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Figure 1: Demonstration of using the PalmPad system to input text directly in a VR scenario on the palm. (Left) A user interacts 
with his palm with finger taps, captured by a monocular RGB camera integrated into a head-mounted display. (Middle) The 
picture captured by the head-mount camera and the main feature of the finger used is amplified. (Right) An application scenario, 
where a virtual keyboard is displayed, allowing for text input via palm-based finger tapping. 
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Abstract 
Index-to-palm interaction plays a crucial role in Mixed Reality(MR) 
interactions. However, achieving a satisfactory inter-hand inter-
action experience is challenging with existing vision-based hand 
tracking technologies, especially in scenarios where only a sin-
gle camera is available. Therefore, we introduce Palmpad, a novel 
sensing method utilizing a single RGB camera to detect the touch 
of an index finger on the opposite palm. Our exploration reveals 
that the incorporation of optical flow techniques to extract motion 

∗

information between consecutive frames for the index finger and 
palm leads to a significant improvement in touch status determi-
nation. By doing so, our CNN model achieves 97.0% recognition 
accuracy and a 96.1% F1 score. In usability evaluation, we compare 
Palmpad with Quest’s inherent hand gesture algorithms. Palmpad 
not only delivers superior accuracy 95.3% but also reduces opera-
tional demands and significantly improves users’ willingness and 
confidence. Palmpad aims to enhance accurate touch detection for 
lightweight MR devices. 

CCS Concepts 
• Human-centered computing → Ubiquitous and mobile com-
puting systems and tools. 
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1 Introduction 
In the realm of Mixed Reality (MR) environments, index-to-palm 
interaction emerges as a convenient mode of interaction [45]. This 
interaction method treats one palm as a touch surface, with the 
index finger of the other hand serving as the input tool for clicking 
or swiping, providing tactile feedback and reducing user fatigue 
while enhancing input efficiency. 

Existing MR devices can be categorized into single-camera and 
multi-camera systems. Some lightweight MR devices [21, 59] (as 
well as some wearable camera systems like Ai pin [30]) tend to 
utilize a single RGB camera, which limits their hand-tracking capa-
bilities, particularly in-depth information. Even with multi-camera 
MR devices, such as Microsoft Hololens 2 [16] and Meta Quest 
2 [19], the depth estimation for index-to-palm interactions is still 
insufficient to support hand interaction with higher spatial resolu-
tion. For example, it is difficult for them to differentiate between 
an index finger on the palm and an index finger slightly above 
the palm, which makes them inefficient in detecting touch states 
in index-to-palm interactions [41]. To solve this problem, some 
research has opted for the use of additional wearable devices and 
sensors for detection [15, 45, 79], which may be inconvenient for 
users. Additionally, it is necessary to detect the timing of clicks 
to support light/firm/fast/slow click/swipe, which is common in 
our pilot study and challenging. To solve this problem, previous 
works [62] suggest (but haven’t implemented) incorporating tem-
poral information by concatenating consecutive frames or adding 
temporal neural networks like LSTM, which is proven to be lim-
ited in our study. Other works like [13] and [14] try to predict the 
pressure between fingers and the surface, which is insufficient to 
detect the click on the soft and deformable palm. 

In this paper, we aim to introduce a highly usable and easily 
deployable touch state detection solution for index-to-palm inter-
actions using a single RGB camera, which we refer to as "Palmpad". 
Palmpad can accurately determine the current touch state, sup-
porting various touch gestures such as clicking and swiping, thus 
providing an always-available virtual keyboard and touchpad with 
tactile feedback that can be readily deployed on existing MR devices. 

We first conducted a data collection experiment involving 16 
participants, gathering an index-to-palm dataset with a duration 
of 211 minutes, which includes two types of actions: index-click-
palm and index-swipe-palm. Ground truth calibration was achieved 
using an AC circuit. 

Subsequently, we conducted a detailed analysis of the video data 
recorded to identify the features that determine the touch state. We 
observed that the key image features influencing the touch state 
were primarily located around the right index fingertip, and tem-
poral information was particularly important for click detection. 
Therefore, we utilized Mediapipe [85] for hand tracking to segment 
images of the left-hand palm and the right-hand index fingertip. We 
computed global dense optical flow for consecutive frames to extract 

temporal information, which significantly improved performance 
while reducing the parameter scale and the computational load, 
demonstrating high applicability. Using this data as input, we de-
signed a CNN model with ResNet [26] pre-trained on ImageNet [9] 
as the backbone and employed fully connected layers for classifying 
touch and non-touch states. Evaluation experiments demonstrated 
that this model effectively extracted feature information relevant to 
index-to-palm interaction, achieving an accuracy of 97.0% and an 
F1 score of 96.1% in the leave-one-out touch state detection. This 
level of accuracy surpasses similar work (Acc of 89.1% and F1 score 
of 85.2% in [62]) in the field. Furthermore, when compared with the 
approach of replacing optical flow with LSTM, deleting optical flow, 
or Mediapipe cropping as an ablation study, our model displayed 
a significant advantage, highlighting the strength of our model in 
extracting temporal information. 

Finally, we conducted a usability experiment, comparing Palm-
pad’s performance to state-of-the-art(SOTA) commercial techniques 
via two tasks: index-click-palm and index-swipe-palm. Results re-
vealed that Palmpad reduced task completion time by 3.1% while 
improving accuracy by 2.8% compared with the SOTA commercial 
techniques. User subjective evaluations indicated that Palmpad gar-
nered significantly higher acceptance and lower perceived burden. 

In summary, Palmpad makes three main contributions: 
(1) We proposed a method to enable index-to-palm interactions 

on MR devices using only a single RGB camera. It may be possible 
to seamlessly integrate this method into existing MR devices by 
reusing the headset’s front-facing camera. 

(2) We presented an effective CNN-based index-to-palm touch 
recognition model that took different levels of image features as 
input, along with a prototypical implementation of Palmpad. Our 
model achieved an optimal touch recognition accuracy of 97.0%. 
User study showed Palmpad outperformed state-of-the-art com-
mercial solutions with a 2.8% improvement in accuracy and a 50% 
enhancement in spatial resolution. 

(3) We explored the extensive application space of Palmpad and 
implemented a subset of it. Our usability evaluation study validated 
the high usability of Palmpad compared with the threshold-based 
approach. 

2 RELATED WORKS 

2.1 On-body Interface 
Recently, there has been increasing attention on utilizing the body 
as an interface. This approach involves using the human body as a 
consistently available interface for both input and output, which is 
considered to have tremendous potential. When users interact with 
their own bodies by touch, it can unify their cognitive and physical 
actions [23, 74]. The human body has a large external surface area, 
most of which is accessible by the hands, implying a vast interactive 
interface. Furthermore, the unique proprioception of the human 
body, which involves perceiving the positions of its parts in space, 
allows for interaction on the body surface without relying on visual 
attention [25]. 

In practical interactive scenarios, such input methods have been 
proven to be effective, including sports applications [70], visually 
impaired individual applications [54], medical applications [33], as 
well as XR applications [82]. 

https://doi.org/10.1145/3706598.3714130
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So far, numerous works have investigated different parts of the 
human body, including palms [10, 17, 18, 71, 72], fingers [6, 17, 29, 
81], nails [34], forearms [47], back of the hand [43], and skin [73]. 
For example, Omnitouch [22] takes the palm as a clicking interface 
to expand the user’s interactive area, allowing for a broader range 
of interactions. AI-ON-SKIN [4] utilizes the surface of artificial 
skin for interaction and computation, which enables tasks such 
as handwriting and gesture recognition. WatchSense [66] uses a 
depth sensor embedded in a wearable device to enhance input on 
the skin. Egotouch [51] achieves hand skin input using just an RGB 
camera in XR headsets. ClothFace [47] achieves the estimation of 
human body posture via the mutual perception of the forearm and 
passive radio frequency signals. KnitDermis [38] takes soft knitting 
to deliver tactile sensations on the skin, which can conform to 
underexplored body locations, such as protruded joints and convex 
body locations. Beyond exploring the possibilities of interaction in 
different parts of the human body, Ashbrook et al. [2] find that a 
wrist-mounted system is significantly faster to access than a device 
stored in a pocket or mounted on the hip. 

Our work shares a similar goal of reducing users’ burden through 
proprioception. The index-to-palm interactions, which are designed 
in Palmpad, enable users to perform touch operations without 
relying on visual attention. In the meantime, the palm, serving as a 
flat surface for interaction, can support various types of interactions 
such as text input, touchpad, and many others, providing a vast 
interaction space. 

2.2 Enhancing Touch Recognition on 
Unmodified Surface 

Researchers in Human-Computer Interaction (HCI) have consis-
tently been exploring methods for touch interaction on unmodified 
surfaces, which aligns with this study, as we focus on using the 
palm as an unmodified surface for touch interaction. Therefore, it 
is necessary to review the works in this field. 

The touch on a surface can be divided into several stages. The 
finger touches down and then maintains contact with the surface. 
After that, the finger touches up and then remains in a non-contact 
state [41], which means that touch includes motion information 
and mechanical information related to the surface. Meanwhile, 
touch can also generate various accompanying information, such 
as sound [24], shadows [62], electrical signals [28], and so on. The 
diverse information generated by the interaction could support 
distinct interaction space. 

Researchers employ various methods to capture diverse informa-
tion, among which, motion information is frequently detected using 
IMUs because they are suitable for capturing subtle movements 
and vibrations, thereby achieving higher sensing accuracy [15]. 
ActualTouch [63] uses a single nailed-mounted IMU to detect touch. 
QwertyRing [80] uses an IMU ring worn on the middle phalanx of 
the index finger, enabling the text entry technique. DualRing [42], 
which is composed of two IMU rings and a high-frequency AC 
circuit, is designed to sense rich hand information. Mechanical in-
formation is also utilized for touch detection. Paradiso et al. [56] 
recognize contact interactivity by measuring the position of a knock. 
WhichFinger [46] relies on vibration sensors attached to each finger 

to identify touch with low latency. On the aspect of sound, Skin-
put [25] detects the location of finger taps on the arm and hand by 
acoustic sensors worn as an armband. AudioTouch [40] attaches 
two piezo-electric elements as a speaker and microphone on the 
back of the hand to sense hand gestures. In terms of optical signals, 
ShadowTouch [41] enhances the shadow during contact and utilizes 
a camera to detect touch. Agarwal et al. [1] implement Multi-touch 
Interaction using cameras. StegoType [60] adapts ideas from end-
to-end ASR and domain-specific qualities of two-handed typing 
hand motions to achieve typing on uninstrumented flat surfaces. 
TouchInsight [68] uses a bivariate Gaussian distribution to repre-
sent the location and achieve touch detection from all ten fingers 
on any surface. Structured Light Speckle [67] leverages structured 
laser light and egocentric optical sensing to detect touch on discov-
ered physical surfaces. HumTouch [28] takes electrodes attached 
to the surface of an object to achieve touch position estimation. 
ElectroRing [37] uses an electrical technique to measure the precise 
moment of contact and release between the fingertip and the skin. 
ActiTouch [86] uses the human body as an RF waveguide to achieve 
touch segmentation. 

While the aforementioned methods can be used for touch recog-
nition, each has its own limitations. For instance, detection based on 
IMU, vibration, or sound focuses on identifying touch events [41], 
making them ineffective for continuous sliding contact on a sur-
face [15]. Additionally, these methods often introduce additional 
wearable devices. As for the use of electrical signals, although they 
can accomplish touch state detection and even position estima-
tion [28], the approaches of introducing electrodes are challenging 
to apply to different surfaces and human body. Moreover, the long-
term effects of passing electric current through the human body 
have not been fully evaluated. Existing optical methods also have 
limitations. They either require depth cameras [22] or depend on 
additional light sources [41] to enhance shadows. Our work adopts 
only optical sensing without the need for any other additional wear-
able devices. Given the camera setup being used, it is suitable to 
reuse the front-facing cameras on existing VR headsets as sensors 
and specialized features of the palm, which allows us to enhance 
touch detection, achieving effective results without the need for 
extra devices. 

2.3 Mining Implicit Features from Vision-based 
Tracking and Recognition 

Hand detection and tracking based on vision have been drawing re-
searchers’ wide attention. Researchers have employed visual meth-
ods to achieve numerous downstream tasks related to hand such as 
palm print recognition [31, 36], palm vein recognition [57, 64, 78], 
hand posture reconstruction [35], gesture recognition [52, 55, 58], 
and hand tracking [7]. 

In general, two main approaches can be implemented for hand 
detection and tracking based on vision [49]. One of them is taking 
markers as an aid. Han et al. [20] designed a glove equipped with 
multiple markers to assist in hand tracking and identification. Za-
man et al. [83] utilize gloves with three color markers for gesture 
recognition, successfully detecting all twenty-six American Sign 
Language (ASL) alphabet letters. Ishiyama et al. [32] recognized 96 
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hand gestures by adding AR markers and structured markers to 
monochromatic gloves. 

The other method is to utilize intrinsic features of the hand itself 
for recognition, such as skin color and edges [50], geometric fea-
tures like length and width [75], and features of palm prints [84]. 
For example, Liu et al. [44] take geometric features of translation, 
rotation, and scale-invariant to finish gesture recognition. Nguyen 
et al. [53] identify hands in a gloved state using the hand’s shape. Sa-
boo et al. [61] use a two-level combination of color information, in-
cluding skin filtering and motion information through three-frame 
differencing to recognize gestures. Singha et al. [65] also combine 
three-frame differencing and skin filtering to accomplish dynamic 
hand gesture recognition. Avola et al. [3] utilize a keypoint-based 
end-to-end framework for 3D hand tracking and pose estimation 
and apply it to the task of hand gesture recognition successfully. Ad-
ditionally, some researchers use optical flow to capture the motion 
cues in areas including Time-to-Contact calculation [5], interaction 
between two people [8], and objects held by the robot contacting 
the environment [39], which proves the performance of optical 
flow. 

Generally speaking, the former method requires users to wear 
glove-like devices to provide more accurate results but can be incon-
venient for users, limiting naturalness [50]. In contrast, the latter 
method is more natural and does not require additional devices. In 
our work, we utilize the information generated by the motion and 
deformation of fingers and palms. We employ a frame-by-frame op-
tical flow approach to characterize the deformation of palm prints 
after contact, concurrently utilizing information representing the 
motion trajectories of fingers over short periods. Moreover, we 
focus on detecting subtle touch states using global dense optical 
flow directly, while former studies focus on the obvious motion 
with local landmark optical flow. 

3 Palmpad 
We aim to utilize Palmpad to address the shortcomings of existing 
hand tracking on MR devices, particularly in-depth estimation, in 
the context of index-to-palm tasks. This will result in more precise 
and low-latency touch state detection, ultimately enhancing the 
user experience in index-to-palm interaction. To achieve this, in 
this section, we first analyze the problem, outlining the capabilities 
that Palmpad should provide and how these capabilities can be 
achieved. Subsequently, we present our approach to implementing 
Palmpad in terms of hardware and algorithms. 

3.1 Consideration of Interaction Methods 
In order for Palmpad to accurately encompass all interaction modes 
within index-to-palm interaction and to facilitate rapid deployment 
on the vast majority of current commercial MR devices, we need to 
consider the following research questions: 

DQ1: What interaction modes should Palmpad provide? 
While existing work on index-to-palm interaction encompasses a 
variety of input methods, such as gestures [72], keyboard [71], and 
touchpad [22]. When we consolidate these methods, the primary 
touch tasks in index-to-palm interaction are index-click-palm and 
index-swipe-palm. Although both tasks fundamentally rely on pre-
cise touch state detection, the cognitive aspects and behaviors of 

users differ when performing these two types of actions. During 
clicking, users typically exhibit touch durations in the range of 
tens of milliseconds [15], with minimal interruptions, resulting in 
more significant differences between frames and blurrier finger-
tip images. In contrast, swiping involves longer, less predictable 
touch durations, potential pauses, and substantial relative displace-
ment between the right index finger and the left palm. As a result, 
although both clicking and swiping tasks involve touch state recog-
nition, they should be treated differently in the algorithm to achieve 
better recognition accuracy. 

DQ2: What type of camera is suitable for Palmpad’s task? 
Previous research has extensively explored solutions for touch de-
tection using depth cameras or multiple cameras [22, 76, 77], which 
often estimate fingertip depth to determine touch states. They typi-
cally achieve spatial resolutions of around 1 centimeter. However, 
not all MR devices are equipped with depth cameras or multiple 
cameras. Although the power consumption of 3D tracking is im-
proving, multi-camera systems occupy a larger physical space, and 
the computational power requirements and energy consumption for 
cameras themselves are several times greater than those of monocu-
lar cameras. To make Palmpad compatible with the majority of MR 
devices, we have opted for recognition using a single RGB camera. 
To capture full images of both hands during natural interaction, the 
camera’s field of view (FOV) should be relatively wide. However, 
an excessively wide FOV can lead to image distortion, and some 
MR devices also use the camera for video recording purposes, so 
the FOV cannot be too large. Considering these factors, we selected 
a camera with a 120° FOV. To detect momentary touch events, such 
as clicks, the camera should have a high frame rate to capture more 
information. Therefore, we chose a camera with a frame rate of 120 
frames per second (fps) to ensure abundant information. 

(a) Images of index finger with clear outlines and shadows. 

(b) Images of index finger with blur outlines and shadows. 

Figure 2: Images of the index finger interacting on the palm. 

DQ3: What visual features should be selected for Palm-
pad’s task? Once camera parameters are determined, the next 
consideration is what features can be used to recognize touch state 
efficiently and accurately based on the existing hardware. Previous 
work often analyzed static images [1, 62], which is more suitable for 
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tasks like index-swipe-palm. In swiping tasks, the user’s index fin-
ger moves at a moderate speed, without abrupt directional changes, 
resulting in smoother and clearer fingertip outlines and shadows 
(as shown in Fig. 2(a).). The features in single frames are relatively 
easy to extract. However, during clicking, the entire process is ex-
tremely rapid, and even with a 120fps camera, only a few frames 
can be recorded. Additionally, due to the high-speed motion and 
abrupt changes in direction when the finger contacts the palm and 
rebounds, the pixels around the finger appear very blurry in the 
images (as shown in Fig. 2(b).). Relying solely on single frames for 
recognition is not suitable in such scenarios, and introducing more 
temporal information is necessary. In this paper, we considered 
using both raw images and global optical flow computed between 
frames as inputs. Experimental evaluation showed that incorporat-
ing temporal information significantly enhances system accuracy 
and stability. Moreover, this approach outperformed solutions uti-
lizing LSTM, highlighting the substantial advantage of our method 
in extracting temporal information. 

3.2 Hardware Prototype 

Figure 3: The hardware prototype and interaction method of 
Palmpad. A 120fps camera was fixed on the Quest 2 for input 
with an MR scene displayed through the Quest 2. 

Based on the previous analysis, we select a camera with a frame 
rate of 120 fps, a 120° (diagonal) field of view (FOV), horizontal and 
vertical FOVs of 113° and 81°, and a resolution of 1280 × 720. We 
choose the Quest 2 as the MR head-mounted display (HMD) for our 
experiments. The camera is fixed above the Quest’s center position 
using a rotatable bracket, and it is oriented diagonally downward 
at an angle of approximately 30° with respect to the vertical plane 
(as shown in Fig. 3). According to the pilot study, this setup ensures 
that both hands are fully captured when users engage in natural 
index-to-palm interaction. 

3.3 Algorithms 
3.3.1 Pipeline. According to the analysis in Section 3.1, we have 
designed the algorithm as shown in Figure 4. The system generally 
takes a sequence of 𝑛 images with a time interval of 𝑑𝑡 as input and 
outputs the touch state (true or false) at the time corresponding 

to the last frame image. The system is implemented as a neural 
network (NN). 

Before inputting, we crop the original frames and apply data 
augmentation of uniform parameter perturbations to enhance the 
system’s robustness. Initially, we treat each frame as an indepen-
dent input, aiming to extract static features related to the touch 
state. Subsequently, we consider using multiple frames in tempo-
ral sequence as input to extract temporal information. Finally, we 
integrate all this information to make a judgment about the touch 
state. 

During training, we train our model for 100 epochs, with the 
initial learning rate set to 0.001, exponentially decreasing by a factor 
of 0.1 at epochs 15 and 50. 

3.3.2 Image Processing. Due to computational constraints, directly 
inputting the original images(1280 × 720) into the neural network is 
not feasible. Therefore, image compression is required to preserve 
as much useful information as possible in the compressed images. 
As the changes in image features during index-to-palm interaction 
are primarily confined within the left hand’s palm area, with other 
background regions remaining nearly static, and the variations 
on the palm are mainly concentrated around the tip of the right 
index finger, we utilize the Mediapipe hand landmark model [85]to 
determine the positions of the palm and fingers. 

The Mediapipe hand landmark model can extract 21 key points 
for each hand from the image. We select the smallest rectangle 
encompassing all points as a cropping box to define the palm area 
and extend it by 10 pixels outward to ensure the entire palm is 
included within the image. To maintain a consistent aspect ratio, 
we adjust the cropping box to a square shape. Simultaneously, we 
crop a 128 × 128 square centered around the tip of the right index 
finger as the fingertip image input. Our real-time experiments have 
demonstrated that even when there are slight deviations between 
the key points provided by Mediapipe and the actual positions, 
this approach ensures that the tip of the right index finger remains 
within the image frame. 

Due to the possibility that experimental data may not cover 
all usage scenarios, we have considered the following two data 
augmentation methods: 1) Random angle rotation. Although in 
actual use, the orientations of the camera and HMD are generally 
aligned, pilot studies have shown that the orientations of the left and 
right fingertips during natural index-to-palm interaction are not 
fixed, with an overall angle variation of around 30°. Therefore, we 
randomly rotate the input images by -30° to 30° to cover most angles 
during usage. 2) Random brightness jitter. Considering that the 
ambient brightness during actual use may vary, we proportionally 
adjust the brightness and contrast of the input images, with scaling 
factors uniformly distributed between 0.5 and 1.5. 

3.3.3 Feature Extraction and Touch State Detection. Using the cropped 
and augmented images as input, we extract features through a fine-
tuned CNN model with a pre-trained ResNet [26] as the backbone. 
The overall image of the left hand’s palm and the image of the 
right index fingertip are input to their respective ResNet models, 
producing feature vectors of length 1000. This step yields the static 
features for the current input frame. 

According to the analysis in Section 3.1, temporal information 
is crucial for touch state detection in Palmpad. Therefore, in the 
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Figure 4: The algorithm pipeline of Palmpad. The original multi-frame images undergo key region extraction using Mediapipe 
(left palm and right index fingertip), followed by cropping and data augmentation. Then optical flow frames are calculated. 
Subsequently, raw frames, along with the optical flow motion information between adjacent frames, are fed into a ResNet-based 
CNN model for touch state classification. 

algorithm, we need to consider how to effectively utilize this in-
formation. We note that using optical flow [12] can efficiently and 
explicitly extract motion information from consecutive temporal 
images. The assumption in optical flow that the overall image does 
not undergo particularly drastic changes holds true in the usage of 
Palmpad. This is because, whether it is index-click-palm or index-
swipe-palm, the time interval between two frames is very short, 
and the main image changes are concentrated around the finger-
tip, making them easily trackable by optical flow. Therefore, we 
calculate the global dense optical flow to obtain the angular and 
displacement information for each pixel between consecutive fin-
gertip frames using the bounding box cropped by Mediapipe. Since 
this information is still presented in two dimensions, we use a CNN 
with ResNet as the backbone to extract features from it. Finally, all 
the feature vectors to be classified, including static and temporal 
features, are concatenated and input into a fully connected network 
(using ReLU as the activation function and setting dropout to 0.5) 
for classification, yielding the touch state result for the current 
frame. To improve the robustness of optical flow, the dataset we 
collected contains head motion noise, including yawing, pitching, 
and random shaking, which makes the neural network more robust 
in the training. Moreover, in order to make the optical flow more 
stable, we utilize the landmarks generated by the Mediapipe to 
create a stable bounding box to focus on the hands and fingers to 
isolate the head movement. 

Additionally, following the approach in similar works [41], we 
constructed a baseline model. This model, based on using CNN to 
extract features, takes the features and inputs them into an LSTM 
model [27] in temporal order, resulting in a feature vector con-
taining temporal information. Subsequently, through comparative 
experiments, we will demonstrate the advantages of our model 
architecture in extracting temporal information for index-to-palm 
interactions. 

3.3.4 Implementation. To balance accuracy and computational bur-
den, we empirically set the input time length n to 2. The input time 

intervals are set to 1/120s, 1/60s, 1/30s, and 1/20s to accommodate 
different camera frame rates. We implemented the entire training 
and inference framework using Python and PyTorch on a Windows 
PC (CPU: Intel Core i9-9900KF; GPU: Nvidia GeForce RTX 2080Ti). 
Due to variations in the speeds of reading camera images, running 
the Mediapipe model for hand landmark inference, and conducting 
Palmpad model touch state inference, the overall framework is de-
signed asynchronously using Python multiprocessing. The camera 
is connected to the PC via USB and is read in a separate process at 
a rate of 120fps. The Mediapipe model occupies a separate process, 
obtaining the current frame’s image and updating hand landmarks 
at approximately 20fps. The Palmpad model occupies one process, 
taking image windows of size 2 as input, with a rate of around 
100fps. We transmit the computed touch state results to the MR 
device (in this paper, we use Meta Quest 2 as the display HMD) via 
a socket connection. 

4 ALGORITHM EVALUATION 
We systematically evaluated the sensing modality and algorithm we 
constructed to understand its specific performance under various 
settings and different parameters. 

4.1 Participants 
We recruited 16 participants (4 females) from the local campus 
by word-of-mouth to create our dataset, with an average age of 
24.1(SD=2.5) ranging from 21 to 29 years old. All participants were 
right-handed. 

4.2 Apparatus 
We expected to collect naturally comprehensive video data and 
automatically label the data. Therefore, during the data collection 
process, participants wore the video-capturing camera at the center 
of their forehead, ensuring that the camera consistently captured 
the entire hand region in its entirety. Participants would be re-
quested to choose a natural posture to simulate the typical pose 
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(a) An automatic touch state annotation system using 
alternating current signals. 

(b) User connected to alternating signal circuit via adhesive electrodes. 

(c) The electrical signals output by the hardware (Arduino Uno) and the 
results after filtering and quantization. 

(d) A schematic diagram of an interactive circuit system including the 
human body, illustrating how RF signals are used to detect touch and 
processed by Arduino. 

Figure 5: Illustrations of an automatic touch state annotation system using alternating current signals. 

during normal use before collecting each video. Additionally, in-
spired by DualRing [42], we designed an automated label system. 
Participants wore electrodes of the automated label system to gen-
erate radio frequency signals indicating whether touch occurred. 
The overall setup of the data collection apparatus is depicted in 
Figure 5(a). How the user is connected to the circuit is shown as 
5(b). We utilize a high-frequency alternating current circuit simi-
lar to DualRing [42] (as shown in 5(d)) to measure the impedance 
between the right index finger and the left palm, which allows us 
to detect the touch and the click, details of which can be found in 
Appendix C. 

In the implementation of the circuit, we used the UTG932 wave-
form generator from UNI-T to produce two high-frequency sine 
wave signals at 12.5MHz . One signal remained constant, while 
the other signal passed through medical electrodes connected to 
the surfaces of hands, fixed on the back of the left hand and the 
palm of the right hand (to prevent interference from the electrodes 
when the camera captured data). Subsequently, we used the AD835 
4-quadrant multiplier to multiply the two signals and amplify the 
result by 10 times. The output was then fed into a 1kHz low-pass 
filter to extract the low-frequency component. Finally, we used an 
Arduino Uno to sample the filtered signal at 1kHz and connected 

it to a PC via USB serial to obtain the digital signal. The sampled 
digital signal looks like Figure 5(c). 

In the implementation of the software, we applied a one-Euro 
filter to smooth the signal . Subsequently, we utilized peak detec-
tion and peak width detection algorithms provided by the Scipy 
open-source library to quantize the smoothed signal, obtaining a 
binary signal (0 or 1) with the same frequency as the original signal. 
Following that, we aligned the binary signal with the video signal 
based on timestamps and downsampled the binary signal to obtain 
specific labels for each frame. 

4.3 Data Collection 
Before data collection, participants are briefly introduced to the 
basic principles of Palmpad and its potential applications. They will 
sign an informed consent form regarding the safe of high-frequency 
electrical signals passing through the human body during the ex-
periment. Subsequently, with the assistance of the experimenter, 
participants wear the camera and electrodes, ensuring the correct 
configuration of the camera and the AC circuit. At the same time, 
the experimenter records the participants’ age and information 
about the hand they are proficient in using. 
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The collection is divided into two parts respectively, collecting 
data on participants’ clicks and swipes. 

In the first part, participants will be asked to record videos of 36 
clicks. They are required to use the right index to click on the left 
hand in a natural manner. Participants will be randomly instructed 
to perform the following actions in a specified order: clicking on 
the palm / finger, clicking with normal force / lightly / pretending 
to click, clicking rapidly (with intervals less than 0.5s) / sequentially 
(with intervals between 1-2s), clicking in order / randomly. They 
will click the same number of times (20 times for the palm and 12 
times for the finger). 

In the second part, participants will be asked to record videos 
of 26 swipes. They need to use the right index to slide on the left 
hand in a natural manner. Participants will be randomly instructed 
to perform the following actions in a specified order: sliding on 
palm / finger, sliding rapidly / slowly, sliding maintaining contact / 
pretending to slide / lift-slide-lift (only for palm operations), sliding 
horizontal / vertical(only for palm operations) / arbitrary direction. 

After recording each video, participants adjust their body pos-
ture and camera placement according to their comfort, aiming to 
cover various camera perspectives in a natural state. Additionally, 
participants can choose to take a 30-second break between videos, 
and there is also a 30-second break between intervals in each of the 
three sections. All of the participants are divided into four groups 
and finish the data collection under different lighting conditions, 
which are morning light / midday light / evening light / artificial 
light. Each participant completes the data collection in approxi-
mately 45-60 minutes. 

In the end, we collected a total of 16 participants × (36 seg-
ments in the first part + 26 segments in the second part) = 992 
video segments. The average duration of each video segment is 
approximately 12.81 seconds, resulting in a total video length of 
211 minutes. After post-processing, including filtering, quantiza-
tion, alignment with the corresponding video, and downsampling, 
we generated annotations for each frame of each video segment, 
indicating touch or no touch. All the data we collected can be found 
at https://huggingface.co/datasets/Teburile/Palmpad_Dataset. 

4.4 Dataset 
To construct the dataset for training and evaluation, we sampled 
frame data from the collected 992 videos mentioned earlier. For 
videos containing both touch and non-touch instances (correspond-
ing to normal force clicks and light taps in the tapping section 
and lift-slide-lift in the sliding section), we treated them as alter-
nating positives and negatives. From each positive and negative 
instance, we selected one sample (e.g., 20 normal force clicks on the 
palm would yield 21 negative samples and 20 positive samples). For 
videos with only touch instances (corresponding to maintaining 
contact sliding in the sliding section) and videos with only non-
touch instances (corresponding to pretending to tap in the tapping 
section, pretending to slide in the sliding section), we randomly 
sampled 40 samples. 

For each sample, we selected a window of size 2 to select frames. 
Examples of the first frame of the samples can be seen in Figure 13. 
The label for the sample was determined to be the label of the last 
frame. In addition to the original 120fps dataset, we used a sampling 

method to generate 30fps and 60fps versions of each video, applying 
the same method to create corresponding datasets. We generated a 
dataset for each user’s 36+26=62 videos, comprising approximately 
900 positive samples and about 1450 negative samples. 

We employed a cross-user training strategy, using three different 
time intervals (1/120 second, 1/60 second, 1/30 second, and 1/20 
second). We employed Palmpad (utilizing optical flow to extract 
temporal information), Model-LSTM (utilizing LSTM to extract 
temporal information, the same architecture as [41]), model without 
optical flow (using multi-frame data with positional embedding), 
and a model without Mediapipe cropping (using only the full-size 
consecutive images of as input without cropping). We report the 
accuracy, recall, precision, and F1 score for touch state recognition. 

4.5 Results 
4.5.1 Model Performance. We conducted a leave-one-out evalua-
tion, where each time, we selected the data of one participant as 
the test set, and the results (including F1 score, accuracy, recall, 
and precision) for all participants were summarized in Table 1. As 
shown in the results, Palmpad achieved the highest F1 score of 
96.2% (SD=2.6%) and the highest accuracy of 97.0% (SD=2.0%) with 
an interval time of 1/30s when using the Palmpad model. Although 
the accuracy varied with different time intervals, the Friedman test 
results 2 of F1 score(𝜒  (2) = 1.065, 𝑝 = 0.786) indicated no signif-
icant difference in accuracy among different time intervals. This 
means that the impact of different time intervals on our model is 
insignificant, and it can be effectively deployed on lower frame rate 
cameras, such as 20fps or maybe even lower. However, from the 
results, 30fps is currently the best in terms of performance. This 
frame rate is achievable by the majority of commercial cameras 
available today and can, therefore, be widely applied to various 
types of devices. 

In addition, we randomly selected a 10-second segment of data 
and plotted it along the time axis. As shown in Figure 6, the mo-
ments identified by the model for press and lift are very close to 
the ground truth on the time axis (within 40ms). This indicates that 
our system has excellent real-time performance, as it can provide 
instantaneous results even during fast-tapping actions. 

4.5.2 Comparison with other models. To verify the efficiency of 
Palmpad in extracting temporal information, we implemented a 
baseline that uses LSTM. Its main framework is similar to Palmpad, 
using the same CNN framework to extract features from each frame. 
The features are then concatenated in chronological order and in-
putted into LSTM. The output is concatenated with each frame 
feature and classified through a fully connected network. Com-
pared to this LSTM-Model , our model significantly outperformed 
this baseline with each interval time . This not only validates 
our analysis that temporal information is crucial for touch state 
detection but also indicates that our model effectively extracts tem-
poral information from continuous image inputs and is particularly 
well-suited for the index-to-palm interaction tasks. 

Also, we reproduced the model mentioned in [62], which achieves 
the best performance that we can find. As they did not release the 
dataset, we reproduced their method on ours. On our dataset, this 
model achieves only an accuracy of 89.1% and an F1 score of 85.3%, 

https://huggingface.co/datasets/Teburile/Palmpad_Dataset
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Table 1: F-1 scores, accuracies, recalls, and precisions of Palmpad evaluation with four types of models and four types of interval 
time. The numbers in the table are in percentage(%). 

Interval Time 
Palmpad Model-LSTM w/o Optical Flow w/o Mediapipe 

F1 Acc Rec Prec F1 Acc Rec Prec F1 Acc Rec Prec F1 Acc Rec Prec 

1/120s 96.1(2.3) 97.0(1.9) 96.1(2.3) 96.1(3.2) 94.2(3.2) 95.5(2.6) 94.4(3.7) 94.2(4.3) 94.5(3.0) 95.8(2.3) 94.6(4.0) 94.5(3.9) 94.1(2.9) 95.5(2.3) 94.4(3.7) 94.0(3.7) 
1/60s 95.9(2.5) 96.8(2.0) 95.9(3.5) 96.0(3.3) 94.3(2.8) 95.7(2.1) 94.3(3.4) 94.5(4.0) 94.5(2.9) 95.8(2.2) 94.4(3.7) 94.6(3.0) 94.2(3.1) 95.5(2.4) 94.3(3.6) 94.2(3.9) 
1/30s 96.2(2.6) 97.0(2.0) 96.1(3.1) 96.3(2.7) 94.2(2.5) 95.6(1.9) 94.0(4.0) 94.6(3.3) 94.9(2.5) 96.1(1.9) 94.4(3.7) 95.5(2.9) 94.5(2.6) 95.8(2.0) 94.3(3.1) 94.8(3.6) 
1/20s 95.9(2.2) 96.8(1.8) 95.9(3.0) 95.9(3.5) 93.4(3.1) 94.9(2.5) 93.2(4.5) 93.8(4.7) 94.5(2.8) 95.8(2.1) 94.3(3.8) 94.7(3.2) 94.0(3.3) 95.4(2.4) 94.3(5.1) 94.0(3.9) 

Figure 6: A 10-second data segment from real usage, including ground truth and model prediction results. The time difference 
between all rising and falling edges predicted by the model and the true values does not exceed 40ms. 

which is much lower than the performance of our model and signif-
icantly deviates from the results reported in their paper. We believe 
this is because our dataset is relatively more complex, with factors 
such as different tap speeds, different tap positions, and camera 
shake during natural wearing, all of which may cause this model to 
perform poorly on our dataset. Additionally, we retrained Pressure-
Vision++ [13] on our dataset and got an accuracy of 95.8% and an 
F1 score of 94.5%. In a click event, the palm deformation mitigates 
the expression of the pressure, leading to incorrect estimation. 

4.5.3 Ablation Study. In Section 3.1, we pointed out that temporal 
features and Mediapipe-based cropping play significant roles in 
touch state detection. Here, we trained a model with the same archi-
tecture but with positional embeddings (the same as Transformer[69]) 
instead of calculating optical flow , and another model without us-
ing Mediapipe for cropping. The evaluation results show that they 
are lower than Palmpad in terms of accuracy indicators (as shown 
in Table 1). 

4.5.4 Bad Cases. We manually examined 100 error cases, includ-
ing 50 false negatives and 50 false positives. Among them, 25% of 
the errors were attributed to inaccuracies in Mediapipe hand track-
ing (as shown in Figure 7(a)). Such errors could be improved by 
employing a more accurate hand-tracking system. In addition, we 
also discovered some errors caused by finger-click positions being 
near the boundary of the palm or close to other objects (as shown 
in Figure 7(c)). These issues can be addressed through additional 
algorithms or by avoiding such situations during usage. 

(a) An error case 
caused by inaccu-
racies in the Me-
diapipe fingertip 
position estima-
tion (fingertip). 

(b) An error 
case caused by 
inaccuracies in 
the Mediapipe 
fingertip posi-
tion estimation 
(whole palm). 

(c) An error case 
caused by finger-
click positions 
being near the 
boundary of the 
palm or close 
to other objects 
(fingertip). 

(d) An error case 
caused by finger-
click positions 
being near the 
boundary of the 
palm or close 
to other objects 
(whole palm). 

Figure 7: Examples of the error cases. 

5 USABILITY EVALUATION AND 
APPLICATIONS 

5.1 System Implementation 
Finally, we implemented a real-time system following the approach 
outlined in Section 3.3.4 to evaluate the interactive experience of 
Palmpad in an actual MR environment. In this system, we trans-
mitted Palmpad’s touch state to the MR device through a socket, 
enabling basic functions like swipe and click. The user’s finger 
position information was provided by the built-in hand tracking of 
the Quest 2. 

Additionally, we implemented two comparative systems. The 
first system referred to as the Threshold system, utilized the hand 
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tracking of the Quest 2 to calculate the distance between the right 
fingertip coordinates and the left palm plane. If this distance fell 
below a certain threshold, the touch state was set to true; otherwise, 
it was set to false. The second system, known as the Collision 
system, employed the Quest 2’s hand tracking to generate meshes 
for both hands. The touch state was set to true when the meshes 
collided and false otherwise. 

Due to difficulties faced by users in the pilot experiment with 
the Collision, mainly due to its inaccurate depth estimation leading 
to an unstable touch state, we focused on comparing Palmpad with 
the Threshold system in the final experiment. Two interaction tasks 
were designed, and corresponding interaction scenarios were set 
up for evaluation. 

5.2 Study Design 

(a) MR interface display for the Fitts’s 
Law experiment. The random green 
circle represents the next target. Par-
ticipants need to move the cursor to 
the target position using the touchpad 
supported by Palmpad or Threshold 
method and lift a finger. 

(b) MR interface display for the click-
ing experiment. Participants need to 
consecutively click on the position of 
the red square and report the number 
of errors based on the feedback pro-
vided by the system. 

Figure 8: The tasks of the usability evaluation experiment. 

To assess the system’s usability in index-swipe-palm interaction, 
we designed a Fitts’s Law experiment [11]. In a virtual environ-
ment, we placed a display screen with 16 target circles uniformly 
distributed around a large circular perimeter(as shown in Fig. 8(a).). 
For each task, a random circle was selected as the starting point, 
the cursor was set to the center of the circle, and another circle 
was chosen as the endpoint, marked in green. During each task, 
the user had to move the cursor from the starting point to the 
endpoint as quickly as possible and lift it. If, at the moment of lift, 
the cursor was within the circular area, the task was considered 
successful; otherwise, the user had to retry. In the experiment, we 
categorized the sizes of the circles into large, medium, and small. 
Through pilot experiments, we determined that the smallest size 
ensured users could complete the task after a few attempts without 
being too small to stably control the cursor on it. In addition to 
controlling the circle sizes, we managed the distance traveled in 
each task. In a circle encompassing 16 target circles, there were 8 
different distances between any two circles. We randomly selected 
one distance for each task, conducting 2 trials for each distance. 
Therefore, in this experiment, each system performed a total of 8 
(different movement distances) × 2 (trials) × 3 (circle sizes) = 48 
swipes. We fine-tuned the maximum distance to ensure it could be 
completed in a single swipe. Therefore, if multiple swipes occurred 
within one task, it was due to the user having difficulty controlling 
the cursor to stay within the circular area at the moment of lift, 

resulting in multiple attempts. The number of swipes within each 
task in this experiment served as a measure of the system’s ease of 
use. 

Secondly, to assess the system’s usability in index-click-palm 
interaction, we designed an experiment to measure click accuracy. 
In this experiment, users were instructed to perform four consecu-
tive clicks on their palms at a natural frequency. If successful, users 
could observe the counter’s number change after each click. After 
each set of four consecutive clicks, users had to report the total 
number of misfires and misses. Each system underwent 20 blocks, 
totaling 80 clicks. 

In the experiment, half of the users started with Palmpad, while 
the other half began with the Threshold system to complete the 
tasks. Similarly, half of the users started with the index-swipe-palm 
task, while the other half began with the index-click-palm task. 
During the experiment, users could choose to take breaks of any 
length between tasks to ensure their engagement in each set of 
experiments. After each session, users were asked to fill out the 
NASA-TLX scale, rate some questions derived from the SUS scale, 
and provide subjective evaluations if they were willing. 

5.3 Participants and Apparatus 
In the experiment, we randomly invited 12 participants from the 
university campus (4 females, 8 males, Age=23.00±2.95) who had 
not participated in the experiments of Study 1. We collected infor-
mation about their experience with VR hand tracking, with scores 
of 3.00±2.04. A score of 0 indicates that they have never used or 
heard of it before, and a score of 6 represents proficient usage with 
development experience. The participants were all right-handed, 
as required by the experimental setup. 

5.4 Results 

Figure 9: The result of the Fitts’s Law evaluation experiment. 
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5.4.1 Performance Comparison. We compared the Palmpad solu-
tion with the Threshold solution in the Fitts’s Law experiment and 
the clicking experiment. 

In the Fitts’s Law experiment, we recorded the time and distance 
of each of the 48 swipes for each user, as well as the radius of the 
target to be reached for each operation. The overall average sliding 
time for Palmpad was 5.65 seconds (SD=4.38), with an average num-
ber of swipes of 1.65 times (SD=0.99). The overall average sliding 
time for Threshold was 5.84 seconds (SD=4.54), with an average 
number of swipes of 1.70 times (SD=1.00). Palmpad reduced the 
task completion time by 3.1%. In addition, we fitted the Fitts’s Law 
curve based on the movement distance and target size, as shown 
in Figure 9. From this, we derived an average throughput of 21.40 
for Palmpad and 20.98 for Threshold. Results showed that Palmpad 
slightly outperformed Threshold, the reason for which may be that 
the task of swiping needed continuous contact between finger and 
palm rather than frequent touch down and up, where Palmpad and 
Threshold both had stable performance. For Thresholds based on 
hand tracking, it is common to keep a low or even minus(model 
clipping) value, which ensures the stability of its performance. 

In the clicking experiment, we recorded the number of false 
touches and misses reported by each user for each click and cal-
culated precision and recall. In a total of 960 click experiments 
among all users, both Palmpad and Threshold solutions had very 
few false touch occurrences (less than 15). However, there was a 
difference in the number of misses. Palmpad achieves an accuracy 
of 95.3% while the Threshold is only 92.5%, whereas the Palmpad 
improves the accuracy by 2.8%. We used the Wilcoxon signed-rank 
test to examine the significance of the difference. In terms of preci-
sion, there was no significant difference between the two solutions 
(𝑧 = −2.86, 𝑝 = 0.461). In terms of recall, Palmpad significantly 
outperformed the Threshold solution (𝑧 = −2.27, 𝑝 = 0.045). This 
indicates that the Palmpad solution is particularly well-suited for 
scenarios that require rapid clicking. 

Additionally, we measured the sensing resolution of each scheme 
to distinguish their capability to discern distances between fingers 
and the palm. For the Palmpad scheme, under normal posture, the 
minimum distinguishable distance that can be steadily reported 
during the touch-down to touch-up process is 10mm (measured 
by a millimeter scale at the same depth of the touch point from 
the recording of an along-surface macro camera), and during the 
touch up to touch down process, this distance is 5mm. For the 
threshold-based scheme, the distances are 20mm and 10mm, re-
spectively. Therefore, Palmpad’s spatial resolution has improved by 
50%, and such measurements confirm that Palmpad can achieve a 
significantly higher resolution in distinguishing subtle near-surface 
touch states. 

5.4.2 Questionnaire Results. To evaluate users’ experiences and 
subjective ratings of different solutions, we designed a question-
naire based on the NASA-TLX scale and the SUS (System Usability 
Scale), which includes eleven questions covering aspects of mental 
demand, physical demand, performance, effort, temporal demand, 
frustration, easiness to use, learn-ability, willingness to use, confi-
dence and latency when using the Palmpad and Threshold schemes. 
Figure 10 shows part of the results from the SUS scale. Higher scores 
indicate that the system is easier to use and easier to learn, gives 

(a) Scores for the Fitts’s Law task. (b) Scores for the clicking task. 

Figure 10: Subjective rating scores for different usability eval-
uation tasks. 0 - strongly disagree, 6 - strongly agree.(SUS) 

higher confidence, higher willingness to use, and lower latency. 
The Appendix Figure 12 shows the results from the NASA-TLX 
scale. Lower scores indicate lower demand, better performance, and 
less frustration when using the system. The ratings indicate that 
participants generally considered the Palmpad scheme to be better 
than the Threshold scheme. The former obtained higher scores in 
ease of use, confidence, and willingness to use. It also had lower 
demand than the latter. 

5.4.3 Subjective Feedback. In addition to the quantitative ratings 
from the scales, we also collected some subjective feedback from 
users according to their willingness. They showed a positive attitude 
towards the potential of Palmpad. "The Threshold method is not as 
sensitive as Palmpad."(P3) "The Palmpad method is more user-friendly; 
its accuracy is higher than the Threshold method; I am unwilling to 
use the Threshold method because it has a greater delay and wastes 
time."(P4) "Palmpad is smoother when lifting hands, making it very 
suitable for keyboards."(P8) Some also believe that Palmpad is in-
ferior to Threshold because "it occasionally registers false touches 
in the air."(P5) Additionally, some participants expressed concerns 
about the task design, "The screen during the sliding operation is 
fixed above the left hand, which requires me to constantly turn my 
head to look at it, putting a significant strain on my neck."(P8) The 
score for the sliding task is slightly lower than that for the clicking 
task, which may be due to the mouse’s position mapping during 
sliding relying on somewhat shaky hand tracking, resulting in some 
jitter in mouse control. "This mouse is a bit shaky when sliding, I 
would be more willing to use it if it could be better optimized."(P7) 

5.5 More Application Scenarios 
As mentioned in Section 3.1, the majority of index-to-palm applica-
tions can be supported by index-click-palm and index-swipe-palm, 
and Palmpad supports these two operations, thus enabling these ap-
plications. For example, we have implemented an always-available 
keyboard in MR (Mixed Reality) using the precise click function-
ality provided by Palmpad and position information provided by 
the built-in hand tracking (as shown in Fig.11). Based on this, we 
have provided a highly available virtual keyboard and mouse in the 
MR environment, theoretically capable of completing all 2D GUI 
interaction tasks. In addition, since we can project any information 
onto the palm and provide touch detection, the interface, and logic 
of smartphones can be easily transferred to MR devices, where we 
can use the palm as an always-carried smartphone in MR. 
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Figure 11: The keyboard application prototype supported by 
Palmpad in MR scene. 

Additionally, although the technology mentioned is oriented 
towards MR scenarios, and all designs are crafted for interactions in 
MR, Palmpad is not limited to MR. Small wearable devices equipped 
with a single RGB camera are also endowed with touch detection 
capabilities, such as Ai pin [30]. Through Palmpad, these devices 
can also accurately determine the touch state, which provides more 
dimensions for their interaction space. 

6 LIMITATION AND DISCUSSION 
In this section, we discuss the limitations of Palmpad, which 
suggests several new directions for future work. 

6.1 System Robustness 
Although Palmpad has gained a good performance on the dataset 
since it adopts a vision-based sensing solution in the practical im-
plementation, it encounters a few bad cases due to the unavoidable 
influence of the camera, such as extreme user postures, unsuit-
able ambient lighting, intentional obstructions and so on. On the 
one hand, the postures of the user or the obstructions may make 
the palm and finger invisible in the camera view. On the other 
hand, overly dark or overexposed environments can affect hand 
tracking. For instance, when the distal phalanx is vertical, it can 
cause self-occlusion of the fingertip image. Although such scenarios 
may slightly reduce Palmpad’s performance, they are infrequent 
in typical interactions, especially given the top-down viewing an-
gle provided by a head-mounted camera. The moving speed also 
matters. When the index finger clicks particularly fast, MediaPipe 
is unable to quickly and stably capture the boundaries of the palm 
and fingers. 

In order to alleviate these issues and enhance the robustness 
of the entire system, there are several possible solutions, which 
include: (1) add additional camera angles to compensate for occlu-
sions in some bad cases, (2) use active light sources to adjust for 
ambient lighting conditions, (3) add markers to improve hand track-
ing performance during rapid movements. All of these methods 
deserve further research to improve the performance of Palmpad 
in all kinds of cases. 

Additionally, further research that pays attention to the improve-
ment of speed and stability in obtaining hand boundaries is needed. 
From our empirical observation, many of the bad cases of the per-
formance of the entire system are caused by the mistakes of hand 
boundaries. We believe that more precise and faster hand bound-
aries are of great practical value. 

Moreover, We apologize for the inconvenience regarding skin 
color, manicure, tattoos, and other factors that may affect the 
model’s performance. However, the purpose of this study is to vali-
date feasibility. Subsequently, more extensive data from a broader 
population can be collected, and these issues can be easily addressed 
based on the same framework. 

6.2 Form Factor and Implementation 
The hardware prototype of Palmpad currently includes an external 
RGB camera placed on the upper surface of the MR headset, which 
results in an increase in the weight of the MR headset and a shift in 
the center of gravity. This implementation is designed to validate 
the feasibility of our system and maintain the convenience of de-
bugging. Additionally, the main computation tasks are performed 
on the PC, which facilitates the evaluation and optimization of the 
entire system and guarantees a stable running rate for the pipeline. 
In the future, it is highly likely to use the MR headset’s front-facing 
cameras instead of external RGB cameras and utilize its built-in 
hand tracking to obtain hand boundaries while simultaneously 
integrating our current model(35M) into the MR headset. 

As mentioned in Table 1, the whole system gains the best per-
formance at a resolution of 1280 × 720 and 30 fps, which means 
that the common front-facing RGB cameras in MR headsets(1080p 
and 30fps in HoloLens 2 [48]) meet this requirement. As for the 
computational cost and energy consumption, we implemented the 
prototype of our algorithms on a PC with strong computational 
performance, which keeps the pipeline running at a constant frame 
rate. Given the model size(35M) we used for our pipeline, it is light-
weight enough to be implemented. Additionally, reusing the result 
of hand tracking from an MR headset provides the solution of crop-
ping the input image with lower consumption than Mediapipe. We 
believe that Palmpad is capable of deployment on a commodity MR 
system. 

6.3 Future Works 
So far, our system only implements the interaction of the right 
index finger with the left palm. In future work, expanding the area 
where interaction is possible will be very valuable. In our future 
work, we plan to support multi-finger operations, as well as the 
potential for tapping and sliding on both the palm and back of the 
hand. We will also provide symmetric services for left-handed users. 
We believe that collecting sufficient data for different skin colors, 
palm texture features, tattoos, and nail art to conduct more detailed 
iterations and evaluations is of great practical value. 

In addition, although the deformation of the palm does not affect 
the accuracy of the Palmpad touch state, it does have a certain 
impact on applications (such as cursor movement or typing). This 
is because currently, for convenience, we simply place the interface 
of the application above a certain distance from the surface of the 
palm. This may lead to the generation of ‘parallax’ artifacts and 
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thus affect user experience. Therefore, in the future, we need to 
design a more reasonable way to map interfaces such as keyboards 
onto palms. For example, by mapping recognized skeletal points on 
hands to certain fixed points on keyboards, the relative positions 
between keyboards and hands will remain consistent and the impact 
of palm deformation on user experience will be reduced. 

7 CONCLUSION 
In this work, we introduced Palmpad, a system characterized by 
high usability and ease of deployment, specifically designed for the 
detection of index-to-palm touch states in MR environments, utiliz-
ing only a single RGB camera. We conducted a detailed analysis of 
the features associated with index-to-palm interactions and devised 
an efficient CNN-based model for index-to-palm touch recognition, 
which incorporated varying levels of image features as input. We 
provided a prototypical implementation of Palmpad and our pro-
posed model achieved an impressive touch recognition accuracy of 
97.0%. Subsequent to a user study, Palmpad demonstrated superior 
performance compared to state-of-the-art commercial solutions, 
exhibiting a noteworthy 2.8% improvement in accuracy and a sub-
stantial 50% enhancement in spatial resolution. Lastly, the extensive 
potential of Palmpad for application was explored. Our usability 
evaluation study validated the enhanced usability of Palmpad over 
the threshold-based approach. 
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A NASA-TLX Scale Results 
The results of the NASA-TLX Scale are shown as Figure 12. 

(a) Scores for the Fitts’s Law task. (b) Scores for the clicking task. 

Figure 12: Subjective rating scores for different usability eval-
uation tasks. 0 - low demand, 6 - high demand.(NASA-TLX) 

B Data Samples 
Some samples of the dataset are shown as Figure 13. 

C Circuit Implementation 
We constructed an impedance measurement circuit to generate 
a label. First, we generated two identical high-frequency signals, 
denoted as 𝑆𝑠𝑡 𝑎 and 𝑆𝑡 𝑒𝑠 . The test signal passed through the human 
body, while the standard signal remained unchanged. Subsequently, 
we multiplied the two signals, resulting in a signal combined with 
a high-frequency signal and a low-frequency signal, which we 
marked as 𝑆𝑐𝑜𝑚 . 

Assuming that the standard signal is 𝑆𝑠𝑡 𝑎 = 𝐴1𝑐𝑜𝑠 (𝜔𝑡 + 𝜙1) and 
the test signal is 𝑆𝑡 𝑒𝑠 = 𝐴2𝑐𝑜𝑠 (𝜔𝑡 + 𝜙2). By multiplying the 𝑆𝑠𝑡 𝑎 
and the 𝑆𝑡 𝑒𝑠 , we get the 𝑆𝑐𝑜𝑚 , which is 

𝑆𝑐𝑜𝑚 = 𝑆𝑠𝑡 𝑎 ∗ 𝑆𝑡 𝑒𝑠 = 𝐴1𝐴2𝑐𝑜𝑠 (𝜔𝑡 + 𝜙1)𝑐𝑜𝑠 (𝜔𝑡 + 𝜙2) 

= 
𝐴1𝐴2 

2 
(𝑐𝑜𝑠 (2𝜔𝑡 + 𝜙1 + 𝜙2) + 𝑐𝑜𝑠 (𝜙1 − 𝜙2)) 

(1) 

Afterward, we passed this signal 𝑆𝑐𝑜𝑚 through a low-pass filter to 
extract the low-frequency component. The filtered signal is marked 
as 𝑆𝑙 𝑝 = 𝐴1𝐴2 

2 𝑐𝑜𝑠 (𝜙1 − 𝜙2)
Hence, by filtering, we can obtain the delay between 𝑆𝑠𝑡 𝑎 and 

𝑆𝑡 𝑒𝑠 (𝑐𝑜𝑠 (𝜙1 −𝜙2)), as well as the product of their amplitudes(𝐴1𝐴2 
2 ). 

When the right index finger is in different states with the left palm 
(contact or no contact), there is a noticeable difference in the product 
of the amplitudes of the two signals. This difference can be used 
to distinguish the contact state and generate corresponding video 
labels. 

After obtaining the amplitude of the signal 𝑆𝑐𝑜𝑚 , we can sample 
from the signal to get the digital signal. Consequently, we can quan-
tize the amplitude digital signal to obtain a binary representation 
(0 or 1) of the contact state between the two hands at each moment. 
This binary signal can then be aligned and downsampled to syn-
chronize with the relatively low-frequency video signal, resulting 
in labels for each video frame. 

https://doi.org/10.1016/j.neucom.2014.10.019
https://doi.org/10.1145/3432204
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(a) No touch (b) No touch (c) No touch (d) Touch (e) Touch 

(f) Touch (g) Touch (h) Touch (i) Touch (j) Touch 

Figure 13: 10 examples of the first frame from the dataset. The upper image in each example is a hand figure and the lower 
image is a finger figure. The ground truth of each example is captioned under the figures. All of the prediction labels are same 
with the corresponding ground truth. 
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