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Abstract
Text entry is a fundamental and ubiquitous task, but users often
face challenges such as situational impairments or difficulties in
sentence formulation. Motivated by this, we explore the potential
of large language models (LLMs) to assist with text entry in real-
world contexts. We propose a collaborative smartphone-based text
entry system, CATIA, that leverages LLMs to provide text sugges-
tions based on contextual factors, including screen content, time,
location, activity, and more. In a 7-day in-the-wild study with 36
participants, the system offered appropriate text suggestions in
over 80% of cases. Users exhibited different collaborative behaviors
depending on whether they were composing text for interpersonal
communication or information services. Additionally, the relevance
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of contextual factors beyond screen content varied across scenarios.
We identified two distinct mental models: AI as a supportive facil-
itator or as a more equal collaborator. These findings outline the
design space for human-AI collaborative text entry on smartphones.
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Figure 1: Mobile text entry behaviors exist in the context of smartphone usage. For example, a user may share read news in an
instant messaging app, or go to a shopping app to search for a favorite product after seeing it. We explore a text-suggestion AI
that utilizes contextual information on device to infer the user’s input intention and suggest texts.

1 Introduction
Text entry is an essential part of everyday smartphone usage, sup-
porting diverse activities such as communication, information re-
trieval, and note-taking [33]. However, text entry in real-world sce-
narios poses significant challenges [30]. For instance, situational im-
pairments (e.g., walking or driving) can make typing inconvenient
[23], while heavy text input (e.g., composing lengthy responses)
may increase cognitive load, leading to difficulties in formulating
coherent sentences [44, 45].

We envision a human-AI collaborative text entry model,
where AI leverages contextual cues to provide relevant input sug-
gestions, while users refine or adapt these suggestions based on
situational needs. Specifically, we aim to investigate the poten-
tial of large language models (LLMs) in providing this predictive
assistance.

The feasibility of this approach stems from the observation that,
in many cases, a user’s input or underlying intent for text entry
can be inferred from contextual information captured by the smart-
phone [16, 28]. As illustrated in Figure 1, a scenario may involve a
user summarizing a news article from one app and sharing it with
friends via an instant messaging app. Alternatively, a user could
be reading about a product in an app and then want to search for
related items in a shopping app.

Moreover, with recent advances, large language models (LLMs)
have demonstrated the ability to generate high-quality text based
on the given context [9, 17, 57, 66]. Due to their flexibility in input
and output, as well as their generality across a wide range of tasks,
LLM-driven AI assistants have the potential to become end-users’
text entry agents to tackle open and complex input tasks [8]. In this
collaborative model, human-to-AI communication can be divided
into two complementary channels: active expression, where users
intentionally type or provide direct input to the AI, and implicit
communication, where users convey through data derived from
regular smartphone use [6, 48, 49]. Users can leverage context to

reduce their input burden while also actively providing additional
instructions to refine the AI’s suggestions with minimal effort.

The challenge, however, lies in the fact that real-world collab-
oration between end-users and LLM-driven AI extends beyond
traditional typing, as it involves a more complex dynamic than
simple end-to-end predictions. When given inaccurate instructions
or incomplete context, LLM suggestions may not reflect the user’s
true intent [55, 67]. These suggestions might be perceived either
as errors or as additional sources of inspiration. Moreover, users
may adapt their behavior based on the context and performance of
the LLM, and their initial interaction intent could shift over time
[50, 53]. This complexity is difficult to predict and understand in
advance and could significantly impact design decisions.

Existing research has explored the integration of LLMs with end-
user devices to provide context-aware text suggestions for various
scenarios, such as automatic form filling on PCs [4], and mobile
blogging on smart glasses [10]. Commercial practices (e.g., Ap-
ple Intelligence [3]) have similarly explored integrating on-device
contextual information into user applications, particularly on smart-
phones. Despite these advances in specific, predefined scenarios, a
comprehensive understanding of how diverse contextual factors
and user needs interact with LLM capabilities in open-ended, real-
world environments remains largely unexplored. Furthermore, the
way users perceive and expect AI systems with human-like ca-
pabilities to collaborate in such real-world scenarios has yet to
be investigated. Empirical insights from such investigations can
inform the design of ubiquitous human-AI collaboration systems.

Motivated by these gaps, we propose a research prototype sys-
tem: a smartphone-based, context-aware text input assistant (CA-
TIA) using LLMs. CATIA leverages a wide range of contextual
factors, such as screen content, time, location, and activity, to pro-
vide personalized text suggestions tailored to specific text entry
fields. In addition, the system facilitates collaborative refinement
of suggestions by users. This system is designed to support the
investigation of human-AI collaboration in real-world text input
scenarios.
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To understand how users interact with CATIA in natural settings,
we conducted a 7-day in-the-wild study involving 36 participants.
The study is guided by the following research questions to provide
both quantitative and qualitative insights:

• RQ1: In what scenarios do users engage with the system, and
how does it perform in these contexts?

• RQ2: Why do users choose to collaborate with the system rather
than simply accepting its suggestions?

• RQ3: How do off-screen contextual factors (e.g., time, location,
and activity) contribute to the prediction of user input?

• RQ4: How do users perceive the effectiveness of different LLMs?

The results show that users accepted the system’s suggested
text in 82.36% of cases, mainly for interpersonal communication
and service-oriented tasks. For the remaining cases, users typically
adjusted the suggestions rather than retyping. The system consis-
tently required screen text or text field information (mainly from
the final screen), but in some instances, contextual factors such as
location, date, time, calendar, and activity provided valuable assis-
tance for quick text suggestions. Our evaluation of various LLMs
revealed that smaller, faster, and more cost-effective models have
the potential to achieve results comparable to larger models.

Based on these findings, we propose a design space for human-
AI collaborative text entry on smartphones, identifying two key
mental models: in straightforward tasks like retrieval and quick
replies, AI functions as a supportive, non-intrusive facilitator;
in complex, evolving scenarios such as social interactions, AI acts
as an equal collaborator offering diverse inspirations. We discuss
design choices aligned with these models.

In conclusion, our study provides empirical evidence of the effec-
tiveness of context-aware text input and emphasizes the importance
of tailoring AI assistance to specific tasks. It highlights the syner-
gistic interplay between contextual information, LLM knowledge,
and user knowledge in the collaborative process. Our work con-
tributes to the future design and development of more adaptive and
contextually aware human-AI collaboration systems.

2 Related Work
Our research focuses on enhancing mobile text entry by integrating
smartphone context and large language models (LLMs) for accurate
text suggestions. This section reviews existing works in mobile
text entry suggestions, introduces a novel perspective on text input
behavior through smartphone usage context, and discusses the
synergy between LLMs and context-aware applications.

2.1 Mobile Text Entry Suggestions
Text entry on smartphones, a recognized challenge [31, 38, 58], has
been the focus of extensive research. Efforts to improve typing
performance have addressed issues like the “fat finger” problem,
limited screen real estate, and tactile feedback absence [31, 38, 58].
Proposed solutions include optimized keyboard designs (e.g., [7, 43,
65]), error correction or text prediction mechanisms (e.g., [19, 59,
62]), etc., aiming to enhance typing speed, accuracy, and overall
user experience [30, 38].

Text entry suggestions in particular, aim to reduce interaction
costs through predictive completions [21, 47]. Commercial smart-
phone keyboards utilize such techniques, primarily leveraging lin-
guistic redundancy via statistical language models [24, 30]. How-
ever, these methods typically overlook the role of non-linguistic
context in optimizing text suggestions.

Conversely, in search tasks, leveraging context information to
ease query input has been a focus [11], such as using location
and time for query suggestions [28] or enhancing app search with
temporal behavior and app usage data [1]. Numerous market apps
employ location data for search box suggestions. These works target
accurate item retrieval intents rather than general text input tasks.

Our research aims to merge these approaches, leveraging a rich
array of device context information to enhance text suggestions
across various smartphone input fields.

2.2 Text Entry in the Context of Smartphone
Usage

Rather than focusing on well-defined isolated text input tasks as in
previous research, we delve into human text input behavior from the
perspective of smartphone usage [16, 28]. For example, contextual
information from the phone can hint at probable search goals. Local
search behaviors and queries users input depend on location, time,
and social context [54]. Search topics users input into different apps
are related to the apps’ functions [12]. Furthermore, Toby et al. [33]
study various text entry behaviors within the realm of smartphone
app usage. They discover that the type of text entered in different
apps correlates with the app’s primary function. Compared to non-
text entry sessions, text entry sessions involve more apps instead
of just one, and users often avoid copy-pasting, opting instead for
retyping or other convenient sharing methods like screenshots for
interpersonal communication or data transfer, as reported in their
study. This underscores that text input is merely a means to fulfill
users’ higher-level intentions.

Yet, the underlying motives of text input behaviors and their ap-
plication in enhancing text input technologies remain unexplored.
While Bemmann et al. propose a method for collecting richer key-
board logs using Android APIs and categorizing input motives
based on input UI metadata [5], their work does not analyze user
behavior or offer guidance on how these results can assist in text in-
put. In contrast, our work is the first to combine a broader range of
contextual smartphone factors in an open-ended scenario, and use
LLMs to infer user intentions from real-time context. This enables
our system to not only capture input motives but also guide intelli-
gent text generation, providing personalized suggestions within a
collaborative human-AI framework.

2.3 Large Language Models for Context-Aware
Applications

Generative language models calculate the probability of text se-
quences and generate the most likely subsequent texts based on
provided input. As transformer-based [57] language models like
ChatGPT [41] increase in scale [29], they exhibit in-context learning
capabilities, where they can learn new tasks via textual prompting
without changing model parameters [9, 17]. This ability transcends
traditional NLP tasks and generalizes to more complex challenges.
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By converting information from different sources and modalities
into descriptive text within prompts, LLMs can demonstrate strong
context comprehension, supporting aspects like perception, reason-
ing, task planning, and execution [8, 25, 39, 46, 51].

LLMs enable new possibilities for context-aware applications
that adapt services based on user context [15]. These applications
often struggle with diverse and unforeseen scenarios because devel-
opers cannot predefine all potential user contexts [56]. Unlike ma-
chines, which represent contexts in a structured manner, humans
convey and understand it through natural language, benefiting
from its power and flexibility [13]. Thus, LLMs can express open-
ended contexts in natural language and infer implicit information
by leveraging their embedded general knowledge.

Several studies have explored using context to provide text ser-
vices with LLMs. Some have leveraged external environment in-
formation sensed by devices. For example, PANDALens utilizes
multimodal data (e.g., first-person view, location, time, audio) from
smart glasses to provide passage-level text suggestions for auto-
blogging in travel scenarios [10]. Others have focused on UI-based
information, such as automatic form filling on desktops using web
content and text field descriptions [4]. Notably, some studies have
investigated how LLMs can analyze and utilize smartphone GUIs,
such as for accessibility tasks like hint-text prediction [37] and for
GUI testing to generate simulated user input [14, 36].

However, no studies have focused on context-aware text entry
on smartphones without predefining the user’s scenario or task.
Our research fills this gap by combining device-perceivable context
information on smartphones—including interface content, physical
context, and other factors—and addressing the collaborative nature
of user interaction with LLMs in an open-ended context.

3 CATIA: Context-Aware Text Input Assistant
Text entry occurs within the broader context of users engaging in
daily activities on their smartphones. To explore how using large
language models (LLMs) with the contextual information on de-
vices can aid in inferring input text, we designed and implemented
CATIA, a Context-Aware Text Input Assistant. The design of CATIA
takes into account the following factors.

Human-AI collaborative text entry. Existing text entry meth-
ods typically involve a person actively expressing thoughts through
typing or speaking. This process grants users more control but re-
quires greater effort, such as precise and complete articulation. In
contrast, AI assistants generating text using contextual information
left by users during device usage represents a more implicit form
of expression. Here, users are relieved from the burden of active
expression, but the assistant might not always accurately guess
the user’s intentions. We believe that an ideal approach is a combi-
nation of both: the user’s active expression and other contextual
information complement each other, with both user and assistant
collaboratively generating the input text [48]. This is not a replace-
ment for existing text entry methods, but rather an enhancement
in scenarios where the context is sufficient to infer text, aiming to
reduce the input burden.

Comprehensible interface.Most existing commercial input
methods include enhancements like auto-completion and error cor-
rection, but primarily consider the context of characters already

typed in the text box. In contrast, CATIA considers more compre-
hensive factors such as time, location, activity, app, and screen
content, offering text suggestions different from existing tools. This
requires users to develop a mental model beyond conventional in-
put methods, understanding CATIA’s actions as a more human-like
assistant. Therefore, we believe it is necessary to display the con-
textual information CATIA relies on and provide an explanation
for each suggestion. Users may choose to ignore this information
after becoming familiar with the system, but its presence is crucial
for providing transparency, establishing trust in the AI assistant,
and reducing metacognitive demands, particularly in complex or
dynamic contexts [2, 13, 34, 35, 53].

Based on these considerations, we implemented CATIA as a
collaborative text suggestion system with an understandable in-
terface on Android smartphones. It leverages LLMs to offer text
suggestions for the target text field based on context information
collected in the short term and allows users to provide additional
instructions to guide the generation of more appropriate text. In the
following section, we will first introduce CATIA’s interface and the
collaborative interaction workflow between the user and CATIA.
We will then detail the system design, including the device contex-
tual information collected by CATIA and the method of generating
suggestions using LLMs. Please refer to Appendix A for example
use cases, and Appendix B for implementation details.

3.1 Collaborative Interaction Workflow
The interaction between the user and CATIA, referred to as a ses-
sion, involves three steps: initiating the suggestion process, collab-
orating on the text, and confirming the final text. We illustrate this
process with an example as shown in Figure 2.

When a user desires suggestions, they long-press the CATIA
floating button on the page containing the input text box. The
suggestion panel is a draggable floating overlay that can be moved
up and down, allowing the user to freely adjust it to view the content
below. The assistant simultaneously collects contextual information
from the device in the background for text suggestions.

The suggestion panel displays four sections from top to bottom:
a brief overview of the context used by the assistant, the assistant’s
guess of the user’s intention, several suggested texts, and a text box
for the user to edit input text or provide instructions to the assistant.
The context overview briefly introduces the information captured
by the assistant. The guessed intention appears when the user
selects a suggested text, shown as natural language reflecting the
assistant’s interpretation of the user’s underlying motivation. As
previously discussed, these two parts are designed to make CATIA’s
suggestions more understandable to the user. The panel displays
up to four suggested texts, which are dynamically presented to the
user character by character to provide immediate feedback.

In the text input field at the suggestion panel’s bottom, users can
modify the text displayed on screen. Users can click on a suggested
text for automatic copying to the Text tab for editing, or manually
enter text if unsatisfied with the suggestions. To guide the assistant
for new suggestions, users enter instructions in the Instruct tab
and click confirm for regeneration. Notably, when editing text in
the panel’s text box, the user uses the existing input methods on
the phone, allowing them to use familiar input methods, including
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Figure 2: Interactionworkflow of CATIA. A complete session involves three steps: capturing context, reviewing and collaborating
on suggested results, and confirming the final text.

typing and voice input. Additionally, the panel facilitates voice
input through a press-and-hold voice button for convenience.

After text editing in the Text tab, users can click confirm for
the assistant to copy text to the screen’s pending input field, or
click cancel to end the interaction.

3.2 Contextual Information
Upon user activation, CATIA gathers device contextual information
in the background to inform text suggestions. This information
includes date and time, day of the week, location, activity, connected
Bluetooth devices and WiFi, calendar events, screen content, and
the text input field to be filled.

Specifically, The location is a human-readable place name, con-
verted from GPS coordinates. The activity, recognized by our cus-
tom deep learning model, is categorized as still, walking, running,
cycling, or others. Bluetooth and WiFi data provide details on the
type and name of currently connected devices and access points.
Calendar events include the nearest three past and three future
entries, relative to the current time. The text input field, where the
suggestion panel is activated, includes three key descriptors: the
source app name, a label indicating its intended function, and the
pre-existing text content.

Different from other contextual information is the collection of
screen content. The system continuously compiles a two-minute
queue of recent screen interfaces in the background. Screen con-
tent, aggregated from all visible text via Android’s Accessibility
Service API, feeds into this collection. Exceptionally, for instant
messaging apps’ chat screens, we employ a recognition algorithm
that structures page contents into chat lists pairing senders with
messages, beyond mere text enumeration. This approach aids LLMs
in capturing key chat information more effectively.

3.3 Generation of Text Suggestions
CATIA prompts LLMs to generate text suggestions. In this study,
we use a general, widely-adopted method, avoiding specific as-
sumptions about particular text input tasks due to the challenge

of predicting each end-user’s unique scenario with imprecise prior
knowledge. This strategy enhances the broader applicability of our
conclusions and provides a foundation for future refinements.

The generation process is illustrated in Figure 3. Each sugges-
tion includes an intention description that explains the possible
motivation behind the recommendation. We use a chain-of-thought
approach [61] to make the LLM sequentially produce the intention
and the corresponding suggestion. This token-generation process
facilitates more consistent and interpretable reasoning.

Specifically, we use a GPT-4 Turbomodel gpt-4-1106-preview1
from OpenAI’s chat completions API2. The prompt used by CATIA
for the initial suggestion primarily contains three parts: task descrip-
tion, input-output examples, and contextual input for this sugges-
tion. The task descriptionmainly informs the LLMof its role as a text
suggestion assistant, introduces the content and format of the con-
textual variables (such as context.location, input_field.app,
etc.), and requests the LLM to think step-by-step and output sug-
gestions. The thinking steps instructed for the LLM include three
stages. Firstly, to consider which contents in the contextual infor-
mation are relevant to the user’s input behavior. This is because
the input contextual information might be abundant (especially
the collected screen text), but not all of it is useful. Secondly, to
analyze the possible input intentions of the user, which could be
multiple. This is because solely relying on contextual information
might not uniquely determine what the user intends to express.
Finally, to generate a suggested text for each input intention. Under
the guidance of these three steps, the model is required to output up
to four intention-suggestion pairs, sorted in the order of what the
model considers more likely. After the task description, we include
several input-output examples in the prompt, all represented in
JSON object format. The last part of the prompt is the collected
contextual information for a particular suggestion, represented as
a JSON object. Please refer to Appendix C.1 for the complete task
description part of this prompt.

1GPT-4 Turbo: https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
2OpenAI chat completions API: https://platform.openai.com/docs/api-reference/chat

https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/api-reference/chat
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SuggestionsInitial Prompt

Task Description

Examples

…

Current Context

Input

Output

The user wants to confirm the 
meeting place and time.

Intention 1

Let's gather at the playground. 
When’s everyone coming?

Text 1

Regeneration Prompt

Task Description

Examples

…

Current Context

Last Output

User Instruction
…

…

The user is informing the 
group of his current location.

Intention 2

I'm already at the playground. 
I'll meet you here.

Text 2

The user wants to suggest a 
different meeting place.

Intention 3

But I thought it might be 
easier to meet at the east gate.

Text 3

+

+

Figure 3: The generation process of text suggestions.

The prompt for regenerating suggestions (i.e., when the user
inputs instructions on the panel and requests regeneration) has the
same structure as the above one and also contains three parts. The
difference is that each input example also includes the user instruc-
tion entered on the panel and the results of the previous suggestion.
Thus, the task description informs the LLM that the task is to regen-
erate suggestions, adds introductions to user_instruction and
last_output, and requests the LLM to think in two steps: to con-
sider the intentions based on the provided information, and then
output suggested text for each intention. Please refer to Appen-
dix C.2 for the complete task description.

3.4 Delay and User Experience
The most time-consuming step in CATIA’s suggestion process is
the invocation of the LLM. To minimize user waiting time, the sys-
tem streams the text suggestions on the interface, displaying them
character by character as they are parsed from the LLM response.
This allows users to start interacting with the suggestions as they
appear. Based on preliminary testing, the first character time (the
time from triggering the LLM call to displaying the first character
of the suggestion) typically ranges from 2 to 4 seconds.

It is worth noting that during the LLM invocation delay, the
suggestion panel also simulates a streaming animation of the cap-
tured context information (see Figure 2), providing continuous
visual feedback to users and preventing a lagging experience. The
total time for a complete suggestion depends on the number of
suggestions and the length of the text. However, the actual delay
experienced by the user can also be influenced by factors such as
device performance and network communication time.

4 In-the-wild Study
To understand context-aware collaborative text entry in real-world
scenarios, we conducted a 7-day in-the-wild study to explore how
smartphone users interact with our system under natural condi-
tions. In line with the research questions (RQs) mentioned earlier,
our approach aimed to capture the following: (1) real contextual data,
encompassing valuable information that researchers cannot antici-
pate or construct; (2) authentic user needs, by avoiding predefined
tasks and supporting flexible, personalized usage in open-ended sce-
narios; and (3) in-situ collaborative interactions—since in real-world

contexts, users are better able to perceive and express their needs
and engage in collaboration. Considering the potential benefits,
ethical approval was obtained from the Artificial Intelligence Ethics
Review Board at the authors’ university, which is responsible for
evaluating AI-related human-subjects research.

4.1 Participants
We recruited participants who were native Mandarin speakers, used
Android smartphones, and reported a high frequency of text input
in their daily lives. Participants were free to withdraw from the
study at any time, and any data collected from those who withdrew
were deleted after the study. A total of 36 participants (20 males, 16
females) who completed the full study remained, aged between 18
and 27 (𝑀 = 20.89, 𝑆𝐷 = 2.38). All participants were undergraduate
or graduate students from the same university in China. The CATIA
system interface was provided in Chinese, and participants used the
system in Chinese for text entry during the study. All participants
signed an informed consent form and received compensation for
their participation.

4.2 Procedure
Participants first attended our pre-study briefing session. We intro-
duced the types of context information the assistant could collect
and its ability to provide text suggestions in any text box, but we did
not explain the underlying principles of how the assistant computed
these suggestions. Then, participants installed the CATIA app on
their own phones and learned how to use the assistant under the
guidance of the experimenters. Data generated during this learning
phase was not collected. Once we confirmed that the participants
understood the assistant’s functions and could use it correctly, we
informed them that the 7-day in-the-wild study would begin at
midnight the following day.

During the study period, participants were required to keep the
app running in the background and integrate it into their daily
smartphone activities. No specific tasks were assigned, and partici-
pants were free to use the system as needed. However, participants
were reminded daily to engage with the system, ensuring consistent
usage and minimizing the risk of forgetting.

At the end of the study, we conducted semi-structured interviews
with participants via online voice, typically lasting no more than
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20 minutes. The interviews focused on three main areas: (1) which
scenarios participants found the system useful or not useful, (2)
why participants felt the need to collaborate (edit or regenerate
text), and (3) how participants understood the system and what
their expectations were. Finally, participants removed the CATIA
app from their phones.

4.3 Data Collection
The mobile service communicates with a remote server responsible
for executing the suggestion process and returning the suggested
results. Every time the user engages with the assistant, the server
logs the captured context, suggestion results, and user interactions
within the session. We filter out instances where users trigger and
close the assistant multiple times consecutively within the same
text field without changes to the page content, as this indicates
improper usage. Only the final instance is recorded. All collected
data is stored in text-only format, including the visible text on the
screen accessed via the accessibility API.

Data collected during the study is stored on a dedicated remote
server, with access restricted to a limited set of research team mem-
bers. If the participant closes the assistant panel through cancella-
tion (e.g., due to accidental touch), or if the session data is incom-
plete due to technical issues (e.g., unstable network connection),
the data from that session will not be analyzed and will be deleted
after the study to protect user privacy.

Participants were informed of the data collection process through
the consent form and the briefing session. They understood that
data collection occurred only when they triggered the assistant, and
that they could cancel any session if they felt uncomfortable. They
were assured that all data would be anonymized prior to publication.
The university’s AI Ethics Review Board considered these privacy
concerns and approved the experimental procedure.

4.4 Post-hoc Analysis
We prompted the LLM to analyze two key aspects of the collected
records: (1) the user’s true intent behind each input, and (2) the key
contextual factors that contributed to inferring the entered text.
Although limited than human expert analysis, using LLMs ensures
consistency in applying the same standards (or biases) across diverse
scenarios, enabling more reliable comparative analysis [26]. Specif-
ically, we used the same GPT-4 Turbo model gpt-4-1106-preview
as in CATIA, with the same prompt structure and similar explana-
tory text. For each record, the contextual data collected during
the study and the final ground truth provided by the user were
considered. For the complete task description, see Appendix C.3.

User Intent. For each record, we provided the collected con-
textual information alongside the user’s final input text, asking
the LLM to infer the user’s true intent in natural language. After
obtaining the LLM’s results for all records, two annotators (the
authors) independently reviewed all inferred intents and discussed
their categorization criteria. Each annotator then annotated the
data according to these criteria and resolved any inconsistencies
through consensus. Results are described in Section 5.1.1.

Key Contextual Factors. The categorization of contextual fac-
tors followed the variable definitions in the suggestion generation
prompts. In particular, the screen content was represented as a

time-ordered list variable context.screen_content, where each
element corresponded to a page and included two attributes: page
type (either chat or non-chat, determined by the page layout recog-
nition algorithm) and page text content. The LLM was tasked with
determining which page types or content in the list were critical for
generating the suggestion. After analyzing all records, we quanti-
fied the occurrence of different factors and analyzed their influence
on the generated suggestions. Results are described in Sections 5.1.2
and 5.3.

5 Results
We collected a total of 2,505 records of valid interactions with
CATIA. In 2,063 cases (82.36%), users chose the system’s suggestions
without making any manual modifications. Among these, in 1,893
cases (75.57%), the system provided the selected suggestion in its
initial round, without requiring further regeneration. On average,
each session with the system lasted 32.47 seconds. Participants
interacted with the system an average of 9.94 times per day, totaling
approximately 5.38 minutes of daily interaction.

We identified two distinct patterns of user interaction with CA-
TIA, primarily categorized into two major text entry scenarios:
interpersonal communication and service-oriented tasks. In this
section, we will explore the unique findings across these two scenar-
ios through the lens of four key research questions: usage scenarios,
user collaboration, off-screen contextual factors, and the choice of
LLMs. All user texts in Chinese were translated into English.

5.1 RQ1: Scenarios and Performance
5.1.1 Input Field Types and Intentions. We analyzed the system
usage across different text input fields, with the results summarized
in Table 1. Overall, the majority of system-assisted text entries were
used in interpersonal communication contexts, such as messages
and comments, with the remaining entries concentrated on tasks
related to information services, such as searches. In these two pri-
mary scenarios, the number of times users directly selected the
system’s suggestion without manual modification was 81.85% for
interpersonal communication and 87.08% for service-oriented tasks.
The number of correct suggestions received without the need for
regeneration was 75.10% and 80%, respectively. These findings indi-
cate that, in most cases, users were satisfied with the suggestions
provided by the system.

The text input intentions obtained from the post-hoc analysis are
shown in Table 2. Social text fields exhibited more diverse intents;
for example, message and comment types could correspond to
various social interaction behaviors. In contrast, the intentions for
service-oriented input were more closely aligned with the function
of the text field.

Social scenarios constituted the majority of cases in the study,
which aligns with previous research indicating that most of users’
daily text input is entered into communication apps [5, 33]. In
interviews, 11 participants mentioned that the assistant’s more
formal tone was very suitable for certain social situations, such
as communicating with elders or strangers, which is consistent
with [20]. They also appreciated the diversity of the suggested
texts, which were often more appropriate and comprehensive than
their own expressions, encouraging them to use the assistant’s
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Table 1: Statistics of total sessions, correct suggestions, average length, average manual edit distance, and example apps by
input field type, grouped into interpersonal communication and service-oriented tasks.

Field Type Total Correct Avg. Length Avg. Edit Dist. Example Apps

Interpersonal Communication
Message 2,099 1,713 22.02 2.10 Weixin, QQ, WeCom, Douyin, Taobao
Comment 164 140 23.18 1.28 Bilibili, Weixin, Douyin, Xiaohongshu, Zhihu
Post 1 0 15.00 33 Weixin
Note 1 1 12.00 0 Meituan

Total: 2265 (90.42%) Correct: 1854 (81.85%) Avg. Edit Dist.: 2.06

Service-oriented Tasks
Search 229 200 8.90 0.90 Taobao, Pinduoduo, Bilibili, Browser, Ele.me, Amap
Form 7 5 8.14 1.71 Weixin
Chatbot 4 4 73.00 0 Wenxin Yiyan (ERNIE Bot), PaiPai Assistant

Total: 240 (9.58%) Correct: 209 (87.08%) Avg. Edit Dist.: 0.91

Table 2: Categories of input intentions, corresponding input field types, and their examples.

Category Field Type Example

Interpersonal Communication
Share comment, post, message The user intends to share their music experience and recommend a song to a group.
Emotional comment, message The user is responding to a group chat member Alice who mentioned that they are currently learning to

play a new hero, presumably in a game, and the user is offering encouragement.
Inquire comment, search, message The user intends to inquire about the process for ordering fruit and milk for the next day in a group.
Plan comment, message, chatbot The user intends to schedule a time to participate in an experiment with Alice by responding to a message.
Reply comment, message The user is responding to Alice’s feedback on a document or presentation, indicating that they have made

the suggested changes and are asking for a review or if there are any further additions needed.
Comment comment, message The user intends to comment on a friend’s post, specifically mentioning the post about the theme education.
Greetings comment, message The user intends to introduce themselves to the group and express a desire for future communication

regarding their graduation project preparations.

Service-oriented Tasks
Shopping search The user intends to search for “Nike shoes” on a shopping app.
Video or Song search The user intends to search for videos related to “Statue of David” after encountering a video or comment

about the topic.
Location search The user intends to search for directions or information about a building using a navigation app.
News search The user intends to search for recent events or news related to McDonald’s on an app.
Learning search, chatbot The user intends to search for information about the applications of QR decomposition after previously

searching for related mathematical terms.
Command search, note The user intends to navigate to an app’s homepage, likely for entertainment or information purposes.
Practice chatbot The user intends to deliver a speech and is likely preparing or practicing the speech using an LLM app.

The speech emphasizes the importance of literature in enriching the soul alongside the foundation of
scientific knowledge.

Alias search, form The user is adding a new contact on a social app, possibly someone they recently met or need to get in
touch with for work or academic purposes. The user is setting a nickname for the contact, which includes
the contact’s name and affiliation.

suggestions. Two participants stated that sometimes they didn’t
know what to say, but the assistant provided a good suggestion
that happened to match their intentions. P5 mentioned: “When
responding to a notification about an event, the assistant helped me
by asking, ‘Where is this address? Could you send me the location?’
and I realized that I actually didn’t know where the place was.” Three
participants also mentioned that sometimes assistant responses
inconsistent with their own style in informal situations created an
entertaining effect and were also welcome. For example, P22 said:
“When commenting on posts, it’s quite amusing. Sometimes I can’t

think of a comment, but the assistant’s suggestion is unexpectedly
clever.”

The remaining scenarios are mainly in search scenarios, rep-
resenting participants accessing information or services through
queries. Eight participants also mentioned that they liked the as-
sistant’s suggestion of search queries based on their phone usage
history. Although the specific proportions of scenarios vary from
person to person, the typical usage patterns involved here are of
reference significance.
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5.1.2 Usage of Screen Content. The usage of screen content was
determined based on the key contextual information analyzed in
Section 4.4. The most frequently used factors came from screen
content and input field information. Within screen content, page
type (chat or non-chat) and text content play the main roles. In the
input field, the label describing its function is the most important.
Other contextual factors are analyzed in section 5.3.
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Figure 4: Distribution of sessions by oldest screen used for
text suggestion. Numbers on the horizontal axis represent
the reverse order of the screens (i.e., howmany screens back).

Across all sessions, the number of screens the system used ranges
from 1 to 7, with an average number of 1.04 (𝑆𝐷 = 0.27). We also
considered the oldest screen needed for each session (how many
screens back), and the distribution of the sessions is shown in
Figure 4. In most cases, the important information is contained
within the last screen. This is understandable in social scenarios,
as message chats, social media interactions, etc., are mostly fully
displayed within one screen.

Four participants mentioned that the assistant’s ability to re-
member and summarize across screens can reduce the burden of
human input. Five participants mentioned that in situations where
the context is relatively consistent and matches their own intent,
the assistant’s suggestions are very accurate, such as when all mes-
sages in a group chat are talking about the same topic, or when the
content they want to share is exactly the post they just saw.

5.2 RQ2: User Collaboration
User collaboration with the system occurred in two phases: one in-
volved providing additional instructions to regenerate suggestions,
and the other involved manually modifying the suggestions after
selection or retyping the text.

5.2.1 User Instructions for Regeneration. 296 sessions with regen-
eration attempts were collected in the study, and a total of 354
instructions were proposed in these sessions, with each session
having 1-4 instances of instruction (𝑀𝑒𝑎𝑛 = 1.20, 𝑆𝐷 = 0.52).

Two annotators (the authors) reviewed all the instructions pro-
vided by users, discussed, and categorized them into these five

types: Expressing Intention: Briefly expressing the text’s intent,
leading the assistant to return an expansion matching the intention;
Emphasizing Existing Keywords: Providing keywords to focus
on corresponding information in the context; Providing New Key-
words: Supplying keywords to add information not present in the
context; Giving Text Examples: Directly providing text examples;
Tone / Writing Style Adjustment: Making specific requests to
modify the tone, style, or other characteristics of the text. The first
three are instructions targeting intent, while the last two target
the text itself. Statistics and examples of each instruction type are
presented in Table 3.

In different scenarios, users had varying tolerance levels for the
quality of regenerated suggestions. The average number of regen-
eration attempts in interpersonal communication and information
service tasks was 1.21 and 1.12, respectively. In social scenarios,
users were generally more willing to spend time interacting with
the assistant to achieve a more satisfactory result through collabo-
ration. This was confirmed in participant interviews, where they
mentioned “attempting multiple adjustments to the assistant’s sug-
gestions” when sending messages or posting comments. However,
in faster-paced tasks like searches, if the suggestions remained
inaccurate after a retry, users tended to resort to manual input.

5.2.2 Manual Edits. All participants agreed that, despite the need
for manual edits in some cases, the assistant’s ability to provide
an initial draft for longer texts and social interactions reduced the
burden of typing from scratch.

We calculated the Levenshtein distance (edit distance) for each
modified record, measuring the minimum number of insertions,
deletions, or substitutions required to transform a suggested text
into the final version [32]. The average edit distance in interpersonal
communication scenarios was 2.06, while in service-oriented tasks,
the average edit distance was 0.91. This indicates that users made
relatively more edits in social interaction scenarios.

We examined 442 sessions where users made manual edits to
categorize the types of edits they performed. Two annotators (the
authors) initially reviewed the collected contextual information,
including the last selected text (if any) or all suggested texts (if none
were chosen), and the final confirmed text. They then discussed
and established classification criteria, and independently annotated
all the data based on these criteria. Any discrepancies in their
annotations were discussed to reach a consensus.

We identified three major categories of manual edits, each reflect-
ing different types of user engagement with the system. Examples of
each type are presented in Table 4. These categories provide a more
nuanced view of how users interact with the system’s suggestions
and refine them to suit their needs.

The first category, High-Quality Text with Minor Changes,
reflects cases where the system’s suggestions were largely accurate,
and users primarily made small adjustments to refine the tone or
remove redundant information. Participants often found that the
suggestions captured their intent but required stylistic changes
to match their personal communication style. For example, P14
mentioned, “It’s easy for people to tell it’s not me, like being too
serious or the humor is off,” indicating that minor modifications
were necessary to make the text feel more natural and aligned with
the user’s tone. In these cases, users valued the suggestions as a
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Table 3: User instruction types, their percentages and examples.

User Instruction Types Examples

Expressing Intention (259, 73.16%) “I want to help my classmate come up with a solution for a leave application”; “Express fear”
Emphasizing Existing Keywords (38, 10.73%) “League of Legends”; “Pop Mart”; “Emergency department”
Providing New Keywords (13, 3.67%) “Game”; “Doll”; “Rabbit”; “Riemann sum”
Giving Text Examples (19, 5.37%) “Today is quite windy. Sure you want to bring badminton?”; “OK”
Tone / Writing Style Adjustment (25, 7.06%) “Within three words”; “Be funnier”; “Don’t be too polite”

Table 4: Manual edit types and examples categorized by suggested text characteristics and user modifications. Green-highlighted
text represents additions and red-highlighted text represents deletions.

A. High-Quality Text with Minor Changes (231, 52.26%)

A1. Redundant Information (93, 21.04%): The suggested text accurately conveys the intent but includes some redundant information, which the user
easily removes.
• Modified “ Bob, you’ve worked hard, health is the most important; we’ll handle the questionnaire, you just rest well.” to “ You’ve worked hard, health is the
most important, you just rest well”.

• Wanted to set a contact nickname and modified “ Alice - Dream Booster Activity” to “ Alice”.
• Wanted to search for a Q&A post and removed “ related discussions” in “ Nihilism related discussions”.

A2: Style Differences (138, 31.22%): The suggested text perfectly matches the user’s intent but differs in style, punctuation, or emphasis. Minor
adjustments refine the text to suit the user’s preferences.
• Modified “ Oh, good reminder, I’m a bit busy these days, might write it later.” to “ Oh, good reminder, completely forgot , might write it later.”
• Modified “ The pre-defense meeting time at 11:30 am tomorrow is no problem for me.” to “ Received, no problem.”
• Was suggested “ I’m going to sleep, hopefully, I’ll feel better when I wake up tomorrow.” and manually entered “ Sleeping, hope everything’s fine when I
wake up.”

B. Reusable Text (158, 35.75%)

B1. Misaligned Intention but Useful Structure (43, 9.73%): The suggested text may convey an opposite intent, but the overall structure is useful and
requires minimal changes.
• Modified “ Haha, we really have the mindset of the young but the lifestyle of the old” to “ Haha, we really have the mindset of the old but the lifestyle of the
young”.

• Modified “ If you have questions about the content in that picture, I can try to explain.” to “ If you have questions about the content in that picture,
there’s nothing I can do about it”.

• Modified “ It’s snowing? It started so early, the weather changes so much.” to “ It also snowed a bit in Beijing yesterday, but just a little”.

B2. Partially Accurate Content (115, 26.02%): The suggested text captures part of the user’s intent but includes some erroneous or incomplete
information. Most of the text is directly usable with minor edits.
• Modified “ I just checked the bonus calculation, no issues.” to “ No issues on the science association’s side.”
• Modified “ Indeed, the portability of the Steam Deck and PC is not as good as handheld consoles, but the gaming experience and graphics will be much better.”

to “ Indeed, the portability of the Steam Deck and PC is not as good as handheld consoles, but the gaming experience and graphics will be somewhat better”.
• Wanted to search for a tutorial and was suggested “ GeoGebra Tutorial”, but manually entered “ How to draw a parametric equation using GeoGebra”.

C. Text Requiring Extensive Modifications (53, 11.99%)

The suggested text is not relevant to the user’s intention, necessitating significant edits.
• Manually entered “ Good morning” to initiate a new interaction, but the suggested texts were all responses to the group chat history.
• Manually entered “ Isn’t the expected outcome just a bachelor’s thesis?”, but the suggested texts were all other comments about the thesis proposal defense.
• Wanted to search for a location in the map app, but no relevant suggestions were provided.

useful first draft but felt the need to personalize the output to better
reflect their unique voice.

The second category, Reusable Text, involved scenarios where
the system provided a structurally or literally sound suggestion,
but the generated text did not fully align with the user’s intended
meaning. While users reused the general framework of the sugges-
tion, they needed to make more substantial content adjustments
to better capture their exact intent. P10 highlighted this challenge,

stating, “Most of the time, it cannot capture what I want to say in con-
versations with peers, as the context might not be very relevant.” This
was particularly evident in information service tasks, where the
system’s suggestions were close to the desired output but required
significant edits to convey the precise message. In these cases, the
system helped users by providing a starting point, but the final
expression of intent required further refinement.
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The third category, Text Requiring Extensive Modifications,
occurred when the system’s suggestions were largely irrelevant to
the user’s intent, requiring major revisions or a complete rewrite
of the text. In these cases, both the form and content of the sugges-
tions missed the user’s expectations, often due to misinterpreting
the context or failing to capture the user’s intent altogether. For
example, P9 noted, “After reading posts and then searching for shop-
ping content, there is a lot of content in the posts, and the assistant
fails to precisely capture what I want.” Similarly, P16 commented,
“In multi-scenario situations, it tends to link completely unrelated
scenarios together,” indicating that in more complex, context-heavy
tasks, the system struggled to produce relevant suggestions.

These findings suggest that while the system can act as a valuable
drafting tool, the depth of user involvement varies significantly
based on how well the suggestions align with the user’s intent and
the complexity of the task.

5.3 RQ3: Off-Screen Contextual Factors
All participants recognized CATIA’s ability to incorporate contex-
tual information into its text suggestions. While the most frequently
used cues were on-screen, off-screen factors such as location, date
and time, calendar events, day of the week, and user activity were
also important in specific scenarios, as illustrated in Table 5.

Participants found off-screen cues particularly useful in situa-
tions where they needed to respond quickly without typing much.
For example, P18 mentioned: “Once a classmate asked me if I had ar-
rived at the cafeteria. The assistant, using my location near the library,
suggested responses like ‘On the way’ or ‘Please wait.’ This allowed
me to quickly reply even though I was riding a bike and couldn’t type
easily.” Similarly, cues such as the time of day or day of the week
were helpful in shaping responses that aligned with daily schedules,
such as reminders, brief status updates, or greetings.

Although these factors were less common overall, they provided
valuable support by improving the speed and efficiency of routine
tasks. They helped reduce the cognitive load on users, allowing
them to send contextually appropriate messages with minimal ef-
fort.

5.4 RQ4: Perceived Effectiveness of Different
LLMs

To implement LLM-assisted text entry in real-world environments,
it is essential to consider the model’s performance, real-time re-
sponsiveness, and deployability. We aim to explore how different
LLMs may influence context-aware text suggestion tasks. Given
the inherently subjective nature of suggestion quality evaluation,
we conducted a post-study assessment where participants evalu-
ated the effectiveness of various LLMs based on the data collected
during the in-the-wild study. Participants’ recall of the context was
grounded in the recorded textual data. Although this evaluation
cannot fully replicate the real-world setting of the study, we believe
that this preliminary comparison still provides valuable empirical
insights.

5.4.1 Setup. We primarily considered OpenAI’s GPT series [42],
Zhipu AI’s GLM-4-9B [22], and Alibaba Cloud’s Qwen2-7B-Instruct
[64]. These models were chosen due to their strong performance
in Chinese language understanding, as demonstrated in the 2024

August benchmark report from SuperCLUE3 [63]. We used the
platform-provided APIs for all tests and evaluated models smaller
or faster than GPT-4 Turbo (gpt-4-1106-preview), which was
used in the in-the-wild study in Section 4. We also utilized the
provided interface to fine-tune the models with full parameters and
deployed private instances when necessary. LLM calls were made
using the same prompt and parameters as in CATIA.

Dataset. Given that the minimum context window for the tested
LLMs is 8k tokens and that some models have input prompt length
limitations, we selected 591 data samples from the study that met
these criteria. We split these samples into training and testing
sets in a 9:1 ratio, ensuring that the proportions of interpersonal
communication and service-oriented tasks remained unchanged.
As a result, the training set contained 533 samples, and the test set
contained 58 samples. The training set was used for fine-tuning,
with the user-confirmed final text serving as the sole ground truth
in the output.

Procedure. After obtaining the predictions of different LLMs on
the test set, we invited the original participants of each record to
recall the context at the time and, based on consistent criteria, either
select the best option for each anonymized model or choose none if
unsatisfied. The contextual information was converted from JSON
into a human-readable natural language list. Participants were also
able to view the final text they confirmed during the in-the-wild
study for better recall of the context.

Metrics. We considered top-1 acceptance, top-4 acceptance, first
character time of the first suggestion, total response time, API cost,
and fine-tuning cost. Top-1 acceptance was chosen because we
requested the models to output suggestions in order of likelihood
(consistent with CATIA), reflecting precision. Additionally, the fine-
tuned models produced only a single suggestion. Top-4 acceptance
was used because we requested a maximum of four suggestions,
which covers the full set of possible options and is in line with the
settings of in-the-wild study.

5.4.2 Results. Table 6 presents the performance of a range of dif-
ferent LLMs, highlighting the best-performing models and their
respective metric results. The newer model gpt-4o-2024-08-06
outperforms gpt-4-1106-preview in terms of the acceptance rates,
demonstrating an evolved performance of available LLMs. While
smaller base models show slightly reduced performance, their re-
sults are still competitive. Furthermore, while the fine-tuned models
do not show a significant improvement in top-4 acceptance rate
compared to the base models, they exhibit a notable increase in
top-1 acceptance rate. This suggests that when the task limits the
number of output options, fine-tuning has the potential to improve
the precision of the suggestions.

As for cost, all models are cheaper than gpt-4-1106-preview.
In terms of speed, all models, except for glm-4-9b and its fine-
tuned version, perform faster. These results indicate that these
models have the potential to significantly enhance user interaction
responsiveness at a much lower cost.

3SuperCLUE: https://superclueai.com/

https://superclueai.com/
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Table 5: Use cases and corresponding examples of different off-screen contextual factors that influence text suggestions.

Context Factors Use Cases Examples

Location (158) The user clearly expresses their current location or the
place they are going to.

“I am eating in the cafeteria.”

The information the user wants to convey can be inferred
from the location.

“It’s really noisy, I just want to escape!”

Date and time (99) The user’s expression is related to the season or date. “Let’s wait until the weather warms up to meet. No need to brave this cold!”
The user clearly expresses an approximate time. “It’s already late, I need to sleep. Let’s talk tomorrow.”

Calendar (45) The user mentioned plans for a specific time. “I’m free tomorrow afternoon during the first period, and I’m available in
the evening as well.”

The user’s mood can be inferred from the schedule. “This week’s schedule is packed, and I feel like I can barely keep up.”

Day of week (10) The user clearly mentioned a specific day of the week. “It’s Monday! You can start testing the AI and see if it can pass, haha.”

Activity (7) The user clearly mentioned an activity. “I’m already biking on the road, I’ll be there soon.”
The user’s expression can be inferred from the activity. “Wait for me two minutes, I’ll be there soon.”

Table 6: Performance and cost comparison of various LLMs with or without fine-tuning. Models with “(ft.)” indicate fine-tuned
versions. Bold highlights the top 3 best-performing models in each acceptance rate metric. Asterisks (*) indicate that the top-4
acceptance rate for fine-tuned models matches the corresponding top-1 acceptance rate from the left. The values for the time
metrics represent the mean, with standard deviations in parentheses. API cost is shown as the average cost per 1,000 calls.

Model Top-1 Acpt.
Rate (%)

Top-4 Acpt.
Rate (%)

First Character
Time (s)

Total Response
Time (s)

API Cost
($ / 1k calls)

Fine-tuning
Cost ($)

gpt-4-1106-preview 37.93 60.34 2.99 (0.46) 7.17 (1.80) 38.97 /
gpt-4o-2024-08-06 43.10 67.24 2.21 (0.55) 3.20 (0.80) 7.92 /
gpt-4o-mini-2024-07-18 18.97 55.17 2.67 (2.74) 3.70 (3.27) 0.48 /
glm-4-9b 20.69 53.45 4.22 (0.98) 7.68 (1.71) 0.80 /
qwen2-7b-instruct 25.86 53.45 2.99 (0.73) 4.02 (0.88) 0.42 /
gpt-4o-2024-08-06 (ft.) 56.89 56.89 * 2.54 (0.49) 2.68 (0.54) 11.26 113.19
gpt-4o-mini-2024-07-18 (ft.) 48.28 48.28 * 2.83 (1.02) 3.02 (1.04) 0.91 13.58
glm-4-9b (ft.) 44.82 44.82 * 3.30 (0.39) 3.64 (0.63) / 22.93
qwen2-7b-instruct (ft.) 50.00 50.00 * 2.62 (0.55) 2.75 (0.55) / 2.91

6 Discussion
Based on the results of our user study, we identify two distinct
mental models—facilitator and collaborator—that reflect how users
perceive and interact with AI-driven text entry systems. These mod-
els inform several design dimensions and choices. In this section,
we first introduce these models and relate them to prior work, then
explore the design space for context-aware collaborative text entry
on smartphones, and conclude with a discussion of potential ethical
issues.

6.1 Mental Models: Facilitator and Collaborator
Our findings suggest that users adopt two different mental models
when interacting with collaborative text entry systems (Figure 5).
These models inform how AI systems should be designed to meet
varying user needs based on the task at hand.

Facilitator. In this model, the AI serves as a supportive tool that
automates tasks or reduces user effort, without requiring signifi-
cant manual input. This model is commonly applied in task-driven
contexts, such as filling out forms, entering structured data, or per-
forming searches. Our study also revealed that the Facilitator model

Figure 5: Mental models of human-AI collaborative text en-
try.

extends to certain social scenarios, particularly in cases where users
face situational impairments (e.g., walking, biking) or when speed is
prioritized over collaboration. For example, in situations requiring
quick replies, users do not expect to engage in a creative process
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with the AI; instead, they value precise, contextually aware sugges-
tions that can be easily selected with minimal effort.

Collaborator. In contrast, the Collaborator model represents a
more dynamic interaction where the AI acts as an equal partner,
offering diverse suggestions to inspire or assist the user in cre-
ative or exploratory tasks. This model is more relevant in scenarios
where the user’s intent is flexible or evolving, such as drafting social
messages, brainstorming ideas, or composing longer texts. In these
contexts, users expect the AI to generate multiple options, allow-
ing them to explore different possibilities. Unlike the Facilitator
model, which focuses on precision, the Collaborator model thrives
on diversity and creativity. Users may trigger the AI to generate
suggestions even when they do not have a fully formed intent, using
the AI as a source of inspiration to guide the collaboration. The
focus here is on offering varied options, allowing the user to select,
refine, or adapt the AI’s suggestions as needed.

These distinct models emerge not only due to the different na-
ture of tasks but also because the advanced capabilities of LLMs
have made users more aware of AI’s potential to intervene in a
wider range of complex scenarios. Despite our study employed the
same system and explicitly prompted users with “this is the same
assistant,” users in open-ended, daily environments instinctively
adjusted their expectations based on the direction and function
of the text. Furthermore, these models influence both how users
interact with AI and the cognitive effort required in these interac-
tions. Depending on the model adopted, users experience different
levels of metacognitive demand. For instance, users in the Facili-
tator model generally engage in lighter metacognitive activities,
while the Collaborator model requires more active involvement
in refining and monitoring suggestions, guiding the AI through
iterative processes. This aligns with previous work emphasizing
the metacognitive demands posed by generative AI [50, 53].

Beyond individual text composition, CATIA was predominantly
used for interpersonal communication, accounting for 90.42% of
cases in our study. This underscores the growing role of AI in help-
ing users articulate their thoughts and refine their messages in
social interactions. Consistent with Fu et al.’s findings [20], users in
the Collaborator model expressed a desire to leverage AI to better
articulate their thoughts and produce text beyond their usual capa-
bilities. Users also noted that AI excels in formal communication.
Additionally, our Facilitator model aligns with Fu et al.’s suggestion
that AI can serve as a “communication expediter,” providing rapid
replies based on the communication context.

While these findings align with Fu et al.’s work, we also iden-
tified notable differences. In contrast to their observation that AI
use may be “unnecessary and undesired” in informal, low-stakes
contexts (e.g., casual chats), users in our study, despite expressing
concerns about inauthentic replies, still relied heavily on the sys-
tem in these contexts. We hypothesize three possible reasons for
this. First, given the ubiquitous nature and inherent constraints
of text input on smartphones, the system’s benefits—whether for
quick replies or generating initial drafts—seem to outweigh con-
cerns about authenticity. Second, unlike Fu et al.’s study, where
participants had to manually provide context for the AI, our system
eliminated this requirement. This reduced barrier likely increased
users’ willingness to adopt the system. Finally, the sample size and

duration of our study may have introduced potential biases. These
factors warrant further empirical investigation.

6.2 Design Space for Context-Aware
Collaborative Text Entry

Building on our exploration of the mental models, we propose the
following key dimensions and design considerations.

6.2.1 Contextual Cues for Model Differentiation. The distinction
between the Facilitator and Collaborator models can be effectively
inferred from various elements on the smartphone, such as text field
hint text and interface structure [5, 37], making this differentiation
feasible in practical system design. Structured fields like search
bars, form inputs, or notes typically suggest the need for Facilitator-
like suggestions—precise, concise, and directly embedded into the
workflow. In contrast, text fields like message composition areas are
better suited to the Collaborator model, where the AI can provide
a wider array of creative or exploratory options.

Moreover, the system can leverage off-screen contextual factors,
such as the user’s location, activity, or time of day, alongside on-
screen interface cues. For instance, if the user is on the move or
in a meeting room with potential situational impairments, the sys-
tem might prioritize quick, task-oriented suggestions (Facilitator).
Conversely, in less constraint scenarios, such as when the user is
engaged in a creative or brainstorming activity, the system could
incorporate the user’s physical context to offer suggestions that
broaden their thoughts (Collaborator). Different users may prefer
different ways of leveraging contextual cues to inform their mental
model, which suggests that the system should continuously learn
from user interactions and adapt over time to better align with
individual preferences.

6.2.2 Initiation: System vs. User. A critical design dimension is who
initiates the interaction—the system or the user. In CATIA’s current
implementation, suggestions are manually triggered by the user.
However, based on our interviews, whether an additional trigger
step is necessary may vary depending on the scenario.

System-Initiated Suggestions (Facilitator). In task-oriented
activities, users expect the AI to provide automatic and unobtrusive
suggestions. These suggestions should be contextually relevant,
minimizing the need for manual intervention. Unlike existing input
methods and app-based suggestions, which are often binary (on
or off), users in these situations prefer the system to offer recom-
mendations only when there is high confidence in their accuracy.
Any incorrect or irrelevant suggestions risk breaking user trust,
especially in contexts where speed and precision are crucial (e.g.,
quickly filling a form or executing a search). To minimize distrac-
tions, the system can predict user intent to input text based on past
digital traces and only offer automatic suggestions in user-specified
text fields. Additionally, non-intrusive icons can indicate available
suggestions, allowing users to expand them as needed.

User-Initiated Suggestions (Collaborator). In open-ended tasks,
where users seek creativity, exploration, or multiple options, they
are more inclined to actively engage the AI to generate suggestions.
In such cases, users may first want to observe how the AI responds
before shaping their own intentions. The system, however, cannot
anticipate whether the user has a fully formed idea or is looking
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for inspiration, and premature autonomous AI suggestions may
disrupt the user’s flow or prematurely steer the direction of the
task. By allowing users to initiate suggestions themselves, a calmer
design approach can help them retain control over the interac-
tion, ensuring that the AI’s contributions align with their creative
process.

6.2.3 Suggestion: Precision vs. Diversity. Depending on the context,
the system should either prioritize precision or embrace diversity.

Precision-Oriented Suggestions (Facilitator). Users need fewer
but more accurate suggestions in efficiency-driven tasks. Given
that users have limited cognitive resources to evaluate numerous
options, it is essential for the AI to filter out the most relevant
contextual information to provide precise predictions. For example,
in our study, certain apps offeredmultiple in-app search suggestions,
but CATIA was able to refine these suggestions by leveraging cross-
app history to present more accurate search terms. Section 5.4 also
suggests that such an approach is feasible by showing fine-tuned
models can improve accuracy with fewer options.

Diversity-Oriented Suggestions (Collaborator). In exploratory
or creative tasks, users seek diverse and informative suggestions.
Precision is less critical in these contexts; instead, users value having
access to a broader range of possibilities. Our study found that
by leveraging additional contextual data, such as location or past
interactions, the system was able to generate options that, while
unexpected, were still acceptable and useful to users. This ability
to present a diverse array of suggestions enhances collaboration
by offering new possibilities, thereby supporting users in refining
their ideas and engaging in more meaningful creative exploration.

6.2.4 Interface: Single-Action vs. Conversational. The design of the
interface is key to supporting different modes of interaction. While
CATIA is currently designed as a popup panel, varying tasks may
demand different interface approaches.

Single-Action Interface (Facilitator). In the Facilitator model,
users expect the AI to integrate seamlessly with existing input meth-
ods, such as the smartphone keyboard, and to apply suggestions
with a single tap. They prefer minimal disruption to their workflow,
with no additional learning or interaction costs. In this case, the
single-action interface is ideal, as it embeds suggestions directly
into the user’s input field, allowing for quick, effortless integration
of AI-generated text.

Conversational Interface (Collaborator). Users in the Collabo-
rator model may benefit from a more interactive, conversational-
style interface that fosters deeper engagement with the AI. In this
setup, a dedicated panel or dialogue interface enables a back-and-
forth exchange, where users can iteratively refine and regenerate
suggestions. Unlike purely text-based interactions, the reasoning
behind suggestions or the AI’s thought process can be optionally
displayed, as suggested by [53] and [50], helping to inspire users’
intent beyond just the literal text. Moreover, users sometimes have a
clear intent to express but may be constrained by mobile conditions.
In such cases, the AI can proactively highlight and inquire about the
missing parts of the user’s intended message, as proposed by [67].
This shared interaction space facilitates a richer, more meaningful
collaboration [48], as users gain insights into the AI’s underlying
logic, thus encouraging creative exploration and providing more
control over the final output.

6.3 Ethical Issues
6.3.1 Over-reliance and Cognitive Manipulation. Although context-
aware text suggestions can benefit users, they may also shift situa-
tional reasoning to the AI, potentially influencing human thoughts
and decisions [53]. Moreover, AI suggestions may inherit biases
from their training data [40, 60]. If the system prioritizes content
from specific sources or favors certain types of queries, it could in-
advertently reinforce existing biases or limit information diversity.
For example, search suggestions based on a user’s past purchases
or interests might narrow their perspective or unintentionally fa-
vor specific companies or products. Another critical issue is the
subtle integration of advertisements or promotional content into
AI-generated suggestions. While users may trust the system, prior-
itizing sponsored content or subtly nudging users toward certain
choices risks manipulating their decisions without their full aware-
ness.

To mitigate these risks, technology providers should work to
reduce inherent biases in LLMs and introduce external oversight
mechanisms. At the same time, active user involvement is equally
important. Systems should offer clear explanations for each sugges-
tion, outlining its source and rationale. In high-stakes situations,
such as financial decisions, or user-designated critical contexts,
users should be required to pause and review these explanations.
This aligns with the “seamful” design approach proposed in prior
work [18, 27, 53].

6.3.2 Data Privacy and User Control. Collecting user context infor-
mation comes at the cost of privacy, and participants in our study
expressed corresponding concerns. In our study, we used a dedi-
cated LLM API, with all data securely stored on a dedicated server.
This approach ensured that sensitive information was protected.
However, we acknowledge that in practical deployments, stronger
privacy measures will be necessary.

A key avenue for addressing these concerns is through on-device
LLM deployment, which would enable the processing of user data
locally, without needing to upload sensitive contextual informa-
tion to the cloud. Our findings (Section 5.4) indicate that smaller
models have the potential to perform well in such scenarios, thus
supporting the feasibility of this direction.

Another critical privacy issue is screen content capture. Our
findings (Section 5.1.2) suggest that the information on a single
screen is often sufficient for providing text suggestions. As a result,
future systems could reduce the need for continuous screen content
collection.

Additionally, providing users with granular control over what
data is collected can empower them to make informed decisions
about their privacy. Optional data collection policies could include
requirements on specific sensors or types of data, as well as the
duration of data collection. Users could also specify more refined
control rules for data collection.

7 Limitations and Future Work
7.1 Data Collection and Contextual Factors
Our study collected one week of in-the-wild data from Chinese stu-
dent participants. While the data volume and participant diversity
are limited, we do not claim that our study encompasses all possible
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use cases or is generalizable to all populations. Nevertheless, we
believe that this case study provides valuable insights for other
research exploring Human-AI collaboration and the application of
LLMs in everyday contexts for end users.

The contextual variables we collected were diverse but restricted
to textual data, leaving room for future expansion and improvement.
For instance, beyond capturing screen content through accessibility
APIs, future studies could integrate image or video data, which
would be particularly relevant for richer social media platforms.

7.2 Choice of LLMs and Prompting Methods
This study employed GPT-4 Turbo, which, while effective, is rel-
atively costly and slower compared to some newer models (see
Section 5.4). Due to the time constraints of the study, we chose
this model, though it may not be the optimal choice for real-world
deployment. Future implementations should consider more light-
weight, faster, and cost-effective LLMs that are better suited for
seamless integration into everyday use.

Additionally, we fed contextual information into the prompt in
JSON format, which may not necessarily be the most optimal struc-
ture [52]. The screen content was input as a list of text fragments
without specific organization. There may be more effective ways to
represent this data, which could enhance the LLM’s ability to rea-
son about the contextual information and generate more accurate
suggestions.

7.3 Future Directions
We are focusing on refining the system to better align with the
proposed mental models. Future studies could involve more diverse
participant groups with varied backgrounds, including different
cultures, occupations, and age ranges, to enhance the generaliz-
ability of our findings. An interesting direction is exploring how
non-native speakers use similar systems on mobile devices, where
the need for effective human-AI collaboration may be even greater.
This could offer insights into overcoming language barriers in di-
verse real-world settings. Additionally, long-term studies will be
necessary to observe how users adapt to AI collaboration over
time and how AI systems can evolve their suggestions based on
sustained interaction.

8 Conclusion
This paper investigates human-AI collaborative text entry on smart-
phones using large languagemodels (LLMs).We developed a context-
aware text input assistant (CATIA), which provides text suggestions
based on contextual factors such as screen content, time, location,
and user activity.

In a 7-day in-the-wild study with 36 participants, we found that
the system provided appropriate suggestions in over 80% of cases,
primarily in two key scenarios: interpersonal communication and
information services. The collaboration between users and the
system demonstrated its effectiveness in reducing cognitive load.
While the system mainly relied on screen-based information to
infer input text, off-screen factors also proved useful in specific
contexts. Additionally, an offline evaluation of various LLMs on
the collected dataset showed that smaller, faster, and more cost-
effective models could potentially achieve results comparable to

the larger model used in our study, making them more practical for
real-world applications.

We identified two distinct mental models of human-AI collabora-
tive text entry: in efficiency-driven tasks, the AI is expected to act
as a supportive facilitator, while in more complex, creative tasks, it
is viewed as an equal collaborator. We also outlined design options
across different dimensions to support these models.

Our work provides empirical evidence for human-AI collabora-
tive text entry and offers insights into the design and implementa-
tion of LLM-based systems for real-world end-user applications.
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A Example Use Cases
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content in red represents the key information for text suggestion.
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(a) (b)

(c) (d)

Figure 6: Four use cases of CATIA. Marked content in red represents the key information for text suggestion. (a) The user added
a new friend on a social media platform, and the friend sent a greeting message; the assistant suggested suitable remarks. (b)
The user came across a tweet about camera shopping and wanted to search for cameras on Google; the assistant suggested
suitable keywords. (c) The user was running on the playground when the professor sent a message asking if the user was in the
lab and requested him to visit their office when available; based on the physical context (location and activity) and the message
content, the assistant suggested suitable responses. (d) The user was browsing a friend’s post; the assistant suggested suitable
comments.
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Figure 7: System architecture diagram of CATIA.

text on adjacent pages in the queue has a similarity greater than
0.75, they will be merged into a single page.

We use gpt-4-1106-preview from OpenAI’s Chat Completions
API as the driving LLM. The API was configured with the following
parameters: top_p set to 1.0, max_tokens limited to 512, and the
response format specified as a JSON object.

C Prompts
Our prompts follow a dialog format, where the “system” part presents
the core requirements of each task, and the first “user” part provides
a detailed instruction. Following parts contain several input-output
examples. Here we only present the prompts without their input-
output examples. For complete prompts used in the paper, please
refer to the supplementary material.

C.1 Initial Suggestion

system

You are a text suggestion assistant.

user
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[context] information is automatically sent following a user

's request for text suggestions in an input field. This

includes temporal, physical, social, and other digital

information collected on the phone (such as context.

date_time, context.location, context.screen_content,

etc.).

Among these, context.screen_content is a list of screen

pages captured in chronological order. If the type

attribute of a screen_content page is 'chat', it

represents a chat history; if it is 'screen', it

contains text snippets extracted from that particular

screen.

Your task is to deduce the user's possible intents for

initiating text input and suggest appropriate texts to

the user. This involves analyzing provided context and

the active input field:

```
input_field.app: (the APP that the field is in),

input_field.label: (the label of the field),

input_field.content: (existing user input, you can infer the

attitude the user is trying to convey based on this

entered content)

```
You need to follow these steps:

1. From [context], filter out which elements are pages the

user actually want to browse. Then based on the [

input_field], further filter out which elements may be

relevant to the user's input action.

2. Based on the filtered [context] from step 1 and [

input_field], analyze the [intention] (why user opens

the input field and what the user wants to express?) of

the user. Remember, since elements in context.

screen_content are the pages user browsed over a

certain period of time, so the elements (context.

screen_content[index]) with a smaller index may not be

relevant or useful, and you should pay more attention

to elements (context.screen_content[index]) with a

greater index. If there are multiple possible

intentions, list them in the keys of [

intention_suggestion_pair]. Different possible

attitudes of users under the same topic can also be

counted as multiple intentions.

3. Give [suggestion] to the user based on each [intention]

and list them in the values of [

intention_suggestion_pair].

You need to output [output.intention_suggestion_pair] in

JSON format (up to 4). Preferentially output the

intention_suggestion_pair that is more likely in the

given contexts.

C.2 Suggestion Regeneration

system

You are a text suggestion assistant and regenerate

suggestions based on history results and user's

instruction.

user

[context] information is automatically sent following a user

's request for text suggestions in an input field. This

includes temporal, physical, social, and other digital

information collected on the phone (such as context.

date_time, context.location, context.screen_content,

etc.).

Among these, context.screen_content is a list of screen

pages captured in chronological order. If the type

attribute of a screen_content page is 'chat', it

represents a chat history; if it is 'screen', it

contains text snippets extracted from that particular

screen.

Your task is to deduce the user's possible intents for

initiating text input and suggest appropriate texts to

the user. This involves analyzing provided context and

the active input field:

```
input_field.app: (the APP that the field is in),

input_field.label: (the label of the field),

input_field.content: (existing user input, you can infer the

attitude the user is trying to convey based on this

entered content)

```
You will also be provided:

- last_output: A dict of texts generated last time and the

guessed user intention.

- user_instruction: User demand for generated text.

You need to follow these steps:

1. Based on [context], [input_field], [last_output] and [

user_instruction], analyze the [intention] (why user

opens the input field and what the user wants to

express?) of the user. If there are multiple possible

intentions, list them in the keys of [

intention_suggestion_pair]. Different possible

attitudes of users under the same topic can also be

counted as multiple intentions.

2. Give [suggestion] to the user based on each [intention]

and list them in the values of [

intention_suggestion_pair].

You need to output [output.intention_suggestion_pair] in

JSON format (up to 4). Preferentially output the

intention_suggestion_pair that is more likely in the

given contexts.

C.3 Data Analysis

system

You are a text suggestion assistant. Your role is to analyze

a user's smartphone text entry intention and identify

key information crucial for inferring the text a user

has input. This analysis occurs post-text entry.

user

You need to consider the contextual data captured by the

device and the groundtruth text entered by the user.
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[context] information is captured when a user opens an input

field. This includes temporal, physical, social, and

other digital information collected on the phone (such

as context.date_time, context.location, context.

screen_content, etc.).

Among these, context.screen_content is a list of screen

pages captured in chronological order. If the type

attribute of a screen_content page is 'chat', it

represents a chat history; if it is 'screen', it

contains text snippets extracted from that particular

screen.

[input_field] is the target input field, which contains the

following attributes:

- input_field.app: the APP that the field is in,

- input_field.label: a label providing a description of the

field's function or purpose,

- input_field.content: existing user input.

[entered_text] is the final text entered by the user in the

current context.

You need to follow these steps:

1. Analyze the [intention] (why the user opens the input

field and what the user wants to express?) of the user

based on [context], [input_field] and [entered_text].

2. Identify the [key_information] (elements in [context] and

[input_field], not in [entered_text]) that is crucial

to infer the [entered_text]. Focus on the most relevant

details that directly influence the user's text entry

process. If the user uses only part of context.

screen_content, you only need to output the part of the

content that is used.

You need to output [output.intention], [output.

key_information] in JSON format.
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