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Figure 1: The Demonstration of WritingRing. (A) WritingRing supports natural handwriting on the surface using an IMU ring
worn at the base of the index finger. (B) The handwriting trajectory reconstructed by WritingRing.

Abstract
Tracking continuous 2D sequential handwriting trajectories accu-
rately using a single IMU ring is extremely challenging due to the
significant displacement between the IMU’s wearing position and
the location of the tracked fingertip. We propose WritingRing, a
system that uses a single IMU ring worn at the base of the finger
to support natural handwriting input and provide real-time 2D
trajectories. To achieve this, we first built a handwriting dataset
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using a touchpad and an IMU ring (N=20). Next, we improved the
LSTM model by incorporating streaming input and a TCN network,
significantly enhancing accuracy and computational efficiency, and
achieving an average trajectory accuracy of 1.63mm. Real-time
usability studies demonstrated that the system achieved 88.7% letter
recognition accuracy and 68.2% word recognition accuracy, which
reached 84.36%when restricting the output to words within a vocab-
ulary of size 3000. WritingRing can also be embedded into existing
ring systems, providing a natural and real-time solution for various
applications.
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1 INTRODUCTION
Smart rings have demonstrated significant potential to become the
next generation of wearable devices due to their compact size, porta-
bility, comfort, and "always available" nature. Interactions based on
smart rings have been widely explored, with researchers integrat-
ing various sensors, such as cameras[9, 25, 56], magnetic sensors[4,
10, 11, 38], Inertial Measurement Units (IMUs)[15, 36, 44, 45, 63],
and proximity sensors[35, 55], to enable handwriting recognition,
2D pointing, and gesture recognition. However, smart rings still
face challenges in terms of power consumption, wearability, and
the naturalness of use. Their sensing capabilities remain limited,
making it difficult to balance power efficiency with rich interaction
functionality.

Therefore, in this paper, we focus on achieving handwriting input
using a single IMU ring. Compared to other input methods utilizing
smart rings, handwriting is more natural, expressive, and involves a
lower learning curve for users. Additionally, IMU sensors meet the
requirements of low power consumption and long-term operation,
making them ideal for this task. Previous work often treated the
finger as a rigid body, using in-air IMU trajectories to reconstruct
finger movements[29, 57, 58]. However, in-air handwriting requires
the hand to be suspended, which leads to significant fatigue and
can not support continuous word input. In contrast, plane-based
handwriting is much easier and allows contact and lift from the
surface to define word boundaries. However, in plane-based hand-
writing, the shape of the user’s finger changes, so it can no longer
be considered a rigid body. Additionally, the displacement between
the IMU’s placement (usually at the base of the finger) and the pre-
dicted trajectory (typically at the fingertip) presents a significant
challenge.

Based on this, we propose WritingRing, which utilizes a single
IMU-equipped ring worn at the base of the finger to reconstruct
2D fingertip movement trajectories in real time during natural
handwriting tasks. To the best of our knowledge, this is the first
work to achieve real-time, cross-user handwriting recognition and
reconstruction on the plane with high accuracy using a single IMU
ring. To achieve this, we first collected an IMU handwriting dataset
comprising 20 participants with a total duration of approximately
20 hours. To the best of our knowledge, this is the largest publicly
available IMU ring handwriting dataset to date.

Next, we enhanced the traditional Long Short-Term Memory
(LSTM)[17] model by integrating a Temporal Convolutional Net-
work (TCN)[23] to better capture short-term motion information.
Additionally, we improved the data slicing method by adopting
a streaming approach for training on continuous data segments,
and through an ablation study, we demonstrated the significant
advantages of this training method for IMU data. Leveraging the

algorithm’s ability to comprehensively utilize both recent and his-
torical temporal information, WritingRing achieved an average
trajectory error of 1.63 mm. We directly fed the reconstructed tra-
jectories into standard handwriting recognition software (Google
IME), achieving an average letter recognition accuracy of 88.7%
and an average word recognition accuracy of 68.2% (84.36% when
restricting the output to words within a vocabulary of size 3000).
Usability evaluation experiments showed that WritingRing has
high recognition accuracy in real-world usage scenarios, and users
expressed a strong willingness to use the system. Furthermore,
we demonstrated that the algorithm can be directly deployed on
the chips of existing rings, greatly reducing power consumption
from signal transmission and showcasing its potential for on-device
execution in current hardware.

In summary, our contributions are as follows:
(1) We introducedWritingRing, an efficient, natural, and portable

handwriting input solution. It allows users to perform handwriting
input on any surface in a natural way, achieving an average trajec-
tory error of 1.63 mm, a letter recognition accuracy of 88.7% and a
word recognition accuracy of 68.2% (84.36% when restricting the
output to words within a vocabulary of size 3000).

(2) We created and publicly released what we believe to be the
largest dataset of 2D handwriting input using an IMU ring. This
dataset not only supports the implementation of handwriting func-
tionality on existing smart rings but also serves as a valuable re-
source for evaluating time-series model performance.

(3) We explored the potential application space of WritingRing
and demonstrated its high accuracy in real-world use through two
usability studies, where users expressed a strong willingness to
adopt the system.

2 RELATEDWORK
2.1 Ring-based Input Techniques
The primary goal of WritingRing is to enable efficient and natural
handwriting input on any surface by reconstructing the user’s
handwriting trajectory. To summarize previous research, we have
compiled related work on ring-based input in Table 1.

Currently, ring-based input devices employ various sensors, pri-
marily including cameras, pressure sensors, electromagnetic sen-
sors, and IMUs. Devices like Magic Finger[56] and NailRing[25] use
cameras mounted on the fingertip to capture finger movements and
micro-gestures. CyclopsRing[9] features a fisheye camera mounted
on the finger to observe the entire skin area of the hand, captur-
ing both gestures and environmental information. Yuki Kubo’s
work[22] uses a small pressure sensor on the finger to simulate a
touchpad for interaction. Systems like Finexus[11], AuraRing[38],
Nenya[4], and uTrack[10] utilize electromagnetic sensors to de-
tect finger position and movement for input tasks. While these
approaches are intuitive, they have notable limitations: cameras
consume significant power, making long-term use difficult; pressure
sensors are bulkier compared to traditional rings, affecting daily
wearability; and electromagnetic sensors often require multiple de-
vices to work together (such as wearing wristbands or multi-finger
setups), which can diminish portability and user experience.

https://doi.org/10.1145/3706598.3714066
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Table 1: Overview of smart input rings.

Work Sensor Number Position Additional Device Support Handwriting Support Finger Tracking
Magic Finger[56] Camera 1 Fingerpad - % !

NailRing[25] Camera 1 Fingertip - % !

CyclopsRing[9] Camera 1 Proximal Phalanx - % !

Ring-type Device[22] Pressure Board 1 Intermediate Phalanx - % %

Finexus[11] Electromagnet 4 Fingertip Wristband ! !

AuraRing[38] Electromagnet 1 Proximal Phalanx Wristband ! !

Nenya[4] Magnetic Sensors 1 Proximal Phalanx Wristband % %

uTrack[10] Magnetic Sensors 1 Intermediate phalanx thumb Permanent Magnet % !

MouseRing[45] IMU 1/2 Proximal phalanx (Intermediate phalanx) - % !

ssLOTR[64] IMU 5 Proximal Phalanx Wristband ! %

Anywhere Touch[36] IMU 1 Fingertip - % !

PeriSense[55] Capacitive Proximity Sensor 1 Proximal Phalanx - % %

QwertyRing[14] IMU 1 Fingertip - % %

Mouse on a Ring[63] IMU 1 Proximal Phalanx - % %

RotoSwype[15] IMU 1 Proximal Phalanx - ! %

LightRing[20] IMU + Infrared Sensor 1 Proximal Phalanx Infrared Sensor % !

WritingRing IMU 1 Proximal Phalanx - ! !

In contrast, IMU-based rings are lighter, smaller, and have lower
power consumption. A considerable amount of research has ex-
plored IMU ring interactions. For instance, MouseRing[45] accu-
rately reconstructs fingertip trajectories using two rings, enabling
touchpad-like interactions. ssLOTR[64] employs self-supervised
learning to achieve high-precision 3D finger motion tracking. Any-
where Touch[36] combines IMU data with anatomical models of
the hand to compute finger joint movements via inverse kinematics.
However, their methods use two or more rings or place rings away
from the base of the finger, which are not aligned with daily usage
habits.

Existing single-ring devices (worn at the base of the finger) have
limited sensing capabilities. Although some studies have explored
single-ring text input and 2D cursor control, few have managed
to achieve continuous fingertip trajectory reconstruction and text
input with a single ring. QwertyRing[14] captures continuous fin-
ger taps using a ring worn on the fingertip to simulate a virtual
QWERTY keyboard, but it has a steep learning curve. Mouse on
a Ring[63] and RotoSwype[15] use IMU sensors to track finger
movements and translate them into cursor control, but both rely
on mid-air interaction, which can lead to fatigue over extended use.
LightRing[20] supports handwriting on a surface but is restricted
by infrared sensors, which prevent its use with the wrist lifted from
the desk, limiting the range of finger movements.

Compared to the above-mentioned works, our approach does
not impose restrictions on wrist posture, allowing users to write
in their preferred position on any surface, ensuring comfort and
convenience. Additionally, we support high-precision fingertip tra-
jectory reconstruction, enabling direct text input without the need
for calibration. This ensures a positive user experience in real-world
scenarios, encouraging consistent use and adoption of the device.

2.2 Trajectory Reconstruction Based on IMU
This section reviews traditional IMU-based trajectory reconstruc-
tion methods, techniques for reducing IMU data noise, and ap-
plications of IMU in trajectory reconstruction, highlighting the
advantages of our approach.

There have been substantial applications focused on trajectory re-
construction using IMU (Inertial Measurement Unit) sensors [1, 42].
Traditional trajectory reconstruction methods aim to estimate the
motion trajectory of IMU sensors in their local coordinate system.
However, IMU sensors inherently suffer from intrinsic biases and
random noise. Simply using raw IMU data leads to errors that accu-
mulate over time andwithmovement [18, 53], making it challenging
to achieve accurate, large-scale, long-term trajectory reconstruc-
tions. As a result, conventional positioning methods typically use
IMUs as auxiliary components in positioning systems [32, 40, 62].

To address these limitations, various techniques have been pro-
posed to enhance accuracy. For instance, some approaches utilize
discriminators to identify stationary states and remove static bi-
ases [37] . Deep learning methods have also been employed, such
as denoising altitude estimates using open-loop gyroscope data [7].
In addition to noise reduction [12, 13, 34, 39, 41, 61], some stud-
ies predict trajectories beyond the IMU itself. For instance, IMUs
have been used to infer hand gestures through wearable rings or
watches [27, 46, 60], classify handwritten characters [8, 43], and
capture human motion [21]. However, these approaches have no-
table limitations. Some require a rigid-body linkage between the
IMU and the target object [8], others rely on additional sensors for
enhanced positioning [20, 43], and many use multiple IMUs [21, 46].
Moreover, certain end-to-end models only produce task-specific
outputs [27, 60], such as handwriting recognition using language
models [60], without reconstructing the trajectory itself.

In contrast, ourwork utilizes a single IMU sensorworn at the base
of the finger to accurately predict the non-rigid-attached motion
of the fingertip. We normalize the input rotation using gravity
and adopt a hybrid model of Temporal Convolutional Networks
(TCN) [23] and Long Short-Term Memory (LSTM) [17] to forecast
fingertip velocity, instead of position, in a streaming fashion. With
this method, we reach millimeter-level accuracy, making it effective
for subsequent tasks such as handwriting.
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2.3 Recognition of Finger Handwriting Based
on Wearable Sensors

Handwriting recognition technologies often face a trade-off be-
tween accuracy and user convenience. We first review high-
accuracy solutions that compromise comfort, followed by portable
devices that prioritize convenience but have limitations in accuracy
and generalizability. Finally, we introduce the advantages of our
WritingRing compared to existing finger-worn IMU works.

In the field of handwriting recognition, high-accuracy solutions
often compromise user convenience. For example, Tigrini et al. [49,
50, 51] use surface electromyography (sEMG) signals to recognize
numbers. Singh and Chaturvedi [48] combine IMUs and sEMGs
for letter recognition. However, these systems require multiple
electrodes on the user’s forearm or wrist, impacting comfort. Other
advanced solutions, like data gloves [2, 54], radar sensors [24], ToF
sensors [59], or head-mounted cameras [6], rely on external devices,
reducing practicality for fast, everyday applications.

Portable and comfortable handwriting recognition devices like
smartwatches, fingertip sensors, and smart rings offer high conve-
nience. Li et al. [26] use IMU sensors in smartwatches for 91.4%
word recognition accuracy but only support uppercase letters and
require extensive personalized data collection for each user. Ardüser
et al. [3] combine smartwatchmotion data with audio signals, which
can be affected by noisy environments. Fingernail pressure sensors
used by Blumrosen et al. [5] achieved only about 80% accuracy. Liu
et al. [28] use a portable ring with an embedded IMU, but the study
was limited to one user, raising concerns about generalizability and
real-world usability.

Previous works using finger-worn IMUs focus on in-air writing,
treating the hand as a rigid body to reconstruct the IMU trajectory.
Luo et al. [29] achieved 73% accuracy with DTW for character
recognition, requiring pre-collected data for each user without any
generalization ability. Younas et al. [57] used subjective evaluation
of the writing results, which was later improved by Younas et al.
[58] through a combination of KNN and DTW. However, to the
best of our knowledge, all in-air writing approaches do not support
continuous word input. Our work, in contrast, adopts a writing-
on-plane approach. This introduces new challenges, as the sensor
and fingertip are no longer rigidly attached, and the smaller range
of motion amplifies the IMU noise. WritingRing addresses these
challenges effectively.

We believe that existing research lacks handwriting input tech-
nology that simultaneously provides both high accuracy and user
comfort while remaining practical for real-world applications. Writ-
ingRing, a single-ring design worn at the base of the finger, enables
natural writing on a plane. This setting is identified as the most ac-
ceptable option in our user study due to its portability and comfort.
To demonstrate its generalizability, we conduct real-time writing
experiments with 24 users who are not part of the training set.
These experiments include both character and word writing tasks.
WritingRing achieves high recognition accuracy, and excellent gen-
eralizability, and supports cursive writing and word input, ensuring
high input efficiency without compromising ease of use. This makes
it a highly practical solution for everyday use, overcoming the limi-
tations of previous methods.

3 WRITING RING DESIGN
The goal of WritingRing is to enable efficient, natural, and comfort-
able finger handwriting input on any surface. To understand what
kind of experience users would find most natural, we conducted a
survey that asked participants to imagine a well-developed tech-
nology that implemented handwriting functions and provide their
opinions on it. This pilot study involved 32 participants (13 males
and 19 females, aged from 18 to 60, M=28.91. Among them, 6 par-
ticipants were older, and 6 were non-local participants (from Asia,
North America, Europe, Africa, etc.).), with an average completion
time of 6.51 minutes. Each participant received a reward of 2 dollars.
We summarized our considerations and the actual user needs into
the following two points.

3.1 Considerations for Wearing
DQ1: How many rings are users willing to wear?

We found that most users were reluctant to wear two or more
rings. In our survey, 100% of the users are willing to wear one smart
ring to use this technology, but only 40.6% are willing to wear
two or more rings. The reasons they opposed wearing additional
rings include inconvenience of wearing (21/32) / interference with
daily activities (11/32) / impact on aesthetics (5/32). Although the
accuracy of reconstructing finger movements using IMUs highly
depends on the number of IMUs used [45], more rings mean a
greater burden on the user in terms of wearability.

DQ2: What is the natural wearing position for users?
Nearly all participants (81.3%) in our survey indicated that wear-

ing it at the base of the finger aligns with their daily habits. Mean-
while, only 28.1% of users were willing to wear the ring on the
proximal phalanx or distal phalanx, even though these positions
have been shown to provide more movement information[47]. The
reasons for their reluctance include inconvenience of wearing (9/32)
/ interference with daily activities (22/32) / impact on aesthetics
(1/32) / ease of falling off (6/32) .

Therefore, to increase the acceptance of this technology among
users, we chose to use a single ring worn at the base of the index
finger. Although this presents significant technical challenges, it is
the most user-friendly approach, aligning with the natural habits
of users.

3.2 Considerations for Handwriting
DQ3: What is the comfortable handwriting posture for users?

We observed that users naturally adopt two distinct postures
when performing handwriting input: resting the wrist on the desk
or keeping the wrist elevated (50% vs. 50% in the survey). The
handwriting motion in these two postures corresponds to more
finger joint flexion and extension in the first case, and full-hand
movement in space in the second. To support users in writing in
any natural way they prefer, both postures were taken into account
in our design.

DQ4: Is visual feedback necessary?
Although handwriting can be an eyes-free process, about 60% of

the respondents (19/32) in our survey expressed a preference for
seeing the trajectory of their writing as they produce it. The reasons
for this preference include greater confidence during input (10/19)
/ a more natural usage experience (7/19) / convenience to correct
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input (4/19). As a result, instead of performing direct end-to-end
recognition of the user’s handwriting, we first reconstruct the input
trajectory and then recognize the content from this trajectory. The
step of recognizing content from the trajectory has been extensively
studied, so by accurately reconstructing the trajectory, we can
effectively utilize existing handwriting recognition algorithms to
complete the recognition process.

4 Data Collection
To implement our system which supports natural handwriting
based on a single IMU ring worn at the base of the index finger,
we conducted a data collection experiment to gather data on users
performing natural finger handwriting tasks while wearing an IMU-
equipped smart ring.

(a) The Smart Ring Used in the Experi-
ment.

(b) The Participant is Inputting Letter
’b’ in the Experiment.

Figure 2: Apparatus for data collection.

4.1 Apparatus
To ensure that users’ behavior closely aligns with real-world usage
scenarios, we opted not to connect the IMU via wires, as this could
interfere with natural user behavior. Instead, we used a smart ring
equipped with an IMU that communicates with a PC via Bluetooth.
The IMU model is MPU9250, featuring 6 axes (see hardware design
in the appendix). During the experiment, the IMU’s frame rate was
fixed at 200 fps. To capture the movement trajectory of the user’s
fingertip, we synchronized the recording with a Sensel Morph1
pressure pad, set at a frame rate of 100 fps to capture pressure data.
The experiment setup is shown in Fig. 2.

4.2 Participants
We recruited 20 participants (10 males and 10 females, aged 19 to
30, M = 23.48) from the university campus. All participants were
right-handed, with an average right index finger length of 81.0 mm
(SD = 12.5), which we believe represents a typical range of finger
lengths in the general population.

4.3 Design and Procedure
At the start of the experiment, participants were instructed to wear
the smart ring on the base of their right index finger. For partici-
pants with slimmer fingers, the ring was slightly loose when worn
directly. To address this, we applied nano tape inside the ring to
ensure a secure fit, preventing any loosening during the experiment.
1https://morph.sensel.com/

A marker was placed on the ring, which needed to face directly
upward when the palm was laid flat. This ensured that the IMU’s
relative position to the finger remained consistent, with only minor
variations that would not impact the experimental outcomes.

During the experiment, participants were asked to write either
letters or words on the pressure pad while wearing the ring. Letters
were case-sensitive, and words were randomly selected from the
MacKenzie PhraseSet [30], with both connected writing and uncon-
nected writing required. Based on the considerations discussed in
the previous chapter, data was collected for both wrist-lifted and
wrist-resting conditions. In this context, connected writing refers
to allowing users to write an entire word in a single stroke without
lifting their finger, while unconnected writing requires users to lift
their finger between letters. Wrist lifted means the wrist remains
elevated during the writing process, whereas wrist resting refers to
thewrist being placed on the desk. Thus, each participant completed
6 writing tasks: 3 writing types (letters, connected writing words,
unconnected writing words) × 2 wrist conditions (wrist lifted, wrist
resting). Each task included approximately 5 blocks, resulting in a
total of 600 words (including letters) being written. After complet-
ing each block, participants were given a 2-minute rest. The entire
experiment lasted approximately 60 minutes, and each participant
received 15 dollars as reward. The entire dataset comprises approx-
imately 20 hours of handwriting data. All the data we collected can
be found at https://huggingface.co/datasets/dBHz/WritingRing.

4.4 Data Pre-processing
Due to the presence of noise in the touchpad data, and consider-
ing that the finger’s movement trajectory is relatively smooth, we
applied exponential smoothing to the data on both the x and y
axes before using it as the ground truth. The smoothing process is
defined as follows:

𝑆𝑡 = 𝛼 · 𝑋𝑡 + (1 − 𝛼) · 𝑆𝑡−1
where 𝑆𝑡 is the smoothed value at time 𝑡 , 𝑋𝑡 is the original data
point, 𝛼 is the smoothing factor, and 𝑆𝑡−1 is the previous smoothed
value. This smoothing helps reduce noise while preserving the
overall trajectory. 𝛼 is set to 0.5 in this experiment.

Additionally, due to a constant time offset between the IMU
data timestamps and the touchpad data timestamps, we manually
calibrated the time offset for each data point by aligning the IMU’s
peak values with the touchpad press timestamps. This process
ensured that the time discrepancy between the IMU and touchpad
data did not exceed 10 ms (2 frames). Furthermore, we used linear
interpolation to map the touchpad data to the exact timestamps of
each IMU sampling. After these adjustments, the time deviation
between the IMU data and the touchpad data was kept below 10 ms,
which can be considered instantaneous, with almost no delay[33].

5 WRITING RING ALGORITHM
5.1 Algorithm Pipeline
Figure 3 presents the pipeline of our algorithm. First, we apply
a pose estimation algorithm to estimate the ring’s orientation in
space, followed by subtracting the gravitational component from
the three-axis accelerometer data. This step reduces the influence
of different orientations on the results and gets the acceleration

https://huggingface.co/datasets/dBHz/WritingRing
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Figure 3: Algorithm pipeline for WritingRing.

(after gravity removal) and angular velocity as the input for the
model. Next, we process the data in fixed-length windows, passing
it through a carefully designed TCN network, ensuring that the
temporal length is reduced to 1 with a convolutional stride of 1. The
resulting data is then fed into an LSTM network, which predicts
the velocity at the current moment.

In this framework, data can be streamed continuously, allow-
ing us to maximize the reuse of previously computed results and
minimize computational overhead during real-time usage. For ex-
ample, as shown in Figure 3, since the stride is 1 when a new data
frame arrives, only the red section needs to be recalculated, while
the rest can utilize previously computed results. Additionally, we
implemented a simple yet efficient touch state detector to precisely
capture the moments of press and release during writing. Note that
when the finger is in the air, the model output is meaningless. How-
ever, the continuous IMU input in the sequence helps the model
learn more contextual information. Therefore, during training, we
applied a mask to the model’s output when there is no contact,
meaning that only the data during contact will contribute to the
model’s loss. In actual use, we decide whether to use the current
model’s output based on the detection of finger press and lift events.

Finally, the reconstructed trajectory is fed into a handwriting
recognition program. Most existing smart devices are equipped
with handwriting input methods, and for our system, we chose
the commonly used Google Input Method (Google IME)2 as the
recognition program.

5.2 Attitude Estimation and Linear Acceleration
Calculation

To ensure consistent performance across various user postures, we
opted to remove the gravity component from the accelerometer’s
output, as the gravity value is significantly larger (approximately
400% on average) than the linear acceleration generated during
normal handwriting. By removing it, we improve the stability of
the data, making it easier for the model to learn effectively.

To calculate the gravitational components along each axis, we
first need to determine the orientation of the ring. For this, we
used the Madgwick algorithm, commonly employed in inertial nav-
igation [31]. This algorithm integrates angular velocity data and
applies corrections using acceleration data. The gaining factor 𝛽

2https://www.google.com/inputtools/

were set to 0.041. By using this algorithm, we can compute the
relative orientation of the ring with respect to the horizontal plane
at any given moment. Once the orientation is known, the gravita-
tional vector in the horizontal state can be rotated and subtracted
accordingly. The equation is as follows:

𝑔𝑎𝑑 𝑗𝑢𝑠𝑡𝑒𝑑 = 𝑅(𝜃 ) · 𝑔ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙
𝑎𝑎𝑑 𝑗𝑢𝑠𝑡𝑒𝑑 = 𝑎𝑟𝑎𝑤 − 𝑔𝑎𝑑 𝑗𝑢𝑠𝑡𝑢𝑑

where 𝑔𝑎𝑑 𝑗𝑢𝑠𝑡𝑒𝑑 is the gravitational component to be subtracted,
𝑅(𝜃 ) is the rotation matrix derived from the ring’s orientation, and
𝑔ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 represents the gravity vector in the horizontal state. By
subtracting 𝑔𝑎𝑑 𝑗𝑢𝑠𝑡𝑒𝑑 from the raw accelerometer reading 𝑎𝑟𝑎𝑤 , we
can get the adjusted acceleration 𝑎𝑎𝑑 𝑗𝑢𝑠𝑡𝑒𝑑 .

5.3 Trajectory Reconstruction
5.3.1 Model Architecture. Previous approaches often involve seg-
menting the data into small fragments, using neural networks to
predict the IMU velocity at the end of each segment, and then inte-
grating the velocity to obtain displacement. However, this method
has several drawbacks. For instance, if the data fragments are too
short, the model cannot capture long-term velocity information. On
the other hand, if the fragments are too long, the computational ef-
ficiency decreases, and the data may contain irrelevant information
for predicting the final velocity, which can lead to overfitting.

Therefore, instead of using segmented data as input, we designed
a streaming model structure that uses the entire handwriting pro-
cess as input, a method later validated as highly effective in our
experiments. The most straightforward approach would be to pass
the data through an LSTM network and predict velocity using a
linear layer, forming a frame-to-frame architecture. However, this
frame-to-frame prediction method is highly sensitive to temporal
misalignment, as the data does not always perfectly align in time.
Additionally, using a certain amount of future data improves the
prediction of current displacement.

To address these issues, we designed our current algorithm
pipeline. Data from a fixed-length window is processed by a Tempo-
ral Convolutional Network (TCN), which compresses the sequence
into a single feature vector of length 1 with a dimension of 128.
This vector is then fed into an LSTM network with a hidden size
of 128, and the output is passed through a linear layer (with ReLU
as the activation function) to predict the velocity in the x and y
directions. This velocity corresponds to the fingertip movement
speed at the midpoint of the data window. After testing, the optimal
data window length was set to 13, resulting in a maximum delay of
6.5 frames, or 32.5 ms, which is acceptable for handwriting input.

In this prediction process, the TCN network effectively captures
motion variations within the current data segment, while the LSTM
network leverages historical motion information through its hidden
states to predict the current movement. This combination ensures
accurate velocity prediction by incorporating both past and present
information.

5.3.2 Model Training. Based on the analysis in the previous section,
we adopted a streaming approach with longer data segments for
training, rather than cutting the data into smaller fragments. In
practical experiments, since a single block often takes 1-2minutes to
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complete, we fixed the data segment length to 75 seconds (or 15,000
frames). For data shorter than this length, we padded the beginning
with zeros, and for longer data, we symmetrically trimmed from
both ends. This approach facilitates batch training.

We randomly divided the data (including both letters and words)
into 70%, 10%, and 20% for the training, validation, and test sets, re-
spectively. During training, the batch size was set to 16, the learning
rate was 0.001, and we used the Adam optimizer. The loss function
was Mean Squared Error (MSE), and the training process continued
for 500 epochs.

(a) The performance of different mod-
els.

(b) The performance on different users.

Figure 4: The performance of different models and different
users, presented through the cumulative distribution func-
tion.

0.014 0.019 0.030 0.060
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* The size of box is 8cm x 8cm.
Predicted 
Trajectory
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Examples with Normalized Error

Figure 5: Samples from the dataset and their normalized
error.

5.3.3 Model Performance. We used the normalized distance be-
tween each predicted point and ground truth as an evaluation

metric for model performance. The formula is
√
(𝑥𝑖−𝑥𝑖 )2+(𝑦𝑖−𝑦𝑖 )2

𝐿
where 𝑥𝑖 and 𝑦𝑖 are the predicted coordinates, 𝑥𝑖 and 𝑦𝑖 are the
ground truth coordinates, and 𝐿 represents the normalizing factor
(typically the diagonal or a characteristic length of the writing area,
here we use the diagonal of the bounding box of the trajectory).
The normalization helps eliminate the influence of writing size on
trajectory deviation.

As shown in Figure 4(a), the average error is 0.073, with over
80% of the errors being less than 0.1. Since this value might not be

intuitive, we extracted several representative samples from the ex-
perimental results and annotated their respective errors, as shown
in Figure 5. It can be observed that when the error is less than 0.060,
the reconstructed trajectory closely matches the real trajectory in
shape. When the error is less than 0.194, although there are devia-
tions between the reconstructed and real trajectories, the letters in
the trajectory are still recognizable. Additionally, we re-evaluated
the error without normalization and found that the average error
is 0.164 cm, achieving millimeter-level accuracy. Figure 6(a) shows
that the WritingRing algorithm maintains good performance across
different handwriting tasks (letter, connected word, and uncon-
nected word) and various wrist positions.

(a) Normalized error under different
settings.

(b) Accumulated and per-frame errors
over time.

Figure 6: Writing error metrics under different conditions.

Due to errors in IMU readings, these errors accumulate over time
and impact the accuracy of the reconstruction. As shown in Fig-
ure 6(b), the average normalized error (calculated as the average of
data within every 100 frames) gradually increases with the number
of consecutive predicted frames, but remains at a relatively low
level overall. Furthermore, 99% trajectories have fewer than 300
frames (1.5 seconds). In addition, we also calculated the error for
individual frames (i.e., the difference between the predicted and
actual velocity), and found that this error does not change with the
number of frames. This suggests that although errors accumulate
over time as the number of frames increases, the impact is limited,
and in most cases, the performance remains satisfactory.

Additionally, we used a leave-one-out approach (we retrained
the model, where one participant was left out as the test set and the
remaining participants were used as the training set) to evaluate
user-independent results, which are visualized in Figure 4(b). As can
be seen, while there are some differences in error across participants,
the overall performance remains consistent without significant
deviations. This suggests that the algorithm is generally applicable
and effective for a wide range of users.

5.3.4 Ablation Study. To demonstrate the effectiveness of the spe-
cific design choices in our model, we conducted an ablation study,
as shown in Figure 4(a). The stream input method had the most
significant impact on performance. Compared to the common ap-
proach of cutting the dataset into small fragments, using longer
segments for streaming input during training resulted in much
better performance, reducing the mean error by 36.7%, from 0.116
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to 0.073. We believe this is because small segments make it diffi-
cult for the model to learn the fundamental patterns of long-term
movement, particularly the temporal relationships before and after
each movement.

Additionally, using the TCN network to extract features from
several adjacent frames was also proven to be effective, reducing
the error by 23.1%, from 0.095 to 0.073. Regarding the choice of win-
dow length, we found that longer windows did not lead to further
performance improvement. This may be because, beyond historical
information, the temporal span that affects the current velocity or
is influenced by the current velocity is relatively short. Therefore,
we selected a TCN window length of 3 and a total window length
of 13 frames, balancing computational efficiency and performance.

5.4 Touch Detection
To accurately reconstruct the user’s trajectory, the system needs
to detect whether the user’s index finger is in contact with the
surface. During training, we segmented the data into 0.1-second
fragments, resulting in 20 frames of 6-channel data. We trained a
deep learning model based on ResNet[16], which consists of three
residual blocks with increasing sizes (8, 16, and 32 output channels,
respectively). Batch normalization and Dropout were applied after
each convolutional layer, followed by a fully connected layer for
classification, enabling precise detection of finger contact events.

We classified each time window’s data into four categories: con-
tact with the surface, in the air, finger lift, and finger press. The
four states are defined as follows:

(1) Contact with the surface: The finger inside the time window
is continuously in contact with the surface.

(2) In the air: The finger inside the time window is not in contact
with the surface.

(3) Finger lift: There is a transition from contact to non-contact
within the time window.

(4) Finger press: There is a transition from non-contact to contact
within the time window.

The inclusion of "in the air" and "contact with the surface" cat-
egories, beyond just detecting lifts and presses, was to enhance
model robustness and minimize false triggers during usage. In real-
world use, we only used the "finger lift" and "finger press" events
to define the start and end of the trajectory. The model achieved a
98.3% accuracy in recognizing press and lift events.

5.5 Word Recognition
For letter recognition, we directly input the predicted trajectories
into Google IME, a widely used handwriting recognition program
deployable across multiple platforms such as computers and mobile
devices. For word recognition, we distinguish between connected
and unconnected writing. For connected writing, we directly input
the trajectory into Google IME. For unconnected writing, since we
do not predict the trajectory after the user lifts their finger, we
first concatenate the discrete letters with fixed intervals to form a
complete trajectory, which is then input into Google IME. For all
inputs, Google IME returns several candidate words, and we retain
the top 5 candidates as the final results. Based on this, users can
input any letter, word, or even sentence, and can write sequences
of arbitrary length.

6 REAL-TIME LETTERWRITING USABILITY
EVALUATION

To further validate the practical usability of the system, we
conducted two real-time usability evaluation studies , assessing
whether the system truly provides a universal, efficient, and nat-
ural input experience. The first experiment is to test the basic
capabilities of WritingRing, letter writing and recognition. The
second experiment (presented in the next section) evaluates the
system’s performance in long-term continuous writing tasks by
testing whole word input.

6.1 Participants and Apparatus
We recruited 12 participants (8 males and 4 females, aged 20 to
30, mean = 22.42) from a university campus, all of whom were
right-handed. These participants did not overlap with those in
the data collection experiment. Before the experiment began, each
participant independently wore the smart ring, ensuring themarked
point was facing upward, with minor misalignments permitted. For
participants with slimmer fingers, we applied a layer of nano tape
inside the ring to prevent it from loosening during the experiment.
The system was run and visualized on a MacBook Pro 2021, and
the touchpad used was a Sensel Morph.

6.2 Design and Procedure
Before the experiment began, participants were given approxi-
mately 5 minutes to familiarize themselves with the use of the
smart ring. During this time, they were informed that they could
write either with their wrist lifted or resting on the surface and
were encouraged to choose the method that felt more comfortable
and natural.

Afterward, participants completed two sets of comparison ex-
periments. In one set, they wrote letters on a touchpad in a single
stroke, including all uppercase and lowercase letters (excluding "i"
and "j" as they cannot be written in one stroke). In the other set,
participants performed the same letter-writing task on the desk
surface while wearing the smart ring. Each letter was written four
times. To counterbalance the learning effect, the order of the two
experiments was randomized. A 2-minute break was given between
each round.

After completing each set of tasks, participants filled out a sub-
jective questionnaire and provided feedback regarding their ex-
perience. The experiment lasted approximately 40 minutes, and
participants received 10 dollars for their participation.

6.3 Results
6.3.1 Accuracy. After removing recognition errors for letters that
are identical in uppercase and lowercase (e.g., "x" and "X"), the
average accuracy for all participants using the ring to input letters
was 88.7% (SD = 0.056), while the average accuracy for input via
the touchpad was 93.1% (SD = 0.037). The accuracy of ring-based
input reached 95.3% of the touchpad input accuracy. The confusion
matrix is shown in the appendix Fig. 13.

Common error types included vertical misalignment leading to
stroke displacement, such as confusing "q," "a," and "d," or mixing up
"b" and "p." Some letters, like "X", have complex stroke orders when
written in a single stroke, making them harder for handwriting
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recognition systems to correctly interpret. Additionally, certain
letters tend to introduce extra strokes when written in one motion,
leading to misrecognition, such as "t" being recognized as "e". These
types of errors accounted for 34.9% of all mistakes.

Figure 7: System scoring in the letter writing evaluation
study.

6.3.2 Subjective Indicators. At the end of the experiment, we asked
participants to rate the system on recognition accuracy, ease of
learning, willingness to use, and NASA-TLX on a scale from 1 to 7.
We did the Wilcoxon Signed-Rank Test to the results. The results,
shown in Figure 7, indicate that the touchpad received significantly
higher scores than WritingRing in terms of trajectory reconstruc-
tion and letter recognition accuracy, suggesting that the touchpad
provided more precise trajectory data (p < .05, Z = -3.06, -2.51). Also,
the touchpad was rated higher in ease of use (p < .05, Z = -2.83), as
it required little to no learning effort from users. However, Writ-
ingRing also received relatively strong scores in these categories.
The relatively low absolute values for mental demand, physical
demand, and temporal demand, along with the high performance,
indicate that using the ring for handwriting letters does not impose
a greater burden compared to using a touchpad.

Interestingly, in terms of willingness to use, the ratings for the
touchpad and WritingRing were comparable (p = 0.76, Z = -1.49).
This suggests that, despite the touchpad’s advantages in technical
performance and ease of use, WritingRing’s other features—such as
portability and comfort—were appreciated by users, leading to a sim-
ilar level of willingness to adopt it. Some participants commented,
“While the touchpad performs better, the ring is very portable and
allows me to use it anywhere.”

In summary, even when compared to the touchpad, which served
as the ground truth, WritingRing demonstrated impressive results,
particularly in terms of user willingness to adopt it.

7 REAL-TIMEWORDWRITING USABILITY
EVALUATION

To evaluate the system’s performance in long-term continuous
writing tasks, we conducted a word-level text input experiment.
Compared to individual letters, word input is more commonly used
and can better reflect the system’s practical usability in real-world
scenarios.

7.1 Participants and Apparatus
We recruited 12 participants from a university campus (6 males
and 6 females, aged 21 to 29, mean = 23.08), all of whom were
right-handed and had not participated in any previous experiments.
The devices used in the experiment (including the smart ring and
the computer running the program) and the method of wearing
the ring were the same as those in the previous experiments(see
section 6.1).

7.2 Design and Procedure
We designed two methods for completing word input: unconnected
writing and connected writing.

(1) Unconnected writing: In this setup, users are required to
input individual letters one by one. After completing each word,
they confirm the input by pressing a touch button.

(2) Connected writing: In this setup, users write the entire word
continuously without lifting their fingers. After completing the
word, they press a touch button to confirm the input.

The recognition algorithm remains the same as in Section 5.5.
In both methods, the dots for the letters "i" and "j" are not required
to be written, as we found that Google IME often recognizes the
correct result even without the dots.

Before the experiment began, users were given 5 minutes to
familiarize themselves with the usage of the smart ring. Then, users
were asked to complete tasks for both input methods. To counter-
balance the order effect, half of the participants started with the
unconnected writing task, while the other half started with the
connected writing task.

For each input method, users completed 5 rounds of tasks. In each
round, participants were required to input 20 randomly selected
words in lowercase (drawn from a list of the 3000 most common
English words [19]). Errors could not be undone during the test.
There was a break of at least 1 minute between each round of
testing.

After completing one input method, users filled out a subjective
questionnaire, which included the NASA-TLX scale and a subset
of questions extracted from the SUS (System Usability Scale). Par-
ticipants were also given the opportunity to provide qualitative
feedback. The entire experiment lasted approximately 60 minutes,
and each participant received a reward of 15 dollars.

7.3 Results

Table 2: Word accuracy of different experiment setup.

Method Top1 Accuracy Top3 Accuracy Top5 Accuracy
Unconnected Writing 68.16%(0.14) 79.96%(0.13) 82.08%(0.12)
Connected Writing 53.14%(0.15) 63.99%(0.14) 67.17%(0.14)

Unconnected Writing (Vocabulary Size 3000) 84.36%(0.17) 90.24%(0.13) 91.83%(0.13)
Connected Writing (Vocabulary Size 3000) 74.17%(0.12) 80.51%(0.10) 81.78%(0.09)

7.3.1 Accuracy. All accuracy results are shown in Table 2. In the
unconnected writing setting, the average top-1 accuracy reached
68.16%. For comparison, the accuracy when performing the same
task using a touchpad was 71.4% (using data from the data collec-
tion experiment). The connected writing setting requires users to
continuously write a complete word, which allows us to assess the
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performance of the WritingRing algorithm on longer sequences. In
this setting, the accuracy achieved was 53.14%.

Since Google IME does not include explicit auto-correction, it
outputs any combination of letters. However, in certain scenarios,
only words within the vocabulary need to be output. Therefore, we
also calculated the accuracy when only words from the vocabulary
(defined as the 3,000 most common words) are considered. When
the output from Google IME is found in the vocabulary, it remains
unchanged; if it is not in the vocabulary, the DTWmethod is used to
find the word in the vocabulary that is closest in letter distance (the
definition of letter distance is provided in Appendix Figure 14).With
this setup, unconnected writing achieved an accuracy of 84.36%,
while connected writing achieved 74.17%, both showing significant
improvements. We believe that the recognition performance could
be further improved if a dedicated recognition algorithm were
trained specifically for the trajectories generated by WritingRing.

(a) Accuracy across different word
lengths under connected writing.

(b) Accuracy across different rounds of
tasks.

Figure 8: The accuracy statistics based on word length or
writing rounds.

7.3.2 The Influence of Input Sequence Length. To further evaluate
the performance of the WritingRing algorithm on long sequences,
we analyzed the relationship between word length and accuracy
under the connected writing setting, as shown in Figure 8(a). It can
be observed that the standard error was relatively larger when the
word length was 2. This may be due to the presence of words in
the word list, such as ti, ii, il, etc., which are difficult to write in one
continuous stroke. There were no significant differences in accuracy
across different word lengths(𝜒2 (4, 𝑁 = 12) = 1.63, 𝑝 = 0.803).

7.3.3 Learning Efficiency. As shown in Figure 8(b), there is no
significant change in accuracy across different rounds, which is
also confirmed by the results of the Friedman test (𝜒2 (4, 𝑁 = 12) =
4.02, 𝑝 = 0.404 for unconnected task) and 𝜒2 (4, 𝑁 = 12) = 1.33, 𝑝 =

0.856 for connected task. This indicates that WritingRing is very
easy to learn, and even with a short learning period, users can
achieve good performance.

7.3.4 Subjective Indicators. We used the NASA-TLX scale and a
subset of questions extracted from the SUS for subjective evaluation,
with the full results shown in Figure 9. As can be seen, although
unconnected writing achieved higher accuracy, it scored lower
than connected writing on all SUS metrics (including willing to use,
confidence, easy to use, and easy to learn). Also, both approaches
received relatively high scores overall, especially connected writing,
indicating the system’s high usability. Users generally felt their
performance was good, but at the same time, they rated the physical

Figure 9: System scoring in thewordwriting evaluation study.

demand as relatively high. This is understandable, as handwriting
as an input method is not ideal for long-duration use.

In addition to the scales, some users also provided positive feed-
back. "The system is easy to learn and easy to accept" (P10), "I didn’t
have much confidence at first, but I was surprised when it recog-
nized my input" (P12). Although users found that unconnected
writing had higher accuracy, "Writing letter by letter is much more
accurate" (P4, P5), more users (11/12) preferred connected writing
because "Writing continuously is more user-friendly" (P1), "Contin-
uous writing is convenient and fast, and the recognition is almost
as good as letter-by-letter writing" (P9). Finally, some users men-
tioned, "My hand gets tired after writing for a while" (P2, P4, P8,
P10), which aligns with the results from the NASA-TLX scale. We
believe this is due to the nature of handwriting itself. In real-world
usage, users are unlikely to input words for long periods of time as
they did in the experiment.

8 APPLICATION

(a) VR/AR Input. (b) Smart Devices Control
in IoT.

(c) Quick Commands on
Mobile Devices.

Figure 10: Multiple application scenarios of WritingRing.

8.1 VR/AR Input
Since WritingRing interactions can occur on any surface, it is par-
ticularly well-suited for VR and AR applications. It can leverage
the display interfaces of VR and AR to show handwriting trajecto-
ries, enabling users to input text on any surface. This addresses the
challenge of text entry in VR and AR environments, especially for
non-standard inputs like passwords, which are difficult to handle
with existing methods. Even when no physical surface is available,
users can use their other hand as a surface for input.
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Moreover, because this input method does not rely on camera-
based hand tracking, it significantly reduces power consumption
related to cameras and hand tracking in current VR/AR systems.
This makes WritingRing a highly efficient solution for text input in
immersive environments.

8.2 Smart Devices Control in IoT
In current Internet of Things (IoT) environments, there are often
many devices that, even when connected to a control terminal, re-
quire cumbersome interaction processes (such as menu navigation)
to operate. WritingRing offers a more efficient solution by allowing
users to quickly input commands, such as the first letter of a device
or action, to execute the desired control. Since a ring is typically
worn at all times, users can effortlessly control any device from any-
where in the home, reducing operational complexity. Additionally,
for smart devices with displays (such as smart TVs), WritingRing
can also facilitate easy text input, streamlining interactions with
these devices. Since such inputs typically involve a limited number
of commands, good recognition performance can be achieved by
restricting the size of the vocabulary.

8.3 Quick Commands on Mobile Devices
In addition to supporting letter and word input, WritingRing, due
to its trajectory-based input, can also accommodate any custom
gestures by incorporating gesture classification algorithms [52].
This allows users to input letters, words, or custom gestures to
perform quick actions on their mobile devices. For instance, the
letter "p" or a double-tap gesture could be mapped to the "play"
function.

Moreover, since interactions on mobile devices are often enu-
merable and context-specific, with the support of large language
models (LLMs), users can express their intent with minimal letter
input. For example, in a chat scenario, when responding to a yes/no
question, the user could simply input the letter "Y," and the LLM
could generate the rest of the response, providing additional context
or reasons. This makes interactions more efficient and intuitive.

9 DISCUSSION
9.1 Writing Content Outside of the Dataset

GreekJapaneseChineseLong English WordsSymbols

θφのそ好你interactioncomputerhumanCubeEquilateral 
TrianglePentagramCircle

Figure 11: Handwriting cases of symbols, long words, and
text in different languages, written with WritingRing.

Compared to most IMU-based handwriting recognition works
that use classification algorithms, one of the main advantages of our
trajectory reconstruction approach is that it is decoupled from the
recognition system. This allows for the writing of content outside
the dataset. We invited a participant who was not in the dataset and
had not participated in the experiments to write various content,

including lines, symbols, long words, and text in different languages,
as shown in Figure 11.

From the figure, we can see that the participant successfully
completed the writing task. Even for longer words or more complex
symbols, the system achieved good performance. This capability
means that users who wish to input content outside the dataset
no longer need to retrain the model; they can simply integrate
the corresponding handwriting recognition algorithm. For user-
defined symbols, few-shot learning techniques can be employed
using algorithms such as DTW or $Q [52] to adapt to new content.

9.2 Computational Efficiency
This section demonstrates that the computational overhead of our
algorithm is sufficiently low, allowing it to run directly on existing
ring systems. Due to the engineering complexity, we have not
yet implemented the algorithm directly within the ring, but our
calculations show that this is feasible.

For the trajectory reconstruction component, the model has a
parameter size of 44.0 KB and requires 2.64 MFLOPs. For the touch
detection component, the model’s parameter size is 210.1 KB, re-
quiring 8.37 MFLOPs. The ring’s RAM capacity is 512 KB, with an
additional 1 MB of SiP Flash and 8 MB of SiP PSRAM, which is
sufficient to accommodate the required parameters. The ring’s CPU
is an ARM Cortex-M4F 32-bit, running at 96 MHz, theoretically
capable of processing 8.72 frames per second. By employing tech-
niques such as model quantization, pruning, and adding specialized
compute chips, this number can be increased severalfold, making
the system fully capable of meeting the demands of real-world use.

Power consumption is also a critical consideration for our sys-
tem. Since users spend most of their time in a non-interactive state,
we can run the touch state detection algorithm at a very low frame
rate continuously. Once a press gesture is detected, the trajectory
reconstruction algorithm can be activated, thus saving power. Al-
ternatively, the touch sensor on the ring could be used as a trigger
button to activate the system, further reducing power consumption.
This approach ensures that the system only uses full computational
resources when necessary, optimizing energy efficiency.

9.3 Personalized Calibration
We observed that different users have varying handwriting habits
and finger usage styles. Although the differences between users
were not particularly large in the leave-one-out experiments, these
variations can still impact the overall experience to some extent. To
address this, we can consider implementing personalized calibration
methods when users first begin using the smart ring.

One potential solution is to have users write a short piece of
text freely with their finger on their phone. During this process,
we can collect IMU signal features and ground truth data (such as
writing speed, stroke size, and whether they connect letters). These
features can be used to explicitly adjust for user-specific factors (e.g.,
inferring finger length) or implicitly, by creating a personalized
user embedding using a black-box model. This personalization step
would help optimize the existing general model for each individual
user, enhancing the overall handwriting recognition performance.
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9.4 Towards Making the Use Experience More
Natural

Although in this work we have placed significant emphasis on
enabling natural handwriting for users, we believe there are still
opportunities to make the entire system even more natural.

First, since the focus of this work is on the long-term stable
reconstruction of the user’s continuous handwriting trajectory and
subsequent recognition, we require users to complete the writing
of letters or words continuously. For native language writing, con-
tinuous writing is not typically a difficult task. However, there
are certain characters that are challenging to write continuously
(e.g., the English letters "i" and "j"). Due to the lack of ground truth
for finger movements in the air, this work is currently unable to
perfectly address this issue, which remains a limitation. Given the
existing research on predicting in-air IMU trajectories, we believe
that this problem can be solved in the future.

In future work, we plan to address this by incorporating hand
tracking methods, such as using VR systems or motion capture
systems like OptiTrack3, to capture the ground truth of finger move-
ments in mid-air. This will enable us to predict mid-air trajectories
and create a more seamless and natural writing experience.

Meanwhile, the placement of the ring is worth discussing. Al-
though we positioned it on the base of the index finger, which is
generally the most suitable location, some users expressed a prefer-
ence to wear the ring on different fingers, particularly for cultural
reasons. Writing with non-index fingers is a potential task; while
it may be less dexterous compared to the index finger, it could
still accomplish handwriting tasks. This requires additional data to
support. Different configurations (e.g., wearing varying numbers of
rings on different fingers or positions) lead to varying effects. The
extent to which users are willing to sacrifice recognition accuracy
for a more comfortable wearing experience should be addressed in
future work.

Another consideration regarding the ring’s wearability is the ori-
entation. In this study, we standardized the ring orientation for all
participants to ensure consistency in the IMU’s positioning. How-
ever, this may not always feel natural in everyday use. To address
this, two potential solutions include inferring the gravitational di-
rection from extended IMU data to deduce the ring’s orientation or
using data augmentation techniques. These issues will be addressed
in our future work.

10 CONCLUSION
We propose WritingRing, a system that utilizes a single IMU ring
worn at the base of the finger to reconstruct 2D fingertip trajec-
tories in real time during natural handwriting scenarios. To the
best of our knowledge, this is the first work to achieve real-time,
cross-user handwriting recognition and reconstruction on the plane
with high accuracy using a single IMU ring. We have built and plan
to publicly release what we believe to be the largest handwrit-
ing dataset for IMU rings (N=20). On this dataset, our algorithm
achieved an average trajectory reconstruction accuracy of 1.63mm.
Wemade improvements to the original LSTMmodel through the use
of streaming input and the addition of a TCN model, which we val-
idated via ablation studies. We further demonstrated WritingRing’s
3https://optitrack.com/

high usability in practical applications through two real-time usabil-
ity evaluation studies, achieving 88.7% letter recognition accuracy
and 68.2% word recognition accuracy (84.36% when restricting the
output to words within a vocabulary of size 3000). Finally, we
explored potential applications for WritingRing, hoping it can play
a key role in various scenarios such as VR, AR, and IoT, becoming
an integral part of everyday life.
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A Complete Survey Questionnaire
This questionnaire asks you to imagine a new wearable device: a
smart ring that you can wear on your finger. Its key feature is that
it can track your fingertip’s movements on any surface in real-time
and accurately recognize what you are writing. We assume that this
ring can seamlessly connect to any existing smart devices (such
as computers, phones, smartwatches, smart home devices, etc.).
Additionally, we assume that its recognition performance is highly
accurate, with virtually no delay. For example, after connecting it to
your smart TV, you can use it to write numbers to change channels
or write letters or words to select a program.

After imagining this device and scenario, please proceed to an-
swer the following questions:

(1) Basic Information:
• Name:
• Gender:
• Age:

(2) Do you usually wear rings? (If no, please enter 0; if yes,
please enter the number of rings worn)

(3) Please rate your familiarity with smart rings (1-7, where 1 is
completely unfamiliar, 7 is daily use, and 4 is heard of but
not purchased).

(4) To achieve such functionality, how many smart rings are
you willing to wear at most?

(5) What are the reasons for your reluctance to wear more smart
rings?

(6) To achieve such functionality, on which part of the finger
would you be willing to wear the ring? (Base of the finger
(third phalanx), Middle part of the finger (second phalanx),
Tip of the finger (first phalanx))

(7) What are the reasons for your reluctance to wear the ring
on other parts of the finger?

(8) Please use your finger to randomly write a letter or a word
on a nearby flat surface, assuming you are using this device
for text input. After completing the writing, indicate whether
your wrist was suspended in the air or resting on the surface.

(9) Do you think you needed visual feedback during your recent
writing process, that is, would you like to see the trajectory
of what you are writing in real time? Please note that even
if the input trajectory is not displayed, this system can still
output your writing results to the device.

(10) What are your reasons for wanting to see the trajectory? (If
(9) answered yes)

(11) What are your reasons for not needing to see the trajectory?
(If (9) answered no)

(12) Please use your imagination and describe a scenario where
you hope this device could be useful (e.g., using it for quick
commands on a smartphone, controlling smart light switches,
teaching children how to write, etc.).

https://doi.org/10.1109/TVT.2016.2558206
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B Hardware Prototype Design

Figure 12: The hardware prototype flexible PCB used in this
work.

Here is a photo of our hardware prototype’s Flexible PCB. In
addition to the 6-axis IMU sensor with a maximum frequency of 200
fps, it also includes two touch sensors, an LED light, a Bluetooth
chip, and an antenna. The IMU model used is MPU9250, and the
processing unit is an ARM Cortex-M4F 32-bit, running at 96 MHz.
During use, the Flexible PCB is wrapped around a fixed-size metal
inner ring, forming the IMU smart ring. The user experience of
wearing this ring is nearly identical to that of a regular ring.

C The Whole Confusion Matrix of the Results
in Usability Study

Figure 13: The confusionmatrix of usability evaluation study
results.

D The Letter Distance Matrix

Figure 14: This matrix represents the distance between each
pair of letters, with letters closer together having a smaller
distance.

This matrix is mostly obtained by taking the inverse of the ma-
trix in Figure 13, meaning that the distance between more easily
confusable letters is closer, with some values adjusted.
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