our method drops to 
59.6%, with the accuracy, precision, and recall decreasing to 97.3%, 
52.8%, and 68.4%. Compared to the main setting, the performance 
decline of the model in the cross-user setting could be attributed 
to the loss of personalized information due to the absence of new 
user’s gaze data. Another possible reason is the lack of labels for 
unknown words from new users, which affects the model’s ability 
to assess word difficulty accurately for them. This suggests that it 
is necessary to collect some data from new users for fine-tuning 
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Table 5: Cross-user and Cross-document generalizability. 

Method Accuracy (%) F1 (%) Precision (%) Recall (%) 

Main 97.6 71.1 63.3 79.0 
Cross-user 97.3 59.6 52.8 68.4 
Cross-doc 96.8 51.1 43.3 62.8 

before deployment to better adapt the model to different users. 
Additionally, relying heavily on the PLM might hinder the model’s 
ability to achieve personalization. 

To demonstrate that EyeLingo can indeed detect users’ unknown 
words instead of simply memorizing difficult words in the docu-
ments, we also evaluate our model with the leave-one-document-
out setting. In this case, we equally split the 120 reading documents 
into groups of 10, and in each training run, we trained our model 
on 110 documents while testing the model on the remaining 10 doc-
uments. The average Jaccard similarity score between the training 
set and test set is 0.006, demonstrating that the unknown words in 
the test set are very different from those in the training set. Our 
model’s F1 score drops to 51.1%, with the precision, recall, and 
accuracy shifts to 43.3%, 62.8%, and 96.8%, respectively. The result 
indicates that generalizing the capabilities of unknown word de-
tection across documents is challenging because of the lack of text 
context. Since the difference in context between the training and 
test set in the cross-document setting is larger than that in the 
cross-user setting, the performance in the cross-document setting 
is worse than cross-user setting. However, our model still achieves 
non-trivial improvements compared to the random classifier (F1-
score 11.1%) and n-gram baseline (F1-score 7.9%), indicating that 
EyeLingo learns essential user gaze patterns and linguistic knowl-
edge through training beyond naively memorizing difficult words. 

To further investigate how gaze and PLM impact model perfor-
mance, we conducted an ablation study in this challenging cross-
document setting. After removing gaze and pre-training, the F1-
score decreased to 49.9% and 37.4%, respectively. This result in-
dicates that gaze contributes to the model’s performance, but its 
impact is smaller compared to the contribution of textual informa-
tion. Combined with the fact that the n-gram baseline’s F1-score 
is only 7.9%, it can be concluded that the contribution of textual 
information lies not in merely memorizing words but in enhancing 
the model’s understanding of context. 

4.6 Latency and Memory Consumption 
To demonstrate the capabilities of our method being used in real-
time applications, we evaluate our method’s latency with both CPU 
and GPU usage during inference. We set the batch size as 1 during 
inference latency testing. In GPU usage testing, we test the model 
with an RTX 4090 graphic card, where the average inference latency 
of the model is 0.013 seconds. Meanwhile, in CPU usage testing, the 
model’s latency is 0.036 seconds. Overall, these results indicate that 
our method can support real-time applications with latency within 
1 second. Moreover, under both settings, the maximum memory 
consumption of our model is 488.41MB, further proving that our 

method can be easily adapted to different on-device settings, widen-
ing our method’s practicality for various downstream application 
supports. 

5 User Evaluation 
The user experience using the application built on EyeLingo de-
pends on the real-time performance of EyeLingo. To evaluate the 
performance of our method in a real-time scenario, we built a 
reading assistance prototype that provided the translation and ex-
planation of words while the user was reading. Then, we calculated 
the metrics such as F1-score and reading time of EyeLingo and also 
analyzed the subject feedback from users. 

5.1 User Study Design 
The questions we want to know the answers are 

(1) What is the real-time performance (F1-score, correctly trig-
gered rate, and false alarm rate) of our unknown word de-
tection method (Section 5.3.1)? 

(2) Can our method make reading more fluent (Section 5.3.2)? 
(3) How is user experience when comparing our system to the 

commonly used method (Section 5.3.3)? 
To answer these questions, we implemented three methods for 

real-time unknown word detection and compared them regarding 
objective metrics and subject scale. The first method (EyeLingo) 
uses gaze to locate the region of interest and applies our model to 
detect unknown words. When a new word is detected, its translation 
and explanation will be automatically displayed in the sidebar, 
and users do not need to take any action. The second method 
(Click) imitates the typical process of looking up words by clicking. 
When a user selects or double-clicks a word, a "meaning" option 
pops up for translation and explanation of the word. The third 
method (Ideal) simulates an ideal scenario where the model is highly 
accurate. Before users start reading, they are required to select 
unknown words from a list of candidate words. As users start 
reading, the words in the region of interest are compared with the 
selected unknown words. The system then displays the words in 
the unknown word list. To control variables other than prediction 
accuracy, all data processing and model inference procedures for 
Ideal are the same as those of EyeLingo. This approach aims to 
eliminate any degradation in user experience caused by model 
inaccuracies and to solely evaluate the potential of the unknown 
word detection method using gaze and text. 

For the objective metrics, we calculated the accuracy, F1-score, 
correctly triggered rate, and false alarm rate for EyeLingo. We also 
recorded the reading time of users under three methods. 

For user experience, we conducted the evaluation for the three 
reading assistance based on each method across the following five 
aspects using a 5-point Likert scale: 

• Preference: To which degree do you prefer the application? 
1 for “I prefer this one least”. 5 for “I prefer this one most”. 

• Willingness to use: Would you like to use it in the future? 1 
for “I won’t use this application in the future”. 5 for “I would 
definitely use the application if it were available.” 

• Usefulness: How helpful do you think it is for your reading 
and vocabulary learning? 1 for “Not helpful at all”. 5 for 
“Very helpful”. 
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Table 6: Ablation study on leave-one-document-out setting. 

Method Accuracy (%) F1 (%) Precision (%) Recall (%) 

Cross-document 96.8 51.1 43.3 62.8 

w/o textual encoding 96.7 18.9 11.4 65.0 
w/o gaze encoding 96.8 49.9 42.8 60.1 

w/o knowledge embedding 96.7 34.0 26.6 49.6 
w/o pretrained RoBERTa 96.7 34.7 26.6 51.0 

• Perceived reading fluency: How do you feel about your read-
ing fluency when using this feature? 1 for “My reading is 
still slow and unsmooth”. 5 for “It speeds up my reading a 
lot and makes my reading very fluent”. 

• Perceived latency: What do you think of the latency from 
when you need help to when the system pops up an expla-
nation? 1 for “The latency is very small and does not affect 
usage”. 5 for “The latency is very large and makes the system 
not usable at all”. 

Then we compared the rate for three methods using Wilcoxon 
signed-rank test at .05 significance level. 

5.2 Setup and Procedure 
5.2.1 Implementation of a Reading Assistance Proof-of-Concept. 
The proof-of-concept is a web-based application as shown in Fig. 10. 
The back-end was built using Python and the front-end was built 
using TypeScript and React. The React-PDF-viewer7 was used to 
show the pdf. For the EyeLingo and Ideal, the gaze was captured 
by Tobii Nano which was the same model as the one used in data 
collection for model training. Next, the data was transmitted to 
the Python back-end via TCP and input into the unknown word 
detection model for inference along with text data. The model we 
used here is the main model trained on all the data and without 
any ablation. The same data processing step as the training was 
applied to gaze and text data. Then, unknown words predicted by 
the model were sent to the front-end through a web socket. The 
OpenAI API was called in the front-end to get translations and 
contextual explanations of words. In the end, the translations and 
explanations of words were displayed on the web page’s sidebar. For 
the Click, the unknown words were detected by a click listener and 
then called the OpenAI API to get the translations and explanations. 
The study was conducted on a MacBook Pro (CPU: Apple M1 Pro, 
RAM: 16G, screen: 14 inches). 

5.2.2 Participant and Material. We recruited 10 English as a second 
language learners aged between 22-28 (𝑀 = 23.80, 𝑆 𝐷 = 1.87), 
including 4 males and 6 females. Participants in this evaluation 
are different from participants for data collection. Eight of them 
wore glasses and two of them didn’t wear glasses. Their Vocabulary 
Levels Test (VLT) score on the 5000-word frequency level group 
ranged from 10 to 29 (𝑀 = 18.80, 𝑆𝐷 = 5.07). 

The documents we used are from TOEFL reading material with 
similar lengths (390 words/24 lines, 353 words/23 lines, 371 words/22 

7https://react-pdf-viewer.dev/ 

Figure 10: The implementation of reading assistance proto-
type based on our unknown word detection method. 

lines). Another important reason for selecting these three docu-
ments is that, their total numbers of unknown words (49 words, 
49 words, 52 words) marked in the previous data collection are 
close. During the user study, the text was displayed in two columns, 
consistent with the settings used for data collection. We employed 
Times New Roman font at size 10 with single line spacing. 

5.2.3 Procedure. Firstly, the experimenter introduced the back-
ground of the study and randomly assigned three articles to three 
tasks (EyeLingo, Click, and Ideal). Afterward, the eye tracker was 
calibrated and the participants were required to try the EyeLingo 
and Click to get familiar with them. After the calibration, partic-
ipants were informed to maintain the same posture as much as 
possible and read with their original reading habits. 

Participants used EyeLingo when reading the first document. 
The application automatically saved the unknown words detected 
by the model, the user’s reading time, and gaze data. Participants 
marked unknown words they encountered for ground truth after 
the reading. Participants used Click and got word explanation by 
clicking the word when reading the second document. The reading 
time was recorded. For the Ideal, participants first deleted words 
they knew from the unknown word candidate list before the read-
ing. The gaze function was turned to locate the region of interest 
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and the explanations for words from the unknown word list were 
displayed when the participant encountered those words. Reading 
time and gaze data were recorded. After reading three documents, 
the participants were asked to rate EyeLingo, Click, and Ideal indi-
vidually in the first aspects mentioned in Section. 5.1. 

5.3 Analysis and Results 
5.3.1 Real-Time Performance. We calculated the F1-score, preci-
sion, and recall for each participant by comparing the unknown 
words marked by the participants and detected by the model in 
EyeLingo setting. The averaged F1-score, precision, and recall are 
respectively 56.54%, 51.93%, and 67.39%, which is close to the cross-
user result in Section 4.5 (59.6%, 52.8%, and 68.4%). This result 
shows that our model performs the same when running offline 
and in real-time, which proves that our model can work in real-
time. The average correctly triggered rate is equal to recall which 
is 67.39% and the average false alert is 2.89%. The false alert rate 
is similar to the previous work conducted using the more accurate 
head-mounted eye tracker [24]. The low correctly triggered rate 
could be caused by the inaccuracy of our model and the inevitable 
change of posture when the user was reading. 

5.3.2 Reading Fluency. We evaluated the influence of our word 
detection method on improving users’ reading fluency from two 
perspectives which are reading time and user perceived fluency. 
The reading time of EyeLingo (𝑝 = 0.006) and Ideal (𝑝 = 0.048) is 
significantly shorter than the reading time of Click. There is no 
significant difference between the reading time of EyeLingo and 
Ideal (𝑝 = 0.193). 

For the perceived reading fluency, the rate of ideal is significantly 
higher than Click (𝑝 = 0.030), but there is no significant difference 
between EyeLingo and Click (𝑝 = 0.0773). Automatically detecting 
unknown words speeds up the reading by minimizing the number 
of operations. However, participants’ feedback shows that the ex-
planation of incorrect unknown words that popped up in EyeLingo 
distracted users and slowed down the reading when using EyeLingo. 
Ideal does not have this problem and will not interrupt reading due 
to mouse operation, so it makes the reading process more fluent. 

Figure 11: EyeLingo enhances the fluency of reading for users 
compared with getting word explanation by clicking the un-
known word. 

5.3.3 User Experience. For user preference, the average scores for 
Click and Ideal are the same as shown in Fig. 12. It indicates that 
detecting unknown words by gaze and PLMs has the potential 
to replace the conventional method of word lookup via mouse 
clicks. In terms of willingness to use, the score of Ideal (4.1) is 

higher than Click (3.5). Most participants stated they preferred real-
time automatic word detection if the accuracy was high. For the 
usefulness, the score of Ideal (4.2) is slightly higher than Click (4.0). 
Participants indicated that our proposed method helps them read 
more fluently with less disruption. The perceived latency of Ideal 
(2.7) is lower than Click (3.1) demonstrating that the latency caused 
by the data processing and model inference is negligible because 
the Ideal also includes these components from EyeLingo. Moreover, 
the time saved by avoiding clicks can compensate for the delay 
introduced by GPT, thereby reducing overall latency. 

The scores of EyeLingo are lower than Click, but Ideal can sur-
pass traditional click methods in most aspects. Considering that 
the major difference between EyeLingo and Ideal is the accuracy of 
the unknown word detection model, EyeLingo could offer a more 
natural and efficient interaction mechanism by further improving 
the accuracy in the future. 

Figure 12: Subjective rating of user experience. Left: the ideal 
condition of our method improves the willingness to use and 
usefulness compared to the click method. Right: the latency 
that participants perceived of ideal condition is less than 
click. 

6 Discussion 
In this section, we first summarize the conclusion and share some 
key observations. Then, we reflect on the usability of our method 
and propose potential applications. In the end, we discuss the limi-
tations and future work. 

6.1 Effectiveness of EyeLingo 
Firstly, based on the results from Section 4, we can draw the follow-
ing conclusions: 

• It is efficient to detect unknown words by combining lin-
guistic characteristics provided by the pre-trained language 
model (PLM) and gaze trajectory. 

• The prediction is mainly based on the linguistic features 
from the textual context captured by PLM. 

• Gaze locates the region of interest in a timely manner, which 
is necessary for real-time applications. Gaze also helps im-
prove the model performance, but its contribution is limited 
compared to PLM. 

Additionally, it is interesting that while we typically assume that 
the gaze modality should contribute significantly to the task of 
unknown word detection, the experimental results show that the 
contribution of gaze to the model’s improvement is small with the 
existence of PLM. Based on the previous analysis of line spacing 
and eye tracker accuracy, a possible reason for this is that under 
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normal reading conditions (single-line spacing, line height 3-5 mm), 
the eye tracker’s accuracy is insufficient to precisely detect which 
line the gaze belongs to, thus failing to accurately locate the gaze 
on the words. Furthermore, changes in user posture during long 
reading sessions further reduce the accuracy of the eye tracker. In 
our system, PLM compensates for this issue by providing linguistic 
information based on the text. 

From another perspective, the low contribution of gaze is not 
necessarily a disadvantage. Our method’s reduced reliance on gaze 
makes it more tolerant of noise. The model’s good performance on 
data collected by webcams further supports this conclusion. The 
reduced dependency on gaze data allows our model to be applied 
on more affordable and accessible devices, such as webcams. 

6.2 Usability of EyeLingo 
The results from the user evaluation (Section 5) show that our read-
ing assistance prototype helps users read more fluently and they 
are more willing to use it compared to traditional click-to-translate 
methods. In addition to providing real-time translation and explana-
tions during reading, our system can also benefit ESL for long-term 
learning. For example, based on the unknown word detected by our 
system, we can generate a vocabulary list for memorizing and offer 
memory curve tracking. Furthermore, these unknown words can 
also be used to generate personalized summaries and notes. 

The potential issue of generalizability across users, texts and 
devices can be addressed through fine-tuning and reinforcement 
learning methods. During the initial phases of usage, the system 
collects both gaze and text data for fine-tuning and lets users provide 
feedback on the model’s predictions. This allows the model to 
continuously learn the user’s unique gaze patterns and infer their 
vocabulary proficiency and domain expertise from textual content, 
thereby improving prediction accuracy. 

6.3 Limitation and Future Works 
The quality of gaze data hinders the improvement model perfor-
mance. The accuracy of the eye tracker is not enough for word-level 
detection. Common formatting, such as single-line spacing and 10-
point font, results in a line height of approximately 3-5 mm when 
viewed using the PDF viewer with a sidebar on a 14-inch laptop. 
This requires an accuracy of about 0.3−0.6◦ at a reading distance of 
50-60 cm. However, most eye trackers have a gaze accuracy ranging 
from 0.2−1.1◦ [5]. Combined with additional errors caused by head 
and upper body movements, this level of accuracy is insufficient for 
real-world reading scenarios. During data collection and evaluation, 
some participants reported that even after calibration, the error 
could span 1-3 lines. This makes it difficult to determine the spe-
cific word the user is focusing on based solely on gaze coordinates, 
explaining why gaze-based baselines performed poorly on our data. 

The inaccuracy of the gaze data could also lead to the inaccuracy 
of data labeling. To mitigate the impact of mouse clicks on gaze 
behavior, we asked users to label unknown words during their sec-
ond pass. However, this widely adopted labeling method inherently 
requires "guessing" which words correspond to a given gaze tra-
jectory. Previous works mapped each gaze coordinate directly to a 
specific word to establish word-gaze pairs. This method is infeasible 
for text with normal line spacing, so we establish gaze-word pairs 

by defining a bounding box based on a segment of gaze to identify 
the corresponding words instead. While this approach improves 
robustness, it may also introduce mismatches between gaze and 
words and thus introduce noise to the dataset. To further improve 
model performance, more precise labeling methods are needed. 

Additionally, reading time can be longer than several minutes 
in daily scenarios, so gaze drift can significantly affect data quality. 
In our experiments, we observed that it is difficult for participants 
to maintain a fixed posture after calibration, though we required 
them to do so. The posture shift further increases errors. Therefore, 
in practical applications, real-time calibration of gaze data based 
on user posture is crucial to ensure data quality. If the existing eye-
tracking technology can combined with user posture detection [44], 
it is possible to reduce the impact of user posture on gaze data, 
thereby improving the quality of gaze data. 

7 Conclusion 
We propose a highly accurate and real-time unknown-word de-
tecting method based on gaze trajectory and pre-trained language 
models (PLMs). The text embedding derived from the PLM and the 
knowledge grounding provides rich linguistic characteristics for 
candidate words, and the gaze data locates the region of interest and 
supplies behavior information to the model. The evaluation shows 
that it achieves an accuracy of 97.6% and F1-score of 71.1%. The 
latency is within 1 second. Our method also works on noisy gaze 
data acquired by webcam with an accuracy of 97.3% and an F1-score 
of 65.1%, which demonstrates the accessibility and applicability for 
daily use. The experimental results show that the PLM contributes 
most to the performance and gaze provides user-dependent fea-
tures. The real-time evaluation shows that our method achieves the 
F1-score of 56.54% and makes reading more fluent. It also shows an 
improvement in the willingness to use and usefulness compared 
to the traditional click method. Due to the growing number of em-
bedded eye tracking in commercial devices, we believe that lots of 
language learners can ultimately benefit from our technique. 
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