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Figure 1: The Workflow of COMETIC (Cursor Operation Mediated Eye-Tracking Implicit Calibration). The system can be 
divided into the interaction phase and the eye-tracking & calibration phase. (A) The cursor appears at the estimated gaze 
location when the user activates it. Due to the estimation error, the user refines the cursor position by sliding their thumb. 
Upon releasing the thumb, a click is executed at the cursor’s current position. (B) Model 1 is used for eye-tracking, taking the 
image sequence as input and outputting the gaze location (cursor position at activation). Model 2 assists in fine-tuning Model 1 
by selecting cursor coordinates from the refinement process that can serve as proxies for gaze location. These selected data 
points are then paired with images and used to fine-tune Model 1. In conclusion, our system leverages data implicitly collected 
during user interactions to improve eye-tracking accuracy and enhance the interaction experience. 
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Abstract 
The limited accuracy of eye-tracking on smartphones restricts its 
use. Existing RGB-camera-based eye-tracking relies on extensive 
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datasets, which could be enhanced by continuous fine-tuning using 
calibration data implicitly collected from the interaction. In this 
context, we propose COMETIC (Cursor Operation Mediated Eye-
Tracking Implicit Calibration), which introduces a cursor-based 
interaction and utilizes the inherent correlation between cursor 
and eye movement. By filtering valid cursor coordinates as proxies 
for the ground truth of gaze and fine-tuning the eye-tracking model 
with corresponding images, COMETIC enhances accuracy during 
the interaction. Both filtering and fine-tuning use pre-trained mod-
els and could be facilitated using personalized, dynamically updated 
data. Results show COMETIC achieves an average eye-tracking er-
ror of 278.3 px (1.60 cm, 2.29◦), representing a 27.2% improvement 
compared to that without fine-tuning. We found that filtering cur-
sor points whose actual distance to gaze is 150.0 px (0.86 cm) yields 
the best eye-tracking results. 

CCS Concepts 
• Human-centered computing → Interaction techniques; Ubiq-
uitous and mobile computing systems and tools; User models. 
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1 Introduction 
Eye tracking has been employed in various fields and demonstrates 
significant potential [8, 29, 36, 40, 41]. Current eye-tracking on 
smartphones performs with poor accuracy due to two primary rea-
sons: (1) computer vision-based algorithms lack personalization 
for individual users[15]; (2) users frequently change their postures 
while using smartphones, but eye-tracking calibration typically 
occurs only once during the initial setup[1, 13, 49]. Most solutions 
address these issues by optimizing computer vision methods, such 
as increasing dataset size[22, 30] or introducing more complex 
network architectures[65, 78], which partially mitigates personal-
ization issues but fails to resolve posture changes. Other approaches 
utilize attention on the screen to optimize eye-tracking results in 
real-time[68] but struggle with modeling complex eye movements 
in natural, unconstrained environments[32]. 

We propose a more effective approach: introducing an intuitive, 
low-effort interaction method that simplifies eye behavior through 
coordinated hand-eye actions, from which gaze position proxies 
can be derived during the interaction. Compared to natural eye 
behavior in an unconstrained context, studies have demonstrated a 
strong correlation between eye movement and cursor trace during 
cursor interactions[42, 43]. Additionally, research shows that in-
tegrating a cursor into smartphone interactions can enhance user 
experience[16], especially for single-handed usage. Therefore, we 
adopt the cursor as an interactive method to provide information 
for eye-tracking calibration. 

We introduce COMETIC (Cursor Operation for Mobile Eye-
Tracking Implicit Calibration), a continuous, implicit, and inter-
active eye-tracking calibration method for smartphones. Our ap-
proach integrates a low-effort cursor interaction technique, en-
abling the system to continuously collect and filter valid cursor 
coordinates as gaze proxies. Calibration is then achieved by gather-
ing the corresponding image data and fine-tuning the eye-tracking 
model. 

Our cursor interaction is similar to MAGIC Pointing[70]. When 
the interaction is activated, a cursor is triggered at the current 
estimated gaze position, and the user refines the cursor’s position by 
sliding. Upon releasing the finger, the system registers a click at the 
cursor’s location. Since the cursor’s activation position depends on 
eye-tracking, the interaction experience improves as eye-tracking 
accuracy is enhanced. 

We conducted a data collection experiment using our cursor 
interaction method. Analyzing the data reveals a strong correla-
tion between eye movement and cursor motion, manifested in two 
specific patterns: (1) the distance between the gaze and cursor de-
creases progressively over time, and (2) the gaze tends to “follow” 
the movement of the cursor. This provides support for extracting 
effective coordinates from the cursor trajectory and using them as 
gaze position proxies for the online fine-tuning of the eye-tracking 
model. 

Our approach involves two deep neural network models. Model 1 
takes image sequences as input and outputs gaze position sequences. 
Model 2 processes the cursor coordinate sequence and generates 
labels indicating whether each cursor coordinate can be a proxy for 
gaze position. Since both the cursor and the image contain valuable 
gaze information, leveraging transfer learning to share knowledge 
between the two tasks could provide additional advantages [11, 66]. 
Specifically, Model 2 not only takes the cursor coordinate sequence 
as input but also incorporates the latent features extracted from 
the video in Model 1. 

In practical use, pre-trained Model 1 and Model 2 are loaded at 
the start. As the user interacts, the system generates an initial gaze 
estimation using Model 1 to determine the cursor’s starting position. 
During interactions, cursor coordinates and corresponding image 
sequences are continuously collected, with Model 2 producing labels 
for filtering valid data pairs used to fine-tune Model 1. As Model 
1’s parameters are updated, the latent features of video from Model 
1 are also refined, improving the labeling accuracy of Model 2. This 
iterative adjustment of both models leads to progressively more 
accurate eye tracking. 

Offline evaluation demonstrates that our method achieved an 
optimal average eye tracking error of 278.3 px (1.60 cm, 2.29◦), 
representing a 27.2% improvement compared to the results with-
out fine-tuning. Filtering cursor points whose actual distance from 
the gaze at 150.0 px (0.86 cm) yields the best calibration results. 
Real-time evaluation demonstrates that our method achieved an 
optimal average eye-tracking error of 446.7 px (2.57 cm, 3.68◦), 
representing a 50.0% improvement compared to the results with-
out fine-tuning. Our primary contributions are: (1) proposing an 
interaction-integrated eye-tracking calibration method; (2) develop-
ing a two-model system that achieves calibration by filtering valid 
data and fine-tuning; (3) analyzing hand-eye coordination behaviors 
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during the interaction process to ensure the system’s effectiveness; 
and (4) evaluating the eye-tracking error after calibration. 

In the rest of our paper, Section 2 lists related research. Section 
3 details the design space of our interaction method. Section 4 
describes the data collection experiments. Section 5 presents the 
statistical analysis of hand-eye behavior in interaction data. Section 
6 outlines our algorithmic framework. Section 7 provides an offline 
evaluation of our method. Section 8 provides a real-time evaluation 
of our method. Section 9 discusses the limitations of the paper and 
suggests possible future work. Section 10 provides a conclusion of 
the entire paper. 

2 Related Work 

2.1 Eye Tracking on Smartphone 
In recent years, eye-tracking technology has attracted researchers’ 
interest especially the technology on the smartphone. With the 
enhancement of the computational power and sensing ability of 
the smartphone [32], researchers have designed various kinds of 
interaction technology with eye-tracking, such as checking the 
notifications in the top bar of the smartphone using gaze combined 
with gesture [29], enhancing voice command with gaze on the tar-
get object [41], substituting tapping and swiping with gaze-based 
interactions[36] and so on. All of these downstream applications 
are based on accurate eye-tracking, for which the researchers have 
developed plenty of methods to solve this problem which can be 
classified into two categories. One of them is model-based meth-
ods, in which the eye is described as an optical axis and other 
parameters [4, 23, 58, 59, 63]. The other is learn-based methods, 
in which the gaze point will be estimated by machine learning 
methods [9, 54], which is more commonly used in smartphones. 
Many works utilized RGB [47, 71] or RGB-D [14, 35, 44, 67] images 
to generate the gaze points. Researchers have extensively explored 
the feature extraction ability of various models based on CNN like 
VGG [72, 74], ResNet [26, 71] and so on, which is shown to be effec-
tive for the image. To capture information between adjacent frames, 
models based on RNN were introduced by researchers to extract 
temporal information [26, 77]. As for the features, face [10, 17, 73] 
and eye [3, 48] images cropped from face tracking are the most com-
monly used. To enhance the information input, some works take 
the facial landmarks as extra features [46, 69]. Moreover, the trans-
former was utilized by researchers to capture the cross-attention 
between left and right eyes, which is effective in EM-Gaze [76]. In 
our study, we also use the ResNet model to extract information 
from images and use them to generate the gaze point. 

2.2 Implicit Calibration 
Although learning-based methods can achieve relatively good gaze 
tracking performance on datasets, calibration remains necessary 
in practical applications to improve accuracy by "adjusting and 
customizing the gaze output to reflect the spatial geometry of the 
camera, the screen, and personal differences" [12, 32]. Calibration 
is often categorized into two types, one of which is referred to as 
explicit calibration, where users are required to actively focus on 
provided gaze points. In this regard, the most common methods 
are 5-point [23, 47] and 9-point [7, 34]. Some studies also require 
users to actively track a moving object with their gaze to obtain a 

sufficient number of calibration points [12, 33, 55–57]. The other 
type is implicit calibration, where the gaze points are estimated 
by users’ natural interactions. In this context, some researchers 
take the events of touch [24, 61], mouse and keyboard [21, 25, 37] 
for calibration, while some other researchers analyze the saliency 
map [68] or the attention of users’ view [2, 28] to find out where 
the potential gaze points are. In our works, a pilot study was con-
ducted to explore the relationship between the cursor and the gaze 
points during user interactions. What we found is that the distance 
between them is close enough to replace the gaze position with 
the cursor position in some time, which suggests the potential of 
implicit calibration. In another way, it means that the algorithm 
can obtain the latest gaze points(substituted by selected cursor po-
sitions) to fine-tune the model to achieve continuous calibration 
and keep accuracy. 

2.3 Hand-eye Coordination in Interaction 
The application of hand-eye coordination in interaction has been 
widely studied. In earlier studies, researchers have already dis-
cussed the consistency between gaze and cursor behavior in web 
searching [20] and programming debugging [6]. It is precisely due 
to this consistency that many gaze-related works use eye move-
ment positions to substitute certain hand operations, such as text 
selection [50, 51], cursor movement control, swiping, clicking, and 
returning on mobile screens [36], and so on. These studies utilize eye 
movement information to replace hand control, thereby achieving 
better interaction effects. The article by Liebling et al. [38] provides 
a detailed analysis of the consistency between eye gaze and mouse 
movements, which points out that in actual PC operations, gaze 
and mouse exhibit strong consistency for two-thirds of the time, 
while for the remaining one-third, there is some degree of differ-
ence between their behaviors. Furthermore, the study [62] analyzes 
data on touch and gaze on tablets, suggesting that "on average, 2 
fixations occur before and after the tap moment, within a 2-second 
window centered on the tap moment." In addition, researchers have 
explored the patterns of hand-eye coordination in different forms 
of interaction, such as handwriting letters [75], hovering [60], tar-
get searching [5], and browsing search results [52]. Recent studies 
also indicated that in certain interaction modes, mouse and eye 
movements exhibit consistency [42], or that eye positions can be 
modeled based on mouse positions using information from the 
x-axis [43]. In our work, we also observed this hand-eye coordi-
nation through a series of statistical analyses. By using the cursor 
position to replace the specific gaze location, we applied this in our 
continuous calibration process, yielding promising results. 

3 Interaction Design Space 
In this section, we introduce the interaction method of COMETIC, 
the interaction design spaces of this approach, the evaluation of 
design space, and the specific interaction design choices we made 
in this study. 

Our method focuses on the eye-tracking-assisted cursor interac-
tion for single-handed interaction on smartphone. Therefore, We 
will begin with a brief justification of our choice. Hakka et al. [16] 
demonstrated that introducing cursor-based interaction to single 
hand smartphone usage can reduce the physical effort required for 
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target selection, making it a more ergonomic option. Eye-tracking 
enhances this further by reducing the need for manual cursor move-
ment [29]. Technologies adopted in Apple Vision Pro, where gaze 
can effectively guide and control the cursor, leverage eye move-
ments to minimize the reliance on hand motions. Similar technolo-
gies can be applied to foldable smartphones, where users must hold 
the device with both hands and frequently release one hand for 
interaction. Eye-tracking assisted cursor-based interaction offers 
a solution to reduce this repetitive process. Users can keep both 
hand holding the device and achieve target selection by looking at 
the target, activate the cursor, and refine the cursor with minimal 
thumb movement. 

3.1 Design Space 
To effectively implement this method, we identified three key stages 
in the design of the interaction: Activation, Gaze-Assisted Position-
ing, and Refinement. In our approach, the user first looks at the 
target, activates the cursor, and then refines the cursor’s position 
to precisely reach the target. The stages are structured as follows: 

Activation (Mode Switch): The first challenge is ensuring that 
the introduction of cursor-based target selection does not interfere 
with the original smartphone interactions. This involves designing a 
seamless activation process, where users can easily switch between 
standard touch-based input and the cursor-based system, without 
disrupting their overall experience. 

Gaze Assisted Positioning: Once the cursor is activated, the 
system either continuously repositions the cursor using eye-tracking 
data, or keeps the cursor fixed at the initial gaze position where 
activation occurs. Real-time control offers flexibility, allowing users 
to refine cursor placement as needed, but this can add complexity 
and create visual distractions. Alternatively, keeping the cursor 
fixed at the user’s gaze position upon activation would avoid visual 
interference and simplify the process. However, it forces the user 
to follow a more rigid workflow, where they must first look at the 
target, activate the cursor, and then refine its position. 

Refinement: Unlike Apple Vision Pro, which utilizes multiple 
cameras to achieve high eye-tracking precision, most standard 
devices cannot achieve such accuracy. Therefore, an additional 
refinement stage is required, where users can refine the cursor’s 
position, to ensure precise target selection. Eye-tracking data will 
no longer be used to reposition the cursor during this stage. 

3.1.1 Activation (Mode Switch). Several studies have explored the 
interaction design for introducing cursors on smartphones [16]. We 
categorize activation methods into three types: gesture-based acti-
vation, multi-modal activation, and activation via external devices 
or sensors. 

Gesture-based activation means defining a hand movement dis-
tinct from common smartphone gestures (e.g., tap, double-tap, long 
press, swipe). Options include bezel swiping [27, 53], tapping or 
swiping on the back of the phone [64], or shaking the phone, etc. 

Multi-modal activation refers to using non-hand-based modali-
ties such as voice or video. One example is to activate the cursor 
when the user double blinks, with the action detected by an always-
on front camera. 

External devices or sensors can also be introduced, adding new 
sensors to different parts of the phone, or using devices like rings 

that detect specific interactions (e.g., touch or long press) to trigger 
activation. 

3.1.2 Gaze-Assisted Positioning. Once the cursor is activated, the 
next step is determining how gaze data is used to assist cursor 
positioning. Eye-tracking can be integrated into cursor positioning 
in two primary ways: fixed gaze point positioning and dynamic 
gaze adjustment. 

Fixed Gaze Point Positioning: In this method, the cursor is placed 
at the estimated gaze point immediately upon activation. In other 
words, the user’s gaze location is treated as the starting position 
for the cursor. While this method is plain to understand, it assumes 
that the user is already looking at the target first before activation, 
which may not always be the case. The refinement of the cursor 
will start at the fixed position. 

Dynamic Gaze Adjustment: This method involves continuously 
adjusting the cursor’s position based on the user’s gaze after activa-
tion. This approach allows for more flexible interaction, as the user 
does not have to always look at the target before activation. How-
ever, a constantly moving cursor on the screen could be distract-
ing. Furthermore, the system might misinterpret eye movements, 
leading to potential instability. Dynamic gaze adjustment will be 
stopped once the user starts to refine the cursor. In practice, for 
touch input, refinement starts when the thumb touches the screen, 
and for smartphone movement or head movement, it begins when 
the movement exceeds a specific threshold. 

3.1.3 Refinement. Based on previous work [31], we propose three 
possible methods for cursor refinement: thumb sliding, smartphone 
movement, head movement. 

Thumb Sliding: The most common refinement method involves 
the user sliding their thumb across the screen to move the cursor. 
Users can achieve fine-grained control over the cursor’s movement, 
which is especially useful for tasks that require precision, such as 
selecting small on-screen elements. 

Smartphone Movement: Another refinement technique leverages 
the phone’s internal sensors, such as the IMU or the rear camera’s 
optical flow, to detect motion or orientation changes. Users can 
refine the cursor position by tilting, rotating, or moving the phone 
in space. This finger-free method can be particularly useful when 
touch-based interactions are not feasible. However, excessive phone 
movement can lead to user fatigue over prolonged periods, and 
Both IMU and optical flow methods may struggle to achieve the 
level of precision required for fine-grained cursor adjustments. 

Head Movement: When the phone is held in a relatively fixed 
posture, head movements can be employed to refine the cursor. 
Small shifts in head orientation translate into cursor movement, 
offering a hands-free solution similar to phone motion-based refine-
ment. However, as with phone movement, this method also suffers 
from issues of user fatigue and limited precision. 

3.2 Evaluation of Design Space 
We conducted a user study to evaluate different combinations of 
the three key stages mentioned above. In the pilot study, partic-
ipants reported that the “Dynamic Gaze-Assisted Positioning” is 
very distracting due to the always-on cursor and the inaccurate 
eye-tracking. Therefore, we will only evaluate 3 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 × 
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3 𝑅𝑒 𝑓 𝑖𝑛𝑒𝑚𝑒𝑛𝑡𝑠 = 9 different combinations under the “Static Gaze-
Assisted Positioning”. 

3.2.1 Apparatus. As shown in Figure 2a, participants are instructed 
to complete the experiment on a Huawei P40 smartphone with their 
right hands. The resolution of the smartphone screen is 1200 ×2486, 
and the size is 6.9 cm × 14.3 cm. We used a touch sensor connected 
to an Arduino Uno to achieve activation. 

A Tobii Eye Tracker 5 is employed to capture the gaze coor-
dinates on a 29-inch screen (3840 px × 2560 px, 65 cm × 36.5 cm), 
which are then converted to the coordinates on smartphone screen. 
Specifically, the eye tracker is first mounted on a custom 3D-printed 
stand to ensure its stability in relation to the smartphone. Next, the 
stand and the eye tracker are fixed at the bottom of the computer 
screen during calibration (Figure 3a). The orange box indicates the 
smartphone body, while the blue box indicates the smartphone 
screen. The position and size of the smartphone screen relative to 
the computer screen are recorded (top: 1036 px, left: 1684 px, height: 
936 px, width: 450 px, Figure 3b). During experiments, participants 
need to hold the stand. The coordinates on the smartphone use 
the top-left corner as the origin, with the positive x-axis extend-
ing rightward and the positive y-axis extending downward. To 
translate x coordinate from the computer screen to the smartphone 
screen, we subtract it with the left margin (1684 px), divide it by 
the width on the computer screen (450 px), and multiply it with the 
width of smartphone screen (1200 px). To translate y coordinate 
from the computer screen to the smartphone screen, we subtract it 
with the top margin (1036 px), divide it by the height on the com-
puter screen (936 px), and multiply it with the height of smartphone 
screen (2486 px). Refer to Equation 1 and 2 for details. 

𝑥𝑠𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 = 
𝑥_𝑠𝑐𝑟 𝑒𝑒𝑛 − 𝑙𝑒 𝑓 𝑡 _𝑚𝑎𝑟𝑔𝑖𝑛𝑜𝑛_𝑠𝑐𝑟 𝑒𝑒𝑛 

𝑤 𝑖𝑑𝑡ℎ𝑜𝑛_𝑠𝑐𝑟 𝑒𝑒𝑛 
×𝑤𝑖𝑑𝑡ℎ𝑠𝑚𝑎𝑟 𝑡𝑝ℎ𝑜𝑛𝑒 

(1) 

𝑦𝑠𝑚𝑎𝑟 𝑡 𝑝ℎ𝑜𝑛𝑒 = 
𝑦_𝑠𝑐𝑟 𝑒𝑒𝑛 − 𝑡 𝑜 𝑝 _𝑚𝑎𝑟 𝑔𝑖𝑛_𝑠𝑐𝑟 𝑒𝑒𝑛 

ℎ𝑒𝑖𝑔ℎ𝑡𝑜𝑛_𝑠𝑐𝑟 𝑒𝑒𝑛 
× ℎ𝑒𝑖𝑔ℎ𝑡𝑠𝑚𝑎𝑟𝑡 𝑝ℎ𝑜𝑛𝑒 

(2) 

3.2.2 Participants and Procedure. We recruited 9 participants (4 
Males, 5 Females, aged 19-28, M=22) from the university. The entire 
experiment lasts about an hour. The participants were compensated 
at a rate of $15 USD per hour. 

The experiment evaluates three types of activation: gesture (dou-
ble tap, abbreviated as “tap”), multi-modal (double blink, abbre-
viated as “blink”), and external device (touch sensor, abbreviated 
as “device”); as well as three types of refinement: thumb sliding 
(abbreviated as “thumb”), smartphone movement (achieved using 
IMU, abbreviated as “imu”), and head movement (abbreviated as 
“head”). This results in nine different combinations. The experimen-
tal order was counterbalanced using a Latin square to ensure that 
each combination appeared once in every sequence. 

At the start of the experiment, participants were instructed to 
finish the inherent calibration of Tobii Eye Tracker. Next, they 
iterated through nine combinations, selecting ten 200 px × 200 px 
targets that were randomly displayed on the smartphone screen 
for each combination (Figure 2b). A touch sensor connected to an 

Arduino Uno is used for activation. When the activation type is 
“device,” the touch sensor is placed on the back of the smartphone, 
within easy reach of the participant’s index finger. For “tap” and 
“blink” activations, the process is implemented via a Wizard of Oz ap-
proach, where the experimenter observes the participant’s actions 
and manually controls the touch sensor to trigger the activation. 
After activation, the cursor was positioned at the gaze coordinate 
on the smartphone screen, estimated and converted from the eye 
tracker. Participants need to move the cursor into the target using 
the corresponding refinement method. If the activation method is 
“tap” or “blink”, participants need to re-conduct the activation to 
finish selection. If the activation method is “touch”, participants 
can either lift their thumb from the screen, or lift their index finger 
from the touch sensor, to finish selection. At the end of each itera-
tion, participants need to rate the six dimensions from NASA-LTX 
(mental demand, physical demand, efficiency, performance, effort, 
frustration), as well as the learning cost and the covertness of the 
combination. 

3.2.3 Design Space Evaluation Results. Figure 4 and Table 1 shows 
the subjective ratings of different combinations across various di-
mensions. We reordered the dimensions so that indicators with 
lower values being better performance (mental demand, physical 
demand, effort, frustration, learning cost) are on the left, while 
those with higher values being better performance (efficiency, per-
formance, covertness) are on the right. The “rank” in Table 1 is first 
calculated based on each dimension’s value-performance relation-
ship, then averaged across the overall rank. 

Among different combinations, “blink, touch”, “tap, touch”, “de-
vice touch” are ranked at top three. The Kruskal-Wallis H test 
shows no significant differences between these three combinations 
across all eight dimensions. Table 2 shows the number of combina-
tions significantly outperformed by each of them. Notably, “device, 
touch” outperforms others across most dimensions, followed by 
“tap, touch,” while ‘blink, touch” significantly outperforms only a 
few combinations 

3.3 Implementation in This Study 
Based on the evaluation result in Section 3.2.3, we use touch sensor 
(device) for activation, fixed gaze point positioning for gaze-assisted 
positioning (static), and thumb sliding (touch) for cursor refinement. 

The interaction process is as follows: Users touch the sensor on 
the back to activate the cursor at the gaze estimation location. Then 
they slide to move the cursor. A click is registered when they lift 
their finger. 

4 Data Collection Experiment 
In this section, we will collect the data necessary for eye-tracking 
and calibration. Specifically, we will collect cursor traces on the 
smartphone, video from the front camera, and gaze positions on 
the smartphone using a Tobii eye tracker. There are three main 
reasons for collecting this data. First, we aim to understand the cor-
relation between eye movement and cursor traces, thereby demon-
strating the potential of cursor-based interactive calibration for 
eye-tracking. Second, we aim to design and implement algorithms 
for eye-tracking and calibration using this data. Finally, we need to 
evaluate the effectiveness of our algorithms for this dataset. 
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(a) Smartphone, Eye Tracker in 3D-Printed Stand, and Touch Sensor 
with Arduino 

(b) Target Selection Task (Use “touch” for Refinement as An 
Example) 

Figure 2: The Apparatus and Experimental Task. The Target Selection Procedure in Figure 2b: (1) the target is randomly 
displayed on the screen; (2) the participant activated and refined the cursor (we use touch as an example); (3) the target is 
selected at deactivation (lift of thumb) as the cursor is positioned inside the target. 

(a) Eye tracker and 3D-printed stand. (b) Layout on screen. 

Figure 3: The eye tracker and 3D-printed stand is attached to the screen during the calibration of eye tracker. The boxes in the 
screen indicate the position of the smartphone relative to the screen. 

4.1 Apparatus 
The apparatus used in this section is almost identical to that in 
Section 3.2.1’s design space experiment. There are two differences: 
(1) the 3D-printed stand is placed on a metal stand to minimize any 
potential phone movement caused by swiping (Figure 5a); (2) we 
do not use touch sensor for activation in this experiment. 

4.2 Participants and Procedure 
A total of 24 participants (7 females, aged 20-30, M = 24.0) were 
recruited from the university campus for this experiment. None 
of the participants had previously participated in any related pilot 
studies. During the experiment, participants sat comfortably in 

front of the smartphone and its stand. The entire experiment lasted 
approximately 30 minutes. Participants were compensated at a rate 
of $15 USD per hour. The experiment was divided into two phases: 

Manual Calibration Phase: In this phase, a 3 × 3 grid of points 
was sequentially displayed on the smartphone screen from top to 
bottom and left to right (see Figure 5b(1)). Each point remained on 
screen for 2 seconds, during which participants were instructed 
to focus on the point without blinking unless switching between 
points. The purpose of this phase was to collect the position of 
points and their corresponding eye-tracking data for calibration. 
In the pilot study, we attempted to fix the smartphone and its 
3D-printed stand in front of the screen for calibration using the 
Tobii eye tracker’s built-in calibration system, but the results were 
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Figure 4: The Subjective Ratings for Different Interaction Combinations 

combination mental 
demand 

physical 
demand 

effort frustra-
tion 

learning 
cost 

efficien-
cy 

perform-
ance 

covert-
ness 

rank 

blink, imu 3.9 ± 1.4 5.2 ± 1.0 5.3 ± 1.4 4.0 ± 1.5 3.6 ± 1.3 3.1 ± 1.3 3.4 ± 1.7 4.0 ± 1.2 7.8 
blink, head 4.2 ± 1.2 5.6 ± 0.8 5.2 ± 0.8 3.9 ± 1.0 4.1 ± 1.6 3.1 ± 1.1 3.4 ± 1.2 3.0 ± 1.2 8.2 
blink, touch 2.9 ± 0.7 3.8 ± 1.1 3.8 ± 1.2 2.7 ± 1.4 2.8 ± 0.9 4.9 ± 1.4 5.4 ± 1.2 4.6 ± 1.1 2.9 
tap, imu 3.8 ± 1.5 4.8 ± 1.2 5.1 ± 1.4 3.7 ± 1.5 3.6 ± 1.3 3.3 ± 1.6 3.8 ± 1.7 3.9 ± 1.3 5.9 
tap, head 3.8 ± 1.1 5.1 ± 1.0 5.1 ± 1.0 3.7 ± 1.1 3.4 ± 1.1 3.2 ± 1.1 3.9 ± 1.0 2.8 ± 0.9 5.9 
tap, touch 2.7 ± 0.7 3.3 ± 0.9 3.4 ± 1.0 2.4 ± 1.2 2.6 ± 0.8 5.6 ± 0.8 5.3 ± 1.2 5.2 ± 1.0 2.1 
device, imu 3.9 ± 1.7 4.8 ± 1.3 4.4 ± 1.7 3.4 ± 1.6 3.2 ± 1.2 3.9 ± 1.6 4.0 ± 1.9 4.0 ± 1.1 4.9 
device, head 4.1 ± 1.1 5.1 ± 1.1 5.1 ± 1.0 3.7 ± 0.7 3.2 ± 0.9 3.7 ± 1.2 4.0 ± 0.8 2.8 ± 0.8 6.4 
device, touch 2.6 ± 0.7 2.7 ± 1.5 2.9 ± 1.1 1.9 ± 1.0 2.4 ± 1.1 5.8 ± 1.2 6.1 ± 0.7 5.6 ± 1.0 1.0 

Table 1: Mean, Standard Deviation, and Rank of Subjective Ratings for Different Combinations 

combination mental 
demand 

physical 
demand 

effort frustra-
tion 

learning 
cost 

efficien-
cy 

perform-
ance 

covert-
ness 

device, touch 5 6 6 6 6 6 0 6 
tap, touch 2 6 6 4 5 2 0 3 
blink, touch 1 3 4 5 2 1 0 3 

Table 2: Number of Combinations Significantly Outperformed by the Given Combination in Each Dimension 

target size (px) 100 × 100 200 × 200 300 × 100 600 × 600 
random location number 16 16 16 8 

corners and edges top left, top middle, top right, 
bottom left, bottom middle, bottom right 

target size (px) 1100 × 400 1100 × 600 1100 × 800 1100 × 1100 
random location number 8 8 8 8 

corners and edges top, bottom 
Table 3: Target Configuration during Experiment 

unsatisfactory. Therefore, we manually collected calibration data during the experiment and later performed a nine-point calibration 
on the collected data. 
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(a) Apparatus for Experiment (b) Layouts in Experiment. 

Figure 5: Apparatus and Layouts in Experiment. For subfigures in Figure5b: (1) shows the layout during calibration. (2)-(4) show 
the distance between the cursor and target in three different distances. (5)-(12) show eight targets of different sizes. 

Cursor-Based Target Selection Phase: In this phase, both a 
target and a cursor appeared on the smartphone screen. Participants 
moved the cursor by sliding their thumb on the screen. The task 
was considered successful if the cursor was moved inside the target 
when the participant lifted their thumb. If the cursor was not placed 
inside the target, it would reset to its starting position. The cursor 
movement followed a variable control-display (CD) ratio based on 
the sliding speed[45], where faster movements translated to greater 
cursor displacement. 

As shown in Table 3, the targets have 8 different sizes (Fig-
ure5b(5)-(12) show their sizes relative to the screen) and appeared at 
random locations on the screen for multiple times. In addition, the 
target appeared at specific positions along the corners and edges of 
the screen at least once, yielding a total of 120 unique combinations 
of target positions and sizes. Positions along the corners and edges 
of the screen are further divided into two categories, since for tar-
gets with the width of 1100 px, there will not be much difference 
between left and right, given the screen width is 1200 px. 

The cursor was circular, with a diameter of 90 pixels. The dis-
tance from the cursor to the target was categorized into three levels: 
200, 600, and 1200 pixels, simulating varying levels of eye-tracking 
estimation accuracy (Figure5b(2)-(4) show three types of distances). 
The distance is measured from the center of the cursor to the near-
est edge or corner of the target. The relative position between the 
cursor and the target was randomly generated. Since the goal of the 
experiment is to understand and model the relationship between 
eye movement and cursor behavior, we did not use the activation 
method mentioned in section 3.3 but randomly generated the cur-
sor positions to increase data diversity. This results in a total of 
120𝑡 𝑎𝑟 𝑔𝑒𝑡 −𝑠𝑖𝑧𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡 𝑖𝑜𝑛𝑠 ×3𝑑𝑖𝑠𝑡 𝑎𝑛𝑐𝑒𝑙𝑒𝑣 𝑒𝑙 𝑠 = 360𝑑𝑖𝑠𝑡 𝑖𝑛𝑐𝑡 𝑡 𝑟 𝑖𝑎𝑙 𝑠 . 

We will collect the following data during the experiment: the 
size and position of the target, the sequence of cursor positions, the 

sequence of eye tracking data (gaze positions), and the video from 
the front camera. 

4.3 Data Pre-processing 
4.3.1 Manual Calibration of Eye Tracking Data. As mentioned be-
fore, during the Manual Calibration Phase, we collected sequences 
of gaze coordinates provided by the Tobii eye tracker 5 when partic-
ipants fixated on nine specific calibration points on the screen. We 
mapped each gaze coordinate to the corresponding calibration point 
and used the RANSAC (Random Sample Consensus) method to com-
pute a homography matrix that minimizes the distance between 
gaze-calibration pairs. This matrix was then applied to move the 
gaze coordinates during the Cursor-Based Target Selection Phase. 
In the rest of the paper, we will use the transformed coordinates as 
the ground truth for gaze on the smartphone screen. 

4.3.2 Data Segmentation and Alignment. During the Cursor-Based 
Target Selection Phase, participants complete 360 trials. Both front 
camera and cursor data are recorded on the smartphone and seg-
mented by trial, while the eye tracker continuously captures data. 
Signals sent from the smartphone to the computer at the start and 
end of each trial are used to segment the eye-tracking data. Since 
video, cursor, and eye-tracking data are collected on different de-
vices with varying sampling rates, we resample the eye-tracking 
and cursor data to align them with the video timestamps for syn-
chronization. 

4.3.3 Image Cropping. As previously mentioned, we used the front 
camera of the smartphone to record videos during the experiment. 
These videos typically capture the participant’s head and part of 
the upper body. To facilitate subsequent neural network training, 
we crop the original images into three parts. Using Mediapipe [39], 
we detect the participant’s face, left eye, and right eye in the video 
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frames, and crop the images accordingly to generate three new 
video segments. Additionally, we record the coordinates and size 
of these three cropped sections relative to the original frame as a 
video info sequence. 

5 Statistical Analysis of Gaze and Cursor 
Behavior 

In this section, we will analyze the distance between the gaze po-
sitions and the cursor coordinates. Figure 6 presents a waterfall 
chart of the gaze-to-cursor distance across all participants. We 
can see that approximately 50% of the data points have a distance 
smaller than 200 px, and 84% have a distance smaller than 600 px. As 
mentioned in section 4.2, only in one-third of the trials, the initial 
cursor-to-target distance is 200 px. Therefore, we believe there is a 
clear correlation between the movement of the user’s gaze and the 
cursor. 

We observed two primary patterns in the relationship between 
the user’s gaze and the cursor: (1) The distance between the gaze 
and the cursor gradually decreases over time. We attribute this 
to the fact that in certain cases, the user consistently focuses on 
the target without looking at the cursor, so the distance decreases 
as the cursor moves closer to the target. (2) The gaze-to-cursor 
distance remains stable for a period. This is because, in some cases, 
the user’s gaze follows the cursor’s movement. 

In the following sections, we will discuss these two patterns in 
detail. 

5.1 Gaze-Cursor Distance Convergence 
Figure 7 shows the mean distance between the gaze and cursor over 
time, with time normalized. It is evident that the mean distance 
between them gradually decreases as time progresses. At about 25% 
of the time, the distance between gaze and cursor is about 400 px. 
At about 70% of the time, the mean distance is about 200 px. This 
suggests that as the user moves the cursor closer to the target, the 
gaze position also converges toward the cursor. We believe that in 
the final stages of cursor control, gaze position can, to some extent, 
be substituted by cursor position. In real use cases, this provides a 
certain amount of gaze ground truth, enabling us to gather the data 
needed for subsequent fine-tuning of the model. In other words, 
this cursor behavior at the end of control sequences offers a possible 
reference point for gaze position. 

5.2 Gaze Following Cursor 
We defined gaze-following cursor behavior using three features: 
(1) the distance between the gaze and cursor is below a threshold 
𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , (2) the number of consecutive points where the distance 
remains below this threshold exceeds a threshold 𝑡𝑛𝑢𝑚 , and (3) the 
angle between the movement directions of the gaze and cursor is 
below a threshold 𝑡𝑎𝑛𝑔𝑙𝑒 . With the last threshold 𝑡𝑎𝑛𝑔𝑙 𝑒 fixed to 90°, 
the first two thresholds 𝑡𝑑𝑖𝑠𝑡 𝑎𝑛𝑐𝑒 and 𝑡𝑛𝑢𝑚 were sampled within 
a certain range at defined intervals. This allowed us to create a 
heatmap (Figure 8) showing the percentage of data points that meet 
the behavior definition. X axis shows the value of 𝑡𝑛𝑢𝑚 and y axis 
shows the value of 𝑡𝑑𝑖𝑠𝑡 𝑎𝑛𝑐𝑒 . Since our tobii eye tracker mentioned 
in section 4 is sampled at 30 Hz, multiply 𝑡𝑛𝑢𝑚 by 0.03 gives the 
duration in seconds. 

From Figure 8, we observe that when the conditions for defining 
gaze-following cursor behavior are more relaxed (i.e., 𝑡𝑛𝑢𝑚 ≤ 8 
and 400 ≤ 𝑡𝑑𝑖𝑠𝑡 𝑎𝑛𝑐𝑒 ≤ 500), over 30% of the data meets these 
criteria. And when the conditions become stricter(i.e., 𝑡𝑛𝑢𝑚 ≤ 12 
and 200 ≤ 𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 400), approximately 10% to 30% of the data 
still satisfies the requirements. 

These results indicate that during the user’s control of the cursor, 
there are chains of consecutive cursor points that not only maintain 
close proximity to the gaze but also align with the gaze’s movement 
direction. These points provide another possible reference for gaze 
position. 

6 COMETIC Algorithm 
In this section, we will discuss the COMETIC algorithm. The core 
problem COMETIC aims to solve is how to fine-tune a video-to-
gaze model during its use, specifically, how to obtain the true gaze 
positions required for fine-tuning without the eye tracker. Our 
approach proposes using certain cursor coordinates from the cursor-
based interaction process as proxies for gaze positions (i.e., those 
with a high probability of having a distance from the gaze position 
below a preset threshold, 𝜏 ). 

The algorithm involves two models with three objectives: 
(1) Given a video (image sequence) input, Model 1 generates 

the corresponding gaze position sequence for the user. 
(2) Given a cursor sequence input, Model 2 labels whether each 

cursor position can be used as a proxy for the gaze position. 
(3) With pre-trained Model 1 and Model 2, we aim to leverage 

new user data to optimize both models simultaneously. 

6.1 Model 1: Video to Gaze 
Model 1 takes as input both a video (image sequence) and the corre-
sponding positional and size information of the regions of interest 
(referred to as video information), and outputs the gaze position on 
the screen. Figure 9 gives the structure of Model 1. As mentioned 
in Section 4.3.3, the front camera video is cropped into three im-
ages: left eye, right eye, and head. These images are first processed 
through a ResNet-18 [18] followed by two fully connected layers. 
The features extracted from these images are then concatenated 
with the video information, resulting in latent features. These latent 
features are passed through five fully connected layers to produce 
the final gaze coordinates, which are normalized between 0 and 1 
based on the screen’s width and height. 

6.2 Model 2: Cursor Labeling 
Model 2 receives the cursor coordinate sequence and the latent fea-
tures from Model 1 as inputs, and outputs labels indicating whether 
each cursor coordinate can serve as a proxy for the gaze position. 
The label is determined by computing the distance between each 
cursor coordinate and the corresponding gaze position mentioned 
in Section 4.3.2. If the distance exceeds the preset threshold 𝜏 , the 
label is False, indicating the cursor coordinate can not serve as a 
proxy; otherwise, the label is True, indicating the cursor coordinate 
can serve as a proxy. Figure 9 gives the structure of Model 2. The 
cursor coordinate sequence first passes through one fully connected 
layer, followed by an LSTM [19] and another fully connected layer, 
and is then concatenated with the corresponding latent features 
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Figure 6: Waterfall chart of distances grouped by 50 intervals 

Figure 7: Line chart of distance over time 

from the video sequence. Afterward, the data is passed through five 
more fully connected layers to produce the final labels. 

6.3 Online Fine-Tuning with New User Data 
As previously mentioned, the primary goal of this work is to al-
low the system to quickly fine-tune both Model 1 and Model 2 
when encountering new users, thereby improving the eye tracking. 
Specifically, after collecting video and cursor coordinate sequences 
from a new user during cursor interaction, Model 2 is used to filter 
the cursor coordinates, selecting those likely to serve as accurate 
proxies for the gaze position. 

Once the filtered cursor coordinates are obtained, they are paired 
with corresponding images to fine-tune Model 1. Similar to standard 
transfer learning, a smaller learning rate and fewer epochs are 
adopted. However, unlike the typical approach, we fine-tune the 
entire model instead of only the final layers. 

After fine-tuning Model 1, its internal parameters are adjusted 
to better extract features for the new user. At this point, we repeat 
the filtering process with Model 2, using new latent features from 
Model 1, selecting new cursor coordinates, and continuing the fine-
tuning of Model 1. This iterative fine-tune process further refines 
the model’s ability to achieve better eye tracking for new users. 
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Figure 8: Heatmap of number threshold and different distance threshold 

7 Offline Evaluation with Dataset 
In this section, we will evaluate our approach using the previously 
collected dataset, focusing on three main scenarios: 

(1) We will first assess the gaze error of Model 1. It takes video 
as input and outputs gaze positions. We assess the gaze error 
when using cursor coordinates as a proxy for gaze positions 
in training, under the condition that the distance between 
the cursor and gaze is below different thresholds 𝜏 . 

(2) Next we will assess Model 2, which takes the latent features 
of video and cursor sequence as input and outputs labels 
determining whether cursor coordinates can serve as a proxy 
for gaze positions. We will evaluate its true positive rate 
under different 𝜏 values. Additionally, we will analyze the 
difference between the gaze-cursor distance and the 𝜏 value 
of false positive cases (abbreviated as “FP difference”). 

(3) We will monitor the performance changes in both Model 1 
and Model 2 during the iterative fine-tune process, including 
the gaze error of Model 1, as well as the true positive rate 
and FP difference of Model 2. 

In our evaluation, we applied a leave-one-out training approach, re-
peating the training process 24 times. For the first two scenarios, the 

left-out participant served as the validation set, while the remaining 
data was used for training. For the iterative fine-tune scenario, the 
data from participants who were not left out was used to pre-train 
Model 1 and Model 2. The first 20% of the left-out participant’s data 
(equivalent to 72 target selection trials, which takes approximately 
3-4 minutes) was used as the training set for iterative fine-tuning, 
while the remaining 80% was served for validation. 

The distance mentioned in this section is initially measured in 
pixels. We will convert it to centimeters based on the smartphone 
size and resolution (Section 3.2.1), and then convert it to angular 
units assuming a 40cm distance between the participant and the 
smartphone. 

7.1 Gaze Error of Model 1 
Figure 10 shows the box plot of gaze error of Model 1 with threshold 
𝜏 values ranging from 0 to 1000.0 px (5.75 cm). The gaze error is 
defined as the Euclidean distance between the actual gaze position 
and the estimated gaze position provided by Model 1. Ideally, the 
gaze error should be minimized for optimal performance. A 𝜏 value 
of 0 indicates that no cursor coordinates were used to replace the 
gaze positions, while positive 𝜏 values represent the use of cursor 
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Figure 9: Structure of COMETIC Models. Model 1 takes video and video info as input. Video first goes into resnet and then be 
concatenated with video info. After passing through two fully connect layers, we get latent features. Latent features will then 
pass through five fully connected layers to get the gaze position sequences. Model 2 takes the cursor sequence as input. After 
passing throught fully connected layer 1, LSTM, and fully connected layer 2, it will be concatenated with latent features from 
Model 1. The result will then pass through five fully connected layers and output cursor label sequence. In the bottom of this 
figure, it shows that we use the output of Model 2 to filter valid cursor coordinates, pair it with image and image info, and 
finetune the Model 1. 

coordinates in place of gaze positions when the distance between 
them is less than 𝜏 . 

RM-ANOVA revealed that different 𝜏 values significantly affected 
the gaze error (𝐹8.37,192.45 = 38.20, 𝑝 < 0.01). Table 4 shows the post-
hoc Bonferroni analysis under different 𝜏 values. The gaze errors 
for the 𝜏 combinations below are significantly higher than those for 
the 𝜏 above. It reveals 𝜏 values of 700.0 px (4.03 cm) is a threshold, 
where gaze error below this tau value is typically significantly lower 
than gaze error above it. 

7.2 True Positive Rate and FP Difference of 
Model 2 

Model 2 predicts whether the Euclidean distance between the cur-
sor coordinate and the gaze position is less than the threshold 𝜏 . 

A higher true positive rate means a larger proportion of actual 
positives are correctly identified by the model. Figure 11 shows 
the true positive rate of Model 2 for five participants across 𝜏 val-
ues ranging from 100.0 px (0.58 cm) to 1000.0 px (5.75 cm). True 
positive rate starts around 0.3 and increases to approximately 0.9 
at 𝜏 = 750.0 px(4.31 cm), eventually stabilizing around 0.95 at 
𝜏 = 1000.0 px(5.75 cm). 

Figure 12 illustrates the FP difference, with 𝜏 ranging from 
100.0 px (0.58 cm) to 1000.0 px (5.75 cm). A smaller difference in 
false positives means that when Model 2 misclassifies an object, 
the gaze-cursor distance of the misclassified object is closer to the 
corresponding 𝜏 value. A smaller difference is preferable. However, 
ANOVA results indicate no significant variation across different 𝜏 
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Figure 10: Gaze Error of Model 1 Given Different 𝜏 values 
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Table 4: 𝜏 Values with and Corresponding 𝜏 Ranges with Significantly Greater Gaze Error. 

values, with the average distance remaining consistently around 
183.0 px (1.05 cm). 

7.3 Performance During Iterative Fine-tune 
Process 

Table 5 presents the mean, standard deviation (std) of the minimal 
gaze error results across iterations during iterative fine-tuning 
for different 𝜏 values, as well as the improvement compared to 
the model without fine-tuning. The best calibration performance 
and largest improvement were observed at 𝜏 = 150.0 px(0.86 cm), 
where the gaze error reached 278.3 px (1.60 cm, 2.29◦), representing 
a 27.2% improvement over the result without fine-tune. 

Figure 13, 14, and 15 shows the gaze error of Model 1, true 
positive rate of Model 2, and FP difference of Model 2, given different 
𝜏 values and iterations. Blue and green markers indicate the values 
of participants for different iterations (iter 1 to 5), while orange 
markers represent the results from the pre-trained model without 
fine-tuning (iter 0). As noted earlier, there are five rounds of iterative 
fine-tuning, the markers with higher brightness indicating a smaller 

iteration index and lower brightness indicating a larger iteration 
index. 

7.3.1 Performance of Model 1 in Iterative Fine-tuning. As shown in 
Figure 13, the gaze error without fine-tuning is significantly larger 
than those with fine-tuning. Additionally, after iteration 1, the gaze 
error increases with the 𝜏 value and the iteration. RM-ANOVA 
result indicates a significant effect from 𝜏 ∗ 𝑖 𝑡 𝑒𝑟 𝑎𝑡 𝑖𝑜𝑛 (𝐹10.36,238.37 = 
23.92, 𝑝 < 0.001). Post-hoc LSD analysis supports the conclusion 
above. 

Table 6 shows the significance of gaze error between current 
and previous iteration under different 𝜏 values. A “-” indicates the 
current iteration has significantly lower gaze error, “+” indicates 
significantly higher, and “/” indicates no significant difference. It 
is evident that the gaze error of iteration 0 (without fine-tuning) 
is significantly higher than those of iteration from 2 to 5. Further-
more, fine-tuning no longer yields significant improvements after 
the fourth iteration, and when 𝜏 exceeds 300.0 px (1.73 cm), fine-
tuning leads to worse performance. This may be because higher 𝜏 
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Figure 11: True Positive Rate of Model 2 Given Different 𝜏 Values 
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Figure 12: FP Difference of Model 2 Given Different 𝜏 Values 

values inherently mean the information used for fine-tuning is less 
accurate. 

For iteration 0 (without fine-tuning) and iteration 1, there are no 
significant differences in gaze error across different 𝜏 values. Table 
7 shows the top three 𝜏 values with the smallest gaze error, and 
their corresponding 𝜏 ranges with significantly greater gaze error 
for iterations from 2 to 5. For each iteration, there is a threshold-like 
𝜏 value, above which the gaze error is significantly greater than for 

the top three 𝜏 values with the smallest gaze error. Furthermore, as 
the iterations increase, this threshold value continues to decrease. 

In summary, we suggest to use a 𝜏 value smaller than 300.0 px 
(1.73 cm) in practical applications. 

7.3.2 Performance of Model 2 in Iterative Fine-tuning. As shown in 
Figure 14, the relationship between true positive rate and 𝜏 value 
is consistent with that in Figure 11. RM-ANOVA result shows that 
neither the interaction effect 𝜏 ∗𝑖𝑡 𝑒𝑟 or the effect of iter is significant, 
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𝜏 value 0 100 150 200 250 300 350 400 450 500 
Mean (px) 413.1 279.1 278.3 282.2 281.4 286.6 284.1 289.4 292.8 293.3 
Mean (cm) 2.37 1.60 1.60 1.62 1.62 1.65 1.63 1.66 1.68 1.69 
Mean (°) 3.40 2.30 2.29 2.32 2.32 2.36 2.34 2.38 2.41 2.41 
Std (px) 227.7 90.8 83.7 90.2 84.5 100.0 85.8 85.0 90.4 93.2 
Std (cm) 1.31 0.52 0.48 0.52 0.49 0.57 0.49 0.49 0.52 0.54 
Std (°) 1.87 0.75 0.69 0.74 0.70 0.82 0.71 0.70 0.74 0.77 
Improvement 0 26.9% 27.2% 26.1% 26.6% 24.9% 25.7% 24.3% 23.9% 23.0% 

𝜏 value 550 600 650 700 750 800 850 900 950 1000 
Mean (px) 295.3 293.1 301.2 305.7 303.3 304.5 308.0 302.7 312.9 314.0 
Mean (cm) 1.70 1.69 1.73 1.76 1.74 1.75 1.77 1.74 1.80 1.81 
Mean (°) 2.43 2.41 2.48 2.52 2.50 2.51 2.53 2.49 2.58 2.58 
Std (px) 89.1 93.6 92.3 92.0 92.9 89.7 95.8 94.7 101.0 92.2 
Std (cm) 0.51 0.54 0.53 0.53 0.53 0.52 0.55 0.54 0.58 0.53 
Std (°) 0.73 0.77 0.76 0.76 0.77 0.74 0.79 0.78 0.83 0.76 
Improvement 22.4% 23.3% 21.3% 19.8% 20.8% 20.8% 19.3% 20.9% 18.3% 18.1% 

Table 5: Mean, Standard Deviation and Improvement to No Fine-tuning of Minimal Gaze Error under Different 𝜏 for Iterative 
Result 

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 

Tau…(px) 

280 

300 

320 

340 

360 

380 

G
az

e…
Er

ro
r…(

px
) 

Iter:…Gaze…Error…under…Different…Tau…Value 

Iteration 

Iter…0 

Iter…1 

Iter…2 

Iter…3 

Iter…4 

Iter…5 

Figure 13: Gaze Error of Model 1 Given Different 𝜏 Values and Iterations 

𝜏 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 
iter 1 - - - - - - - - - - - - - - - - - - -
iter 2 - - - - - - - - / / / / / / / / / / / 
iter 3 - - / / / / / / / + + + + + + + + + + 
iter 4 / / / / / + / + + + + + + + + + + + + 
iter 5 / / / / + / + + + + + + + + + + + + + 
Table 6: Significance Gaze Error Difference between Current and Previous Iteration under Different 𝜏 Values 

indicating the fine-tuning does not improve the true positive rate 
of Model 2. 

As shown in Figure 15, the FP difference without fine-tuning is 
significantly larger than that with fine-tuning. The FP difference 
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iteration iter=2 iter=3 iter=4 iter=5 
top three 𝜏 with 
least gaze error 250 300 350 100 150 250 100 150 250 100 150 200 

𝜏 with significantly 
greater gaze error 

650 
to 
1000 

650 
to 
1000 

650 
to 
1000 

450 
to 
1000 

450 
to 
1000 

450 
to 
1000 

450 
to 
1000 

400 
to 
1000 

400 
to 
1000 

300 
to 
1000 

300 
to 
1000 

400 
to 
1000 

Table 7: Top Three 𝜏 Values with the Smallest Gaze Error and Corresponding 𝜏 Ranges with Significantly Greater Gaze Error for 
Different Iterations 

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 

Tau…(px) 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

Tr
ue

…P
os

iti
ve

…R
at

e 

Iter:…True…Positive…Rate…under…Different…Tau…Value 

Iteration 

Iter…0 

Iter…1 

Iter…2 

Iter…3 

Iter…4 

Iter…5 

Figure 14: True Positive Rate of Model 2 Given Different 𝜏 Values and Iterations 

increases with the 𝜏 value, as well as iterations when 𝜏 value is large. 
RM-ANOVA result indicates a significant effect from 𝜏 ∗ 𝑖𝑡 𝑒𝑟 𝑎𝑡 𝑖𝑜 𝑛 
(𝐹9.38,215.7 = 2.8, 𝑝 < 0.001). Post-hoc LSD analysis supports the 
conclusion above. 

Table 8 shows the difference of FP difference between current 
and previous iteration under different 𝜏 values. A “-” indicates the 
current iteration has significantly lower FP difference, “+” indicates 
significantly higher, and “/” indicates no significant difference. It is 
evident that the FP difference of iteration 0 (without fine-tuning) is 
significantly higher than those of iteration from 2 to 5. Furthermore, 
fine-tuning no longer yields significant improvements after the 
third iteration, and when 𝜏 exceeds 450.0 px (2.59 cm), fine-tuning 
constantly leads to worse performance. 

In summary, we prove that the model structure in Section 6 which 
introduces latent features of video from Model 1 into Model 2 could 
decrease the difference between the gaze-cursor distance and the 
𝜏 value of false positive cases. Additionally, we suggest to use a 𝜏 
value smaller than 450.0 px (2.59 cm) in practical applications. 

7.4 Summary of Evaluation 
In conclusion, our iterative method achieved an optimal gaze error 
of 278.3 px (1.60 cm, 2.29◦) when 𝜏 is150.0 px (0.86 cm) and iteration 

is 5, representing a 27.2% improvement compared to the results 
without fine-tune. The 𝜏 value has a significant impact on Model 1’s 
gaze error and Model 2’s true positive rate, but has no significant 
impact on Model 2’s FP difference. In practical application, we rec-
ommend using a 𝜏 value smaller than 300.0 px (1.73 cm). Iteration 
has a significant impact on Model 1’s gaze error and Model 2’s FP 
difference, but has no significant impact on Model 2’s true positive 
rate. For both Model 1’s gaze error and Model 2’s FP difference, 
those of iteration 0 (without fine-tuning) are significantly worse 
than those of iteration from 1 to 5 (after fine-tuning). More iter-
ations of fine-tuning improve performance when the 𝜏 value is 
small, but reduce performance when the 𝜏 value is large. This may 
be because higher 𝜏 values inherently lead to less accurate infor-
mation for fine-tuning. Furthermore, the improvement observed 
with increasing iterations highlights the effectiveness of the model 
structure described in Section 6, where latent video features from 
Model 1 are incorporated into Model 2 to enhance performance. 
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Figure 15: FP difference of Model 2 Given Different 𝜏 Values and Iterations 

𝜏 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 
iter 1 - - - - - - - - - - - - - - - - - - -
iter 2 - - - / / / / / / / / / / / / / / / / 
iter 3 - / / / / / / / / / / / / / + / / / + 
iter 4 / / / / / / / / + / / / + + / + + / / 
iter 5 - / / / + / / + + + + + + + + + + / / 

Table 8: Significance of Difference of FP Difference between Current and Previous Iteration under Different 𝜏 Values 

8 Real-Time Evaluation 

8.1 Apparatus, Participants and Procedure 
The apparatus used in this Section is identical to that in Section 
3.2.1’s design space experiment. 

A total of 14 participants (5 females, aged 19-31, M = 24.4) were 
recruited from the university for this experiment. None of the 
participants had previously participated in the data collection ex-
periment. During the experiment, participants held the 3D-printed 
stand with the Tobii eye tracker, used the touch tensor attached to 
the back of the smartphone to achieve activation, and used thumb 
slide to achieve refinement. This time participants did not use the 
metal stand to prevent shakes from swipes, and were told to use 
the smartphone naturally. The entire experiment lasted 45 minutes 
to an hour. Participants were compensated at a rate of $15 USD per 
hour. 

The procedure is almost identical to that in Section 4.2. There are 
three differences: (1) Participants will conduct five rounds in one 
experiment; (2) In each round, participants will first conduct manual 
calibration, followed by 50 target selection tasks; (3) Participants 
could rest for five minutes between each round. 

We will collect the following data during the experiment: the 
size and position of the target, the sequence of cursor positions, the 

sequence of eye tracking data (gaze positions), and the video from 
the front camera. We used all the data in Section 4 to train a model 
at 𝜏 = 150.0 px (0.86 cm) and 𝑖𝑡 𝑒𝑟 𝑎𝑡 𝑖𝑜𝑛 = 5, which is then used as 
the initial model in the experiment. After each round, the collected 
data is pre-processed as mentioned in Section 4.3, and then used to 
fine-tune the model in real-time. The updated model is applied in 
the next round of the experiment. 

8.2 Real-time Evaluation Result 
Table 9 shows the mean and standard deviation of gaze error for five 
rounds, and for the overall minimum, as well as the improvement of 
gaze error mean compared to that without fine-tuning. The overall 
minimum is the minimal gaze error among five rounds. We focus 
on the overall minimum because when fine-tuning with the same 
meta data, its effects vary across participants due to differences in 
their data distributions. The gaze error of 𝑖 -th round is computed as 
follows: (1) Use the model from the 𝑖 −1-th round, which was trained 
on data from rounds 1 to 𝑖 − 1, and the front camera data collected 
in the 𝑖 -th round to compute the 𝑔𝑎𝑧𝑒𝑒𝑠𝑡 𝑖𝑚𝑎𝑡 𝑒 . (2) Eye tracker data 
from the 𝑖 -th round is used as the 𝑔𝑎𝑧𝑒𝑡 𝑟 𝑢𝑡ℎ . (3) The gaze error 
is computed as the Euclidean distance between 𝑔𝑎𝑧𝑒𝑒𝑠𝑡 𝑖𝑚𝑎𝑡 𝑒 and 
𝑔𝑎𝑧𝑒𝑡 𝑟 𝑢𝑡ℎ . Therefore, the data of Round 1 demonstrates the mean 
and std without fine-tuning, the data of Round 2 demonstrates the 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Liu et al. 

Round 1 2 3 4 5 minimal 
Mean (px) 893.6 801.7 590.1 517.2 538.0 446.7 
Mean (cm) 5.14 4.61 3.39 2.97 3.09 2.57 
Mean (°) 7.32 6.57 4.85 4.25 4.42 3.68 
Std (px) 393.0 645.2 139.7 160.8 177.7 112.2 
Std (cm) 2.26 3.71 0.8 0.92 1.02 0.64 
Std (°) 3.23 5.39 1.15 1.32 1.46 0.92 
Improvement / 10.3% 34.0% 42.1% 39.8% 50.0% 

Table 9: Mean, Standard Deviation of Gaze Error for Five Rounds and for the Overall Minimum, and Improvement Compared 
to the Mean without Fine-tuning 

mean and std computed using data from Round 2 and the model 
from Round 1, etc. 

As a result, our method shows a gaze error mean of 893.6 px 
(5.14 cm, 7.32◦) without fine-tuning. Among the rounds, the fourth 
round has the lowest gaze error mean at 517.2 px (2.98 cm, 4.25◦), 
representing a 42.1% improvement compared to the no fine-tuning 
condition. The mean of overall minimum gaze error across all 
rounds is 446.7 px (2.57 cm, 3.68◦), which is a 50.0% improvement 
over the no fine-tuning condition. Compared to offline performance, 
it outperforms real-world performance by 37.8%. We propose sev-
eral possible explanations for this discrepancy: 

(1) Significant posture changes occurred between rounds during 
the real-time experiment, as participants had to put down 
and pick up the smartphone for each round. In contrast, 
our data used in the offline evaluation was collected while 
participants consistently held the smartphone, maintaining 
stable postures. 

(2) Less stable camera footage during interaction due to thumb 
taps and swipes, as well as head movements, since the real-
time experiment did not use the metal stand. 

(3) Less data for fine-tuning. The average time consumption of 
the fine-tuning in the real-time experiment from Round 1 
to Round 5 is 22.09 s, 40.98 s, 67.24 s, 84.79 s, 109.25 s. The 
average time consumption of offline training on our dataset 
is around 350 s. This difference reflects the variation in the 
amount of data, which directly impacts the fine-tuning per-
formance. 

8.3 Empirical Comparison with Other 
Calibration Method 

Table 10 shows the empirical comparison of gaze error between 
COMETIC and other existing methods. We listed both the offline 
gaze error from Section 7, as well as the real-time gaze error from 
Section 8. The results indicate that the gaze error of our method is 
comparable to that of existing methods. 

9 Discussion 

9.1 Eye-Tracking Performance and Interaction 
Experience 

On the smartphone mentioned in Section 4 with a resolution of 
1200 × 2486, the typical icon layout is 4-column by 7-row. The of-
fline minimal gaze error computed from our dataset in Section 7.3 
is 278.3 px (1.60 cm, 2.29◦), enabling icon-level gaze selection and 

analysis for a 4-column by 8-row layout. In contrast, the real-time 
minimal gaze error computed in real-time conditions is 446.7 px 
(2.57 cm, 3.68◦). While this only supports a 2-column by 5-row 
layout, it is still sufficient for effective target selection using our 
method’s cursor interaction. Although both methods show signif-
icantly improved performance compared to the absence of cali-
bration, the offline performance is 37.8% better than the real-time 
performance. As mentioned in Section 8.2, this discrepancy may 
be attributed to: (1) significant posture changes caused by putting 
down and picking up the smartphone, (2) the less stable camera 
footage caused by swipe shakes and head movements, (3) the less 
amount of data for fine-tuning. 

9.2 Potential Exploration on Gaze Behavior 
Although this study experimented with three different interaction 
distances (200, 600, and 1200 px), no further investigation was con-
ducted into how these distances affect user behavior and, subse-
quently, the impact of data validity on model training performance. 
We believe that future work could build upon this study to explore 
these aspects. Furthermore, if interaction distances do influence 
data validity (e.g., longer distances leading to more gaze-following 
behaviors and providing more valuable data), we could adjust the 
eye-tracking outcomes to guide users toward specific actions or 
behaviors, enriching the data and ultimately improving model out-
comes. 

9.3 Impact of Content on Gaze Behavior in 
Real-Time Interaction Scenarios 

One of the key limitations of this study is that it does not thoroughly 
explore how varying content backgrounds in real-life settings affect 
gaze behavior during interaction and, subsequently, the accuracy 
of our implicit calibration. Different types of content—whether 
they are text-heavy interfaces, video playback, or interactive el-
ements—can lead to distinct attractions in eye movement during 
cursor interaction. 

However, as discussed in section 2, the use of a cursor in interac-
tive tasks provides constraint on the user’s gaze behavior, helping 
to mitigate some of the unpredictability found in more natural, 
unconstrained interactions. The presence of the cursor helps direct 
the user’s attention toward specific areas of the interface, making 
the eye movements more predictable and easier to model. 
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Project Year Devices Sensor Calibration Method Error(cm) Error(°) 
COMETIC (offline) 2024 Mobile RGB Cursor interaction 1.60 cm 2.29◦ 

COMETIC (real-time) 2024 Mobile RGB Cursor interaction 2.57 cm 3.68◦ 

PACE (real-time) [21] 2016 PC RGB Interaction event 3.09 cm 2.56° 
GazeRefineNet (offline) [48] 2020 PC RGB Visual saliency 2.75 cm 2.49° 
GazeL (offline) [47] 2021 Mobile RGB Touch event 1.58 cm -
vGaze (real-time) [68] 2021 Mobile RGB-D Image attention 1.51 cm -
iTracker (offline) [30] 2016 Mobile RGB Explicit calibrate with 13 points 1.34 cm -

Table 10: Empirical Comparison between COMETIC and Existing Methods 

Moreover, from an interaction design perspective, there are sev-
eral strategies that could be employed to further reduce the influ-
ence of content on gaze behavior. For example, activating the cursor 
could dim the areas outside its immediate surroundings, directing 
the user’s attention more effectively toward the active region. This 
approach minimizes distractions from other on-screen elements, 
allowing for more consistent gaze behavior during cursor-based 
interactions. 

9.4 Limitation on Efficiency 
The calibration method used in this study fundamentally involves 
collecting additional training data and fine-tuning the eye-tracking 
model. Compared to traditional calibration techniques, this in-
evitably presents efficiency challenges. Standard multi-point cali-
bration methods typically take around 30 seconds to 1 minute to 
complete. In contrast, our approach requires significantly more 
time. Utilizing an NVIDIA GeForce RTX 3090, each iteration of 
model fine-tuning takes approximately 350 seconds, therefore five 
rounds of interaction took roughly 30 minutes. This time could 
further increase as more user data accumulates, making the process 
increasingly time-intensive. 

We believe that one of the primary reasons for the inefficiency 
lies in the fact that the current model is still learning how to effec-
tively extract user-specific features during the fine-tuning phase, 
rather than simply establishing a robust mapping between features 
and gaze positions. 

With advancements in computer vision, using existing models to 
extract effective features tends to be a better solution. For example, 
by using segmentation techniques, the eye region could be divided 
into key areas such as the pupil, cornea, eyelids, and eyebrows, 
which could then be parameterized and fed into the eye-tracking 
model. In this approach, the dimensionality eye-tracking model’s 
input is significantly reduced, and the model would only need to 
focus on the mapping. This approach might even enable the use of 
simpler machine learning methods to handle the mapping process, 
thereby dramatically reducing the time required for calibration. 

Another issue observed in our study is that, due to the inherent 
differences in data distributions across users, the optimal meta-data 
for achieving the best fine-tuning results may also vary significantly 
between individuals. In this study, we used the same meta-data for 
all participants, which likely contributed to the considerable varia-
tion in training outcomes. We believe that developing algorithms 
capable of quickly adapting to personalized data, potentially by 
leveraging the aforementioned feature extraction techniques, is an 
important avenue for future research. 

Despite the issues mentioned above, we still believe that im-
plicit calibration during interaction is more suitable than explicit 
calibration. There are three main reasons for this: 

(1) For eye tracking on mobile devices using cameras, frequent 
calibration is often needed to maintain accuracy. If users are 
required to perform explicit calibration frequently, it would 
inevitably disrupt their normal use. 

(2) The current fine-tuning process, which takes 350 seconds, 
uses data from around 72 instances of cursor usage. We could 
further reduce calibration time by fine-tuning with fewer 
instances of cursor usage. As shown in Section 8.2, a smaller 
amount of data reduces the training time, but at the cost of 
lower eye-tracking accuracy. Identifying an optimal number 
of cursor usage events for effective calibration is one of the 
directions for future work. 

(3) Advancements in hardware will further decrease the time 
consumption for fine-tuning model. 

9.5 Limitation on Privacy 
The calibration method also introduces privacy issues, as fine-
tuning requires GPU processing, necessitating the upload of front-
camera data to the cloud. We believe there are two ways to mitigate 
this issue: 

(1) We could deploy a deep neural network model on the smart-
phone to encode the data from the front camera, and retrain 
the models using encoded data as input. This method avoids 
directly uploading videos containing user facial data to the 
cloud. 

(2) As mentioned in Section 9.4, our method suffers from low 
efficiency since it needs to achieve feature extraction as 
well as mapping features to gaze positions simultaneously. 
Utilizing a reliable feature extraction model may decrease 
the number of parameters, potentially enabling full model 
deployment on a smartphone. 

10 Conclusion 
In this paper, we presented COMETIC, an interaction-integrated 
method for implicit, continuous eye-tracking calibration on smart-
phones. Our system leverages low-effort cursor interactions to col-
lect calibration data during cursor refinement on the smartphone. 
By filtering valid cursor coordinates and using them as gaze posi-
tion proxies, our approach achieves unobtrusive calibration and 
maintains eye-tracking accuracy during the interaction. Offline 
evaluation on our dataset demonstrated a 27.2% improvement in 
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eye tracking accuracy, achieving a mean error of 278.3 px (1.60 cm, 
2.29◦). The real-time evaluation demonstrates a 50.0% improvement, 
achieving a mean error of 446.7 px (2.57 cm, 3.68◦). Future work 
could further optimize the system by exploring the impact of con-
tent variability and efficiency, with the goal of enhancing real-time 
performance in more complex situations. 
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