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Figure 1: In this paper, we explored the impact of visual stimuli on the noticeability of redirection in Virtual Reality. We 
developed a computational model that takes users’ gaze behavior as input and predicts the noticeability of redirection under 
diferent visual stimuli. Using this model, we implemented an adaptive redirection technique, demonstrated in a boxing training 
scenario: Left: When the opponent approaches and attacks, visual stimuli are intense, making the redirection unnoticable. 
Middle: As the opponent retreats, visual stimuli decrease that causes the noticeability becoming higher during the interaction. 
Right: When the model detects the change in noticeability, the system dynamically adjusts the redirection magnitude, ensuring 
it remains unnoticed. 

Abstract 
∗Corresponding author While users could embody virtual avatars that mirror their physical 

movements in Virtual Reality, these avatars’ motions can be redi-
rected to enable novel interactions. Excessive redirection, however, 
could break the user’s sense of embodiment due to perceptual con-
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environment afect user behavior and, in turn, the noticeability of 
redirection. Given the wide variety of diferent types of visual stim-
uli and their tendency to elicit varying individual reactions, we pro-
pose to use users’ gaze behavior as an indicator of their response to 
the stimuli and model the noticeability of redirection. We conducted 
two user studies to collect users’ gaze behavior and noticeability, 
investigating the relationship between them and identifying the 
most efective gaze behavior features for predicting noticeability. 
Based on the data, we developed a regression model that takes users’ 
gaze behavior as input and outputs the noticeability of redirection. 
We then conducted an evaluation study to test our model on un-
seen visual stimuli, achieving an accuracy of 0.012 MSE. We further 
implemented an adaptive redirection technique and conducted a 
preliminary study to evaluate its efectiveness with complex visual 
stimuli in two applications. The results indicated that participants 
experienced less physical demanding and a stronger sense of body 
ownership when using our adaptive technique, demonstrating the 
potential of our model to support real-world use cases. 

CCS Concepts 
• Human-centered computing → Gestural input; HCI theory, 
concepts and models. 
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1 Introduction 
Virtual Reality (VR) systems enable users to embody virtual avatars 
by mirroring their physical movements and aligning their perspec-
tive with virtual avatars’ in real time. As the head-mounted dis-
plays (HMDs) block direct visual access to the physical world, users 
primarily rely on visual feedback from the virtual environment 
and integrate it with proprioceptive cues to control the avatar’s 
movements and interact within the VR space. Since human percep-
tion is heavily infuenced by visual input [19], VR systems have 
the unique capability to control users’ perception of the virtual 
environment and avatars by manipulating the visual information 
presented to them. Leveraging this, various redirection techniques 
have been proposed to enable novel VR interactions, such as redi-
recting users’ walking paths [55, 61, 63], modifying reaching move-
ments [3, 9, 13, 21], and conveying haptic information through 
visual feedback to create pseudo-haptic efects [10, 36, 59]. Such 
redirection techniques enable these interactions by manipulating 
the alignment between users’ physical movements and their virtual 
avatar’s actions. 

However, these redirection techniques are most efective when 
the manipulation remains undetected [23, 41]. If the redirection 
becomes too large, the user may not mitigate the confict between 
the visual sensory input (redirected virtual movement) and their 

proprioception (actual physical movement), potentially leading 
to a loss of embodiment with the virtual avatar and making it 
difcult for the user to accurately control virtual movements to 
complete interaction tasks [16, 41, 65]. While proprioception is 
not absolute, users only have a general sense of their physical 
movements and the likelihood that they notice the redirection is 
probabilistic. This probability of detecting the redirection is referred 
to as noticeability [41, 68, 69] and is typically estimated based 
on the frequency with which users detect the manipulation across 
multiple trials. 

Prior research has explored factors infuencing the noticeability 
of redirected motion, including the redirection’s magnitude [54, 
65], direction [16, 41], and the visual characteristics of the virtual 
avatar [15, 50]. While these factors focus on the avatars, the sur-
rounding virtual environment can also infuence the users’ behavior 
and in turn afect the noticeability of redirection. This, however, 
remains underexplored. One such prominent external infuence 
is through the visual channel - the users’ visual attention is con-
stantly distracted by complex visual efects and events in practical 
VR scenarios. We thus want to investigate how visual stimuli in 
the virtual environment afect the noticeability of redirection. 
With this, we hope to complement existing works that focus on 
avatars by incorporating environmental visual infuences to enable 
more accurate control over the noticeability of redirected motions 
in practical VR scenarios. 

Since each visual event is a complex choreography of many 
underlying factors (type of visual efect, location, duration, etc.), 
it is extremely difcult to quantify or parameterize visual stimuli. 
Furthermore, individuals respond diferently to even the same visual 
events. Prior neuroscience studies revealed that factors like age, 
gender, and personality can infuence how quickly someone reacts 
to visual events [18, 20]. Therefore, aiming to model visual stimuli 
in a way that is generalizable and applicable to diferent stimuli and 
users, we propose to use users’ gaze behavior as an indicator of 
how they respond to visual stimuli. In this paper, we used various 
gaze behaviors, including gaze location, saccades [33], fxations [53], 
and the Index of Pupil Activity (IPA) [11]. These behaviors indicate 
both where users are looking and their cognitive activity, as looking 
at something does not necessarily mean they are attending to it. 
Our goal is to investigate how these gaze behaviors stimulated 
by various visual stimuli relate to the noticeability of redirection. 
With this, we contribute a model that allows designers and content 
creators to adjust the redirection in real-time responding to dynamic 
visual events in VR. 

To achieve this, we conducted user studies to collect users’ no-
ticeability of redirection under various visual stimuli. To simulate 
realistic VR scenarios, we adopted a dual-task design in which the 
participants performed redirected movements while monitoring 
the visual stimuli. Specifcally, participants’ primary task was to 
report if they noticed an ofset between the avatar’s movement and 
their own, while their secondary task was to monitor and report 
the visual stimuli. As realistic virtual environments often contain 
complex visual efects, we started with simple and controlled visual 
stimulus to manage the infuencing factors. 

We frst conducted a confrmation study (N=16) to test whether 
applying visual stimuli (opacity-based) actually afects their notice-
ability of redirection. The results showed that participants were 
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signifcantly less likely to detect the redirection when visual stimuli 
was presented (� (1,15) = 5.90, � = 0.03). Furthermore, by analyzing 
the collected gaze data, results revealed a correlation between the 
proposed gaze behaviors and the noticeability results (� = −0.43), 
confrming that the gaze behaviors could be leveraged to compute 
the noticeability. 

We then conducted a data collection study to obtain more accu-
rate noticeability results through repeated measurements to better 
model the relationship between visual stimuli-triggered gaze be-
haviors and noticeability of redirection. With the collected data, 
we analyzed various numerical features from the gaze behaviors to 
identify the most efective ones. We tested combinations of these 
features to determine the most efective one for predicting notice-
ability under visual stimuli. Using the selected features, our regres-
sion model achieved a mean squared error (MSE) of 0.011 through 
leave-one-user-out cross-validation. Furthermore, we developed 
both a binary and a three-class classifcation model to categorize 
noticeability, which achieved an accuracy of 91.74% and 85.62%, 
respectively. 

To evaluate the generalizability of the regression model, we 
conducted an evaluation study (N=24) to test whether the model 
could accurately predict noticeability with new visual stimuli (color-
and scale-based animations). Specifcally, we evaluated whether 
the model’s predictions aligned with participants’ responses under 
these unseen stimuli. The results showed that our model accurately 
estimated the noticeability, achieving mean squared errors (MSE) of 
0.014 and 0.012 for the color- and scale-based visual stimili, respec-
tively, compared to participants’ responses. Since the tested visual 
stimuli data were not included in the training, the results suggested 
that the extracted gaze behavior features capture a generalizable 
pattern and can efectively indicate the corresponding impact on 
the noticeability of redirection. 

Based on our model, we implemented an adaptive redirection 
technique and demonstrated it through two applications: adaptive 
VR action game and opportunistic rendering. We conducted a proof-
of-concept user study (N=8) to compare our adaptive redirection 
technique with a static redirection, evaluating the usability and 
benefts of our adaptive redirection technique. The results indicated 
that participants experienced less physical demand and stronger 
sense of embodiment and agency when using the adaptive redirec-
tion technique. These results demonstrated the efectiveness and 
usability of our model. 

In summary, we make the following contributions. 

• We propose to use users’ gaze behavior as a medium to 
quantify how visual stimuli infuences the noticebility of 
redirection. Through two user studies, we confrm that visual 
stimuli signifcantly infuences noticeability and identify key 
gaze behavior features that are closely related to this impact. 

• We build a regression model that takes the user’s gaze be-
havioral data as input, then computes the noticeability of 
redirection. Through an evaluation study, we verify that our 
model can estimate the noticeability with new participants 
under unseen visual stimuli. These fndings suggest that the 
extracted gaze behavior features efectively capture the in-
fuence of visual stimuli on noticeability and can generalize 
across diferent users and visual stimuli. 

• We develop an adaptive redirection technique based on our 
regression model and implement two applications with it. 
With a proof-of-concept study, we demonstrate the efec-
tiveness and potential usability of our regression model on 
real-world use cases. 

2 Related work 

2.1 Redirection in VR 
As users tend to prioritize visual information over other sensory 
channels when they are facing various information from the sensory 
system, (i.e., visual dominance [19, 57]), VR provides the opportu-
nity to manipulate the visual information that users perceive to 
enable novel interactions. While the manipulation is applied to 
users’ movement and remains undetected, users will fall into the 
illusion that makes them believe their physical body movement is 
consistent with the manipulated virtual movement, which is called 
redirection. Redirection can be implemented by adding an ofset to 
the user’s movement in VR to adjust the trajectory slightly [22, 31]. 

Redirection has been widely used in VR applications to improve 
interaction performance and enable new interactions, including 
visuo-haptic illusion, augmenting input techniques and redirected 
walking. As one of the most frequently-used forms of body input, 
hand movement has been widely explored as the subject of redi-
rection illusions. Hand redirection has been employed to alter the 
perceived shape [30, 72] and location [4, 9] of passive haptic props; 
this creates visuo-haptic illusions [66], which have been found to 
increase users’ reutilization of physical counterparts to diferent 
virtual objects. To improve the interaction efciency, researchers 
applied redirection techniques by adding ofsets to users’ hand 
movement [17, 48]. As one of the earliest works that modifed the 
user’s body movement to enhance input performance, the Go-Go 
technique [54] extended the virtual hand’s depth with a non-linear 
function to enable users to interact with objects beyond the reach. 
Ownershift [16] proposed a technique that allowed the user’s phys-
ical hand to shift to comfortable poses while keeping the virtual 
hand in mid-air, to keep the user unaware of the movement and 
avoid physical fatigue. Wentzel et al. proposed a hand position 
amplifcation technique with an adaptive function, enabling users 
to interact with objects beyond reach while keeping the ofset un-
noticed [65]. Prior work explored manipulating the movement of 
other body parts, e.g., redirected walking techniques to guide users 
to specifc physical locations while walking in the virtual environ-
ment. By applying slightly angular ofsets to users’ footsteps, this 
technique allows users to walk in a boundless virtual environment 
within the confnes of a restricted physical space [35, 56]. 

These redirection-based interaction techniques enable novel 
functionalities in VR (e.g., redirected walking) or improve users’ 
interaction performance (e.g., Go-Go technique). These studies high-
light the application and beneft of redirection in VR interactions, 
which motivates us to further explore redirection techniques in VR. 

2.2 Noticeability of redirection in VR 
Though redirection-based methods enable various novel interac-
tions in VR, previous studies suggested that it is also important to 
main embodiment during redirection [65, 68, 70]. The challenges 
around maintaining embodiment with redirection techniques are in 
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how to minimize users’ noticeability of ofsets between their own 
bodies and virtual avatars. To investigate the detection threshold 
of redirection, Burns et al. implemented redirection motion tech-
niques in a game scenario and derived a detection threshold of 19.1 
degrees (19cm) between the real and virtual hand [7]. Similarly, 
Lee et al. investigated the threshold for fnger tracking errors and 
derived a much lower Just-Noticeable Diference (JND) of 5.2 cm, 
using a dot to indicate the fngertip position [38] rather than a full 
representation of virtual hands. To extend the detection threshold 
to a noticing probability, Li et al. studied noticeability of redirection 
with diferent strength and direction on the user’s arm movement 
and provided a model to compute the noticeability for given ofset 
strength and direction [41]. 

In addition, adding coherent haptic feedback to the user’s motion 
can also impact the noticeability of applied motion ofset. Abtahi 
and Follmer investigated the fngertip ofset detection threshold 
along with a physical proxy providing haptic feedback [1]. The 
derived thresholds achieved 49.5 degrees on the horizontal axis, 
which was larger than the previously reported value. Similary, 
Feick et al. investigated how to leverage simple physical proxies to 
provide visuo-haptic illusions and investigated the noticeability of 
discrepancy between the physical and virtual object. Their results 
indicated that users could bear a bigger ofset when they gained 
more sensory information from other modalities. 

Another efective approach to making redirection less notice-
able is to manipulate the virtual environment by leveraging users’ 
moments of inattention or blindness. One method involves per-
forming these manipulations outside the user’s feld of view. For 
example, Suma et al. altered the geometry of a virtual room behind 
the user to subtly redirect walking paths [62]. Similarly, Lohse et al. 
and Patras et al. remapped virtual objects to physical props for 
haptic retargeting when they were outside the user’s view [43, 51]. 
Another approach is to introduce manipulations within the user’s 
feld of view but outside their focus of attention. Marwecki et al. 
developed a system that uses eye tracking and attention models 
to apply changes only when objects fall outside the user’s visual 
attention [44]. However, these manipulations primarily focused on 
altering the virtual environment, rather than redirecting the move-
ment of virtual avatars. In the context of virtual motion redirection, 
Zenner et al. proposed applying virtual hand position ofsets during 
user blinks. Their fndings revealed that detection thresholds were 
signifcantly higher when the saccade direction opposed the hand 
ofset direction [68, 71]. While Zenner et al. proposed redirecting 
users’ motions during blinks, we explored the extent to which this 
redirection can be applied and examined its noticeability. 

These studies reveal that the noticeability of redirection in VR 
can be infuenced by various factors. While much of the research 
has focused on virtual avatars, the impact of the surrounding vir-
tual environment on noticeability remains largely unexplored. To 
address this gap, we propose to investigate and model how visual 
stimuli afect the noticeability of redirection in this paper. 

2.3 Gaze behaviors for HCI 
Gaze behaviors have become crucial for understanding users’ men-
tal states and interaction intentions, especially with the integration 
of eye tracking in HMDs and smart glasses. Beyond indicating 

where users are looking, gaze behaviors have also been used to clas-
sify attentional directions and indicate users’ cognitive states [64]. 
For instance, Benedek et al. demonstrated that pupil dilation is 
linked to cognitive focus [5], while Duchowski et al. introduced the 
Index of Pupil Activity (IPA) as a metric for cognitive load, which 
has been applied in HCI applications such as adaptive MR user 
interfaces [42]. Furthermore, Annerer-Walcher et al. emphasized 
the role of pupil dilation in diferentiating between internal and 
external attention [2]. In addition to pupil features, saccadic eye 
movements (saccade) and fxation duration are key indicators of 
cognitive load. Zagermann et al. and Holmqvist et al. found that 
longer fxations and shorter saccades were linked to higher cogni-
tive demands [27, 67]. These fndings suggest a strong correlation 
between gaze behaviors and cognitive activity. 

Previous studies suggest that users’ cognitive activities infu-
ence gaze behaviors over several seconds, rather than just a few 
frames. For example, Faber et al. recently demonstrated that content-
independent gaze features with a 12-second window were efective 
for estimating cognitive load during reading tasks [12]. Similarly, 
a time window-based method was proved to be efective in tasks 
such as flm watching [47], interactive tutoring [29], and lecture 
viewing [28]. These studies also indicate that shorter windows (less 
than 10 seconds) may not capture enough fxation and saccade 
information to accurately detect covert inattention [6, 29] which 
lead to lower accuracy [28, 29]. Therefore, a longer windows (20-30 
seconds) were more suitable for using gaze behaviors for estimating 
users’ cognitive activities. 

Based on the fndings of previous studies, we propose to investi-
gate how to use the gaze behaviors (gaze saccade, fxation, pupil 
activity) to compute the noticeability of redirection under various 
visual stimuli. 

3 Methodology 
To explore how to use gaze behaviors to compute the noticeability 
of redirection under visual stimuli, we employed a dual-task design 
in the following confrmation and data collection studies, which 
allows us to collet noticeability responses from participants while 
simultaneously presenting visual stimuli. In this section, we detail 
the methodology step by step. 

3.1 Selecting left arm for investigation 
Previous studies have applied redirection techniques to users’ walk-
ing paths [31], hand positions [65], and arm motions [54]. Consid-
ering that the arms are among the most frequently used body parts, 
we focused our investigation on the redirection of arm movements. 
To control for the infuence of hand dominance, all user studies 
were conducted on left arms of right-handed participants. We ac-
knowledge that hand dominance and diferent body parts may lead 
to noticeability diference of the applied redirection, we believe that 
this approach and the main fndings will be both applicable to the 
right arm and extendable to other body parts in future studies. 

3.2 Redirection mechanism 
In this paper, we adopted the same redirection mechanism as previ-
ous studies [41], which applied angular redirection to users’ elbow 
joints during movement. The redirection was applied dynamically, 
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starting with no redirection at the initial pose (pointing to the 
ground) and gradually increasing to the maximum redirection at 
the target ending pose. The redirection of the intermediate mo-
tion was calculated based on the relative angular distance from 
the starting pose and was adjusted linearly throughout the move-
ment. The strength of the redirection was adjusted by modifying 
the maximum redirection applied at the ending pose. 

3.3 Dual-task design 
In realistic virtual environments, users often engage with com-
plex visual efects (e.g., game props) while controlling their virtual 
avatars. To simulate this, we designed a dual-task study where par-
ticipants were required to perform redirection motions (primary 
task) while monitoring and responding to visual stimuli at the same 
time (secondary task). 

3.3.1 Primary task. As the primary task, participants were asked 
to perform arm motions with redirected virtual arms in VR. Each 
motion was defned by a starting arm pose and a target ending pose. 
The starting pose was fxed in a natural resting position, with the 
arm positioned beside the body. The target ending pose was sam-
pled from a motion capture dataset that included daily life poses, 
such as walking, sports, sitting, and others, as described in subsec-
tion 3.4. To ensure that all participants performed the movements 
consistently, we added an intermediate checkpoint pose between 
the starting and ending poses. During the study, both the target 
ending pose and the intermediate checkpoint pose were rendered 
as semi-transparent, allowing participants to observe them without 
causing visual occlusion. In contrast, the participants’ redirected 
virtual arm was rendered normally, as illustrated in Figure 2. 

At the beginning of each trial, participants were instructed to 
perform the starting pose, in which they lowered their physical 
arm and pointed to the foor. Since there was no redirection at this 
position, the virtual arm also pointed downward. For each trial, a 
semi-transparent intermediate pose and target pose were displayed. 
Participants were then instructed to lift their physical arms, guiding 
their virtual arms past the intermediate pose to reach the target 
pose. Throughout this process, participants were asked to keep the 
virtual arm within their feld of view at all times. After reaching the 
target pose, participants were asked to move their virtual arm back 
to the starting pose and report to experimenters verbally whether 
they perceived any diference between their physical and virtual 
movement, according to the yes/no paradigm [39]. We estimated 
the noticeability of redirection in each condition with the ratio of 
positive responses (indicating noticed redirection in the trials) to 
the number of trials, referring to previous studies [41]. 

3.3.2 Secondary task. In parallel with the primary task, partici-
pants were asked to monitor visual stimuli that appeared within 
their feld of view. The stimuli consisted of a simple animation on a 
virtual sphere, presented alongside the virtual avatar. For example, 
in the opacity-based stimuli condition, the animation began with 
a fully transparent sphere, gradually increased to full opacity, and 
then returned to transparency. The location and duration of the 
animation were adjusted to control the intensity of the visual stim-
uli between trials, following previous studies suggesting that these 
properties infuence the intensity [40]. The virtual sphere moved in 

sync with the participant’s head movements, maintaining the same 
relative position within their feld of view. To prevent participants 
from predicting the timing of the stimuli, the animation began at 
a random moment after the trial started and repeated at random 
intervals (ranging from 1 to 3 seconds). Participants were instructed 
to press a button on a controller held by their right hand as soon 
as they noticed the animation was starting. 

3.4 Sampling target poses 
For the ending poses, we selected 25 distinct poses from the CMU 
MoCap dataset [34]. To ensure the diversity of poses, these poses 
were selected based on clustered subsets using the HDBSCAN algo-
rithm [46], based on the skeletal distance function proposed in [60], 
calculated as: ∑ 

Distance(�1, �2) = max (�
�, 
� 
1 − �

�, 
� 
2) (1)

1≤� ≤� 
� ∈�,�,� 

where � represents the number of joints in the pose, and �,�, � 
denote the spatial coordinates of each joint. This function deter-
mines the maximum skeletal distance between two poses �1 and �2 
across all joints. The sampled poses are displayed in Appendix A. 

4 Confrmation Study 
Although it seems evident that adding additional visual stimuli 
may distract users and infuence the noticeability of redirection, 
we conducted a confrmation study to validate this hypothesis and 
assess the efectiveness of our dual-task design. 

4.1 Design 
We employed a factorial study design to manage both independent 
and control variables. 

4.1.1 Independent variables. In this study, we aimed to investigate 
whether applying visual stimuli afects noticeability. Therefore, our 
initial independent variable was the presence or absence of visual 
stimuli. To further explore the impact of various visual stimuli, we 
extended the independent variable to the intensity of visual stimuli, 
ranging from none to high. We manipulated intensity by adjusting 
the duration and placement of virtual animations, following previ-
ous studies [26, 40]. Through a pilot study, we identifed three levels 
of duration: Short (0.2 sec), Medium (1 sec), and Long (2 sec). For 
placement, we defned three layout confgurations: Sparse (stimuli 
appear only in the corner areas), Median (stimuli appear in both the 
corner and peripheral areas), and Dense (stimuli appear throughout 
the entire feld of view), as shown in Figure 2. In each layout, we 
randomly picked one candidate to animate the visual stimuli. Ad-
ditionally, we included a baseline condition with no visual stimuli. 
The order of these conditions was randomized. 

4.1.2 Control variables. We varied the magnitude and direction 
of the redirection as control variables. Based on the results from 
related research [41], we set the redirection magnitude from 0 
to 30 degrees with an interval of 5 degrees, which covers the 
from being unnoticeable (no redirection) to easily noticeable. We 
also varied the direction of redirection, sampling both horizon-
tal and vertical directions. As a result, each participant completed 
(3 ��������� × 3 ������� + 1 ��������) ×(7 redirection magnitudes 
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Figure 2: The apparatus of the formative study. Wearing a 
headset, the participant wears three motion trackers to track 
their arm pose and sit on a comfortable chair. While the 
virtual avatar mirrors the arm movement of the participant, 
the participant observes the virtual avatar’s movement from 
a frst-person point of view and follows the semi-transparent 
checkpoint pose to reach the semi-transparent target pose. 
As the secondary task, a virtual animation will start with 
diferent durations and locations. The right fgure illustrates 
the possible locations of the red ball, named Sparse, Median, 
and Dense, accordingly. 

×2 redirection direction - 1) = 130 trials in total. The order of all 
redirection magnitudes and directions was randomized. 

4.1.3 Dependent variables. The noticeability of redirection was 
recorded as the primary dependent variable in this study and was 
estimated with the proportion of positive responses across all trials 
for each condition where redirection was applied. Additionally, 
we captured participants’ gaze behavior data with the HMD’s eye 
tracker. 

4.2 Participants & Apparatus 
The participants (N = 16) were recruited through an online ques-
tionnaire from a local university. The participants (7 females, 9 
males) had an average age of 21.25 years (�� = 1.71). All were 
trichromats and right-handed. Prior to the experiment, participants 
self-evaluated on their familiarity with VR, reporting an average 
score of 3.75 (�� = 0.75)on a 7-point Likert scale (1 - not at all 
familiar, 4 - neutral, 7 - very familiar). 

We implemented the experimental application in VR with a HTC 
Vive pro headset in Unity 2019, powered by an Intel Core i7 CPU and 
an NVIDIA GeForce RTX 3080 GPU. Throughout the experimental 
sessions, participants were seated and equipped with three Vive 
Trackers afxed to their left shoulder, elbow, and waist using nylon 
straps. Based on data given by the tracker, we reconstructed the left 
arm movement on a virtual humanoid avatar from the Microsoft 
RocketBox avatar library [24] with the user’s viewpoint coinciding 
with the avatar’s (as shown in Figure 2). All gaze data was recorded 
with the HTC Viveo pro built-in gaze tracker. All statistical analyses 
were conducted with SPSS 26.0. 

Figure 3: Noticeability results of the formative study in every 
condition. The error bars represent the standard errors. 

4.3 Procedure 
To avoid bias from the participants knowing that we were inten-
tionally introducing redirection, we introduced the purpose of the 
study as an evaluation of a motion capture and reconstruction 
technique and clarifed the real purpose to participants after the 
study. Participants were frst provided with a walk-through of the 
platform. Then, participants were provided with a warm-up ses-
sion to ensure that they were familiar with the primary and sec-
ondary tasks. After that, each participant completed 10 sessions 
(3 ��������� × 3 ������� + 1 ��������) of experiments. They took 
2-minute breaks after every two sessions to reduce fatigue. We 
recorded the participant’s behavioral data, including the position 
and orientation of hand, elbow, shoulder, gaze, and pupil dilation, 
at a rate of 60 Hz. The study lasted around 40 minutes and each 
participant was compensated with 15 US dollars. 

4.4 Results 
We frst conducted Shapiro-Wilk tests on the noticeability results 
which showed that all 10 conditions followed a normal distribution, 
requiring no correction. We then conducted Repeated-Measures 
ANOVA with Bonferroni-corrected post hoc T-tests on the results. 
The average response time to visual stimuli was 327 ms (SD = 168 
ms), indicating that participants were actively engaged in both 
tasks. 

With visual stimuli, participants noticed the redirection signif-
cantly less than without visual stimuli. We conducted a one-factor 
ANOVA between the baseline and the averaged nine other condi-
tions. Our statistical analysis showed that participants detected the 
redirection signifcantly (� (1,15) = 5.90, � = 0.03) less frequently 
when they were exposed to the visual stimuli (� = 0.43, �� = 0.13)
compared to none visual stimuli (� = 0.51, �� = 0.08). These re-
sults confrm that the noticeability of redirection was reduced when 
visual stimuli were presented and further validate the design of our 
study. 
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Figure 4: Psychometric functions of the noticeability in each condition. 

We then evaluated whether participants’ physical movements 
were efectively redirected under both noticed and unnoticed con-
ditions. We divided all trials into two categories based on the par-
ticipants’ response to the redirection (noticed or unnoticed). We 
then analyzed the lengths of participants’ virtual and physical hand 
trajectories within these two categories. The physical trajectory 
length refers to the ratio of the participant’s physical hand move-
ment trajectory length to the distance between the starting and 
ending pose. Similarly, the virtual trajectory length refers to the 
participants’ virtual hand movement trajectory length to the dis-
tance between the starting and ending pose. In the unnoticed condi-
tion, participants’ physical movement trajectories were signifcantly 
shorter than their virtual ones: Physical (��� = 1.16, �� = 0.04)
and Virtual (��� = 1.24, �� = 0.05, � (15) = 3.64, � < 0.05). Sim-
ilarly, in the noticed condition, participants’ physical movement 
trajectories were still signifcantly shorter than their virtual ones: 
Physical (��� = 1.17, �� = 0.04) and Virtual (��� = 1.33, �� = 
0.04, � (15) = 4.88, � < 0.01). These results suggest that partici-
pants’ physical movements were successfully redirected,regardless 
of whether they noticed the redirection. 

We further analyzed the gaze behaviors (gaze location, saccades, 
fxation, and pupil activity) based on the recorded gaze data. Specif-
ically, we computed the average gaze distance relative to the virtual 
hand, saccade and fxation frequencies, and Index of Pupil Activity 
(IPA) in each condition. We then calculated the correlation coef-
cients between these gaze behaviors and the noticeability results. 
As shown in Figure 5, the results revealed signifcant correlations: 
gaze distance (� = −0.26, � = 0.001), saccade (� = −0.43, � < 0.001), 
fxation (� = −0.27, � < 0.001), and IPA (� = −0.26, � = 0.001). 
These results suggest that all the examined gaze behaviors exhibit 
a negative relationship with noticeability, with gaze saccades show-
ing a stronger efect compared to the others. This may be because 
rapid saccadic movements often indicate high cognitive load or 
attentional shifts, making them more directly and negatively associ-
ated with the noticing of redirection. In contrast, fxation frequency 
does not inherently refect cognitive load, although fxation dura-
tion might serve as a useful indicator. Regarding gaze distance to 
the virtual hand, participants likely shifted their gaze between the 
virtual body and the stimuli, making it less consistently related to 

noticeability. For IPA, its design as a long-term estimator of cogni-
tive load may render it less sensitive to subtle or transient changes 
in cognitive load caused by visual stimuli. Overall, while each of 
these gaze behaviors responds to visual stimuli in distinct ways, 
they all show promise as predictors of noticeability. 

5 Data Collection 
After confrming that visual stimuli infuence the noticeability of 
redirection, we conducted another user study using the same dual-
task design to gather more data for developing a prediction model. 
This model aims to estimate noticeability based on users’ gaze 
behavior. 

5.1 Design 
To collect the noticeability results more accurately, we measured 
the noticeability of each redirection magnitude repeatedly for each 
participant, and tested on less redirection magnitude levels. In 
future work, we consider it important to extend the experiments 
to include a wider range of redirection magnitude.s As per prior 
work that investigated the impact of redireciton magnitude on 
noticeability, we chose 20 degrees as the tested magnitude, as the 
reported noticeability rate was around 75% without visual stimuli 
in [41]. The relatively high rate allowed us to detect the impact 
of visual stimuli efectively. We randomly selected horizontal or 
vertical as the redirection direction. 

We adopted the same dual-task design with a yes/no paradigm 
detailed in section 3. As our formative study results showed, the 
visual stimuli with medium duration ((� = 0.46, �� = 0.07)) did 
not yield statistically signifcant diferences in terms of noticeabil-
ity compared to the stimuli with long duration ((� = 0.50, �� = 
0.07), (� (15) = −0.39, � > 0.05) ). Therefore, we excluded the 
medium condition and only selected the short (0.2s) and long du-
ration (2s) to control the intensity in this study. To further control 
the position of visual stimuli within participants’ visual feld, we 
displayed the stimuli at central vision (5 degrees from the central 
point of vision), near peripheral vision (30 degrees), and mid pe-
ripheral vision (60 degrees), illustrated in Figure 6 and as in prior 
research [25, 26]. Therefore, we had 2 × 3 = 6 conditions, named 
as CS (central layout with short duration), CL (central layout with 
long duration), NS (near peripheral layout with short duration), 
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Figure 5: The regression results between gaze distance, saccade frequency, fxation frequency, IPA, and noticeability are 
presented. The correlation coefcients are indicated in the top right corner. 

NL (near peripheral layout with long duration), MS (mid periph- 5.4 Summary of data statistics 
eral layout with short duration), and ML (mid peripheral layout 
with long duration), and we used a Latin square to counterbalance 
them. Each participant completed (2 ��������� × 3 �������) × 24 
measurements = 144 trials in total. 

Figure 6: The possible locations of the visual stimuli in the 
data collection study. The locations are divided into three 
conditions: Central (5 degrees), Near Peripheral (30 degrees), 
and Mid Peripheral (60 degrees), based on the angular dis-
tance to the user’s head direction. 

5.2 Apparatus & Procedure 
The apparatus and procedure were almost identical to those of our 
formative study (section 4). We recorded the position and orienta-
tion of hand, elbow, shoulder, gaze, and pupil dilation with a sample 
rate of 60 Hz. All gaze data was recorded with the HTC Viveo pro 
built-in gaze tracker. After the warm-up session, participants took 2-
minute breaks after every two sessions to reduce fatigue. The study 
lasted around 40 minutes and each participant was compensated 
with $15 USD. 

5.3 Participants 
We recruited 12 participants (5 females, 7 males) from a local univer-
sity. The participants had an average age of 22.91 years (�� = 1.90). 
All were trichromats and right-handed. Participants’ self-reported 
their familiarity with VR at an average of 3.17 (�� = 1.27) on a 
7-point Likert scale from 1 (not at all familiar) to 7 (very familiar). 

Figure 7: Noticeability results of the data collection study in 
each condition. The error bars represent the standard errors. 

In total, we collected 1728 responses. To estimate the noticeabil-
ity, we calculated the ratio of trials in which participants reported 
noticing the redirection to the total number of trials for each ses-
sion and participant. As shown in Figure 7, the noticeability result 
difered across the visual stimuli’s duration and layout. The notice-
ability results ranged from 16.7% to 79.2% with an average of 50.1% 
and a standard deviation of 18.9%. The maximum and minimum in-
dicate that we controlled the noticeability with the visual stimuli’s 
duration and layout successfully. Additionally, the high standard 
deviation suggest a high variability across conditions, which is ben-
efcial for training a model to predict the infuence of visual stimuli 
on noticeability. 

To verify that participants’ physical movements were efectively 
redirected, we analyzed participants virtual and physical trajectory 
lengths as defned in subsection 4.4. In the unnoticed condition, par-
ticipants’ physical movement trajectories were signifcantly shorter 
than their virtual ones: Physical (��� = 1.14, �� = 0.04) and 
Virtual (��� = 1.20, �� = 0.04, � (11) = 3.97, � < 0.05). In 
the noticed condition, participants’ physical movement trajecto-
ries were also signifcantly shorter than their virtual ones: Phys-
ical (��� = 1.14, �� = 0.04) and Virtual (��� = 1.27, �� = 
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0.05, � (11) = 5.38, � < 0.01). These results indicated that partici-
pants’ physical movements were successfully redirected. 

6 Implementation 
In this section, we investigated the best combination of gaze behav-
ior features to predict the noticeability of redirection. We described 
participants’ gaze behaviors with pupil activity, gaze angular dis-
tance to users’ hands, eye saccade, and fxation. For each category 
of participants’ gaze behavioral data, we systematically examine dif-
ferent feature combinations to identify those that most accurately 
characterize the participants’ visual responses. We then develop a 
regression model to explain the relationship between the selected 
gaze behavioral features and the noticeability of redirection. 

6.1 Gaze behavioral patterns 
Results in section 4 showed that the users’ gaze behavioral data 
was correlated to the noticeability. We divided the gaze behavioral 
data into four categories: 

• Index of Pupillary Activity: Index of Pupillary Activity (IPA) 
has been used to refect users’ cognitive load by analyzing the 
change of users’ pupil dilation [11, 42]. While visual stimuli 
were presented, users’ cognitive load might be inadvertently 
afected and could therefore impact the noticeability results. 

• Gaze angular distance to elbow and hand: We calculated the 
vector starting from the user’s eye to the elbow and hand 
joint. We then calculated the angular distance between this 
vector and the gaze vector. These metrics refect whether 
the participant was looking at the primary task or attracted 
by the visual stimuli. We decided not to calculate the dis-
tance between the focus point and the visual stimuli, as in 
real-world use cases, there is no single visual stimuli but 
only complicated ones, which make it hard to compute this 
distance. 

• Eye saccade frequency, duration and interval: Eye saccade is a 
rapid eye movement that shifts the eye from one area to an-
other. We leveraged the detection algorithm from Krakowczyk 
et al. to detect the saccade frequency and duration [32]. The 
saccade frequency and duration indicate how often and how 
quickly users shift their eye gaze separately. The saccade 
interval suggests the temporal distribution, which indicates 
whether the saccades are uniformly distributed across the 
session. 

• Eye fxation frequency, duration and interval: Eye fxations 
represent when eyes stop scanning the scene and hold the 
foveal vision on an object of interest. We also used the fre-
quency, duration, and interval of eye fxation to indicate how 
often and how long users stared at a place and the temporal 
distribution of fxation. 

6.2 Regression model 
To better represent the previous gaze behavioral patterns, we com-
puted mean, standard deviation, median, maximum and minimum 
of IPA and gaze angular distance and combined them with the eye 
saccade and fxation features. Therefore, we had 3 behaviors(IPA, 
gaze angular distance to hand, gaze angular distance to elbow) × 5 

features (mean, standard deviation, median, maximum and mini-
mum) + 3 saccade (saccade frequency, duration and interval) + 3 
fxation (fxation frequency, duration and interval) = 21 features in 
total. However, the search space to determine the combination of 
features that provides the highest predictive power for noticeabilityÍ21 21!includes as many as = 221 − 1 conditions, which �=1 �!(21−�!)
means that a grid search is not practical. Therefore, we adopted 
a similar method as [45] to select the features. We frst selected 
the best combination of features within each category and then 
searched the combination of these categories iteratively to fgure 
out the best combination. 

In this process, we used Support Vector Regression (SVR) from 
scikit-learn package 1 as the benchmark model since SVR has a sta-
ble performance on various data. The SVR model took the selected 
features as input, then output a probability ranging from 0 to 1 as 
the predicted noticeability. We leveraged the leave-one-user-out 
cross-validation in the test and the mean squared error (MSE) as 
the metric. 

Table 1 lists the best combination of features within each of 
four categories. Among them, the selected combination in the gaze 
angular distance achieved the best performance, while the other 
features also demonstrated the potential for predicting noticeability. 
Therefore, we combined the features from diferent categories and 
further tested them. 

We then tested the regression error of all combinations of the 
feature category with leave-one-user-out cross-validation. For each 
feature combination, we fltered the data with it and then ftted a 
model with 11 participants’ data and tested it on the one remaining 
participant’s data. After repeating this 12 times, we determined 
the overall regression error for one feature combination. Figure 8 
illustrates the regression error of all 15 feature combinations. The 
results demonstrate that combining all these four category features 
achieves the best performance with an MSE of 0.011. 

To further understand the best feature combination across the 
users, we also explored the best feature set for each test user in the 
leave-one-user-out cross-validation process. For each test user, we 
trained a model with each feature combination and selected the best 
one. The results showed that for 7 out of the 12 participants, the 
best feature set was the combination of all four feature categories. 
For 3 of the 12 participants, the best set was the combination of 
IPA, Gaze Angular Distance and Fixation and for the other 2 of the 
12 participants, the best set contained IPA, Gaze Angular Distance 
and Saccade. The results suggest that each feature captures distinct 
aspects of gaze behavior that contribute to predicting noticeability. 
Although the gaze angular distance showed a lower correlation 
with noticeability compared to saccades in section 4, it performs 
as the most powerful feature for predicting noticeability. This may 
due to the fact that in section 4, we only considered the mean 
distance, whereas in this study, we included additional numerical 
features, which could provide more informative insights than the 
mean alone. As for eye gaze saccade, it also contributes signifcantly 
to the prediction, aligning with the correlation results in section 4, 
as it indicates users’ visual focus shift and cognitive activity. While 
IPA and fxation also have the potential to predict noticeability, 
their prediction accuracy is lower compared to the other features. 

1https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html 

https://1https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
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Category Best combination MSE 

IPA 

Gaze angular distance 

Eye saccade 
Eye fxation 

mean, maximum, minimum 
mean(hand), std(hand), median(hand) 

mean(elbow), std(elbow), maximum(elbow) 
frequency, duration, interval 

frequency, duration 

0.039 (0.013) 

0.017(0.008) 

0.027(0.009) 
0.040 (0.012) 

Table 1: The best feature combination of each category and the prediction performance. The prediction performance is presented 
as the average (standard deviation) of MSE. 

Figure 8: The regression error of all combinations of the fea-
ture category. The error bars denote the standard deviations. 

This could be because they refect more general cognitive activity 
and engagement, rather than specifc responses to visual stimuli. 
However, combining these features allows us to capture both where 
users are looking at and the dynamic shifts in focus, which together 
indicate the noticeability of redirection. 

To further investigate if the selected features could model notice-
ability, we analyzed the regression error for each individual data 
point in a per user manner. As shown in Figure 9a, the outputs from 
our model preserved the relative order of noticeability across the six 
conditions in 90.3% data points. The ftted noticeability in various 
conditions mostly remained in the range of the ground truth, while 
most errors came from the two most similar conditions (CS and 
NL). Furthermore, Figure 9b illustrates the noticeability average 
and standard deviation of the data collection results and our model’s 
output. Our model’s output average approximates the participant’s 
results while simultaneously exhibiting a lower standard deviation. 
This could be due to the inherent noise introduced from estimating 
the noticeability using the frequency of participants who reported 
the noticing of redirection in the study. 

6.3 Classfciation model 
In our studies, noticeability was measured by the frequency with 
which participants detected redirection during the trials. Based on 
this, we developed a regression model that outputs the probabil-
ity of noticing the redirection as a foat value between 0 and 1. 
While this probability efectively indicates how likely users are to 

notice the redirection, a classifcation model providing a simple 
yes/no result could ofer greater practical utility. To explore this, 
we trained a classifcation model by applying various thresholds to 
the noticeability results and categorizing it into distinct classes. 

Binary model We applied a threshold of 0.5 to transform the 
collected noticeability results into binary labels: Unnotice-
able (≤ 0.5) and Noticeable (> 0.5). With these, we trained 
a Support Vector Machine (SVM) classifcation model with 
the same features selected in subsection 6.1; this model 
achieved an accuracy of 0.9174 (�� = 0.1126) and an F1-
score of 0.8968 (�� = 0.1342) with leave-one-user-out cross-
validation on our collected dataset. 

Three-class model Then we divided the noticeability into 
three categories with two thresholds: Low Noticeability (≤ 
0.4), Medium Noticeability (0.4 < noticeability ≤ 0.7), and 
High Noticeability (> 0.7). With the same SVM classifcation 
model and selected feature, our re-trained model achieved 
an accuracy of 0.8562 (�� = 0.1240) and an F1-score of 
0.8478 (�� = 0.1276). To be noted, the prediction accuracy 
was afected by how we converted the noticeability value to 
separate labels and might increase with fne-tuned features 
tailored to the classifcation task. This indicates that the se-
lected features from the gaze behavioral pattern have the 
potential to predict the noticeability as separate categories. 

7 Evaluation: Extend to More Visual Stimuli 
To evaluate the performance and extendability of our regression 
model, we tested our model with the same dual-task experiments 
and yes/no procedure, but with new visual stimuli and new par-
ticipants. We tested scale- and color-based visual stimuli, which 
were not included in the training set of the proposed model. As the 
model only takes the user’s gaze behavioral data as input without 
any prior knowledge about the visual stimuli, we aimed to also 
investigate whether the gaze behavioral patterns of users remain 
consistent with diferent types of stimuli. 

7.1 Design 
We designed two new visual stimuli that the participants were 
required to monitor and report in the secondary task in this study, as 
shown in Figure 10. In a scale-based animation, a red ball increased 
from an invisible small scale to the normal scale of the same as 
in the opacity stimuli and reset to the invisible small scale. As for 
the color-based animation, the red ball would change from red 
to yellow and reset to red by altering the hue in the HSV color 
space. We note that in the opacity- and scale-based animations, the 
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(a) (b) 

Figure 9: (a) illustrates the regression results in each condition for each user. (b) illustrates the regression results with leave-
one-user-out cross-validation. 

red ball started at an invisible state and we could adjust the ball’s 
location while it was invisible to users. However, in the case of the 
color-based animation, the red ball remained consistently visible. 
Thus, we adjusted the ball’s location when the color animation 
fnished and waited a random time interval before the start of the 
color visual efect. We asked participants to report as soon as the 
color changed to yellow instead of the location change. 

For both visual stimuli, we used the duration and layout of the 
visual stimuli to control their infuence on the noticeability. There-
fore, we had 2 × 3 = 6 conditions with the order counterbalanced 
by a Latin square. However, to avoid the infuence of fatigue, we 
adopted a between-subject study design for the two visual stim-
uli conditions, where each participant only tested either color- or 
scale-based stimuli. In this way, each participant completed 1 visual 
efect × (2 ��������� × 3 �������) × 24 measurements = 144 
trials in total. 

We calculated the selected features based on the participant’s 
gaze data, as described in subsection 6.1, and leveraged our SVR 
model to output the noticeability. 

Figure 10: Demonstrations of the three visual efects (opacity, 
color, scale) in the formative study and the evaluation study. 

7.2 Apparatus & Procedure 
The apparatus and procedure were identical to those of our data 
collection study (section 5). The study lasted around 40 minutes 
and each participant was compensated with $15 USD. 

7.3 Participants 
We recruited 24 new participants from a local university for the 
study and divided them into two groups randomly. For the color-
based visual efects, 12 participants (5 females, 7 males, average 
age of 22.83 years with �� = 1.27) were allocated to participate 
in the scale-based efect study. These participants reported their 
familiarity with VR as an average of 3.83 (�� = 1.75) on a 7-point 
Likert-type scale from 1 (not at all familiar) to 7 (very familiar). For 
the scale-based visual efects, we had another 12 participants (6 
females, 6 males) with an average age of 22.75 (�� = 1.76) and a 
self-reported familiarity with VR of an average of 3.25 (�� = 1.22). 
All participants were right-handed. 

7.4 Result 
As shown in Figure 11, the participants’ noticeability of arm redirec-
tion with color-based visual stimuli varied from 12% to 79% in six 
conditions with an average of 49% and a standard deviation of 17%. 
Similarly, the noticeability with scale-based visual stimuli ranged 
from 17% to 83% with an average of 51% and a standard deviation 
of 18%. This suggested that the noticeability of redirection was 
efectively afected by the duration and layout of the color- and 
scale-based visual stimuli. 

We further analyzed the virtual and physical trajectory lengths 
under diferent noticeability conditions to confrm whether par-
ticipants’ physical movements were efectively redirected, as the 
same in subsection 4.4. In the unnoticed condition, participants’ 
physical movement trajectories were signifcantly shorter than 
their virtual trajectories: Physical (��� = 1.17, �� = 0.05) and 
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(a) Study results for color-based visual efects. (b) Study results for scale-based visual efects. 

Figure 11: Study results of the model trained with opacity-based visual efects, tested on the color- and scale-based visual efects. 

Virtual (��� = 1.27, �� = 0.05, � (11) = 2.48, � < 0.05). Sim-
ilarly, in the noticed condition, participants’ physical movement 
trajectories were also shorter than their virtual trajectories: Phys-
ical (��� = 1.15, �� = 0.04) and Virtual (��� = 1.28, �� = 
0.04, � (11) = 4.88, � < 0.01). 

Our regression model could accurately compute the noticeability 
with new color- and scale-based visual stimuli. We calculated the se-
lected features with the recorded eye gaze behavior data. Our model 
takes the selected features as input and outputs the noticeability in 
diferent conditions with leave-one-user-out cross-validation. For 
this study, our model achieved an MSE of 0.014 (SD = 0.006) and 
0.012 (SD = 0.005) for noticeability with the color- and scale-based 
visual stimuli separately. Compared to the 0.011 MSE result of the 
opacity visual stimuli, these results indicate that our model has 
the potential to compute noticeability accurately under new visual 
stimuli with new participants. This indicates that although our 
model was built with the data collected from a limited number of 
participants, the elicited eye behavioral patterns could be general-
ized to diferent visual efects and new users. We note that the two 
tested stimuli never appeared in the training dataset of our model, 
and the color-based stimuli even apply a paradigm of being always 
visible diferent from the opacity-based stimuli that the model was 
trained with. Our results show that our model has the potential to 
be applied to scenarios with diferent visual stimuli, as long as the 
gaze behavioral patterns of users are consistent across scenarios. 

Participants’ gaze behavioral patterns are consistent across three 
conditions of visual stimuli. To further explore if participants exhibit 
similar gaze behavioral patterns when testing diferent visual stim-
uli, we conducted a technical evaluation with the data recorded in 
the previous study. We leveraged the selected features to train a 
regression model with the data from one of the three visual stimuli 
(opacity, color, and scale) and tested the model on the data from 
the other two stimuli. As shown in Table 2, the regression model of 
color- and scale-based visual stimuli also achieved a comparable 
performance when computing the noticeability under the same 
visual stimuli. While all three regression models achieved the best 
performance with the test data from the same visual efect, they 
also proved the ability to compute the noticeability under other 
two visual stimuli. This suggests that the gaze behavioral patterns 

were consistent across visual stimuli, and can be used to compute 
the noticeability of redirection. 

Train set MSE of Opacity MSE of Color MSE of Scale 

Opacity 
Color 
Scale 

0.011(0.005) 
0.018(0.014) 
0.016(0.009) 

0.014(0.006) 
0.011 (0.005) 
0.022(0.014) 

0.012(0.005) 
0.015(0.009) 
0.013(0.007) 

Table 2: The regression performance of training the model 
with data under one visual stimulus and testing on the data 
from all three visual stimuli. The results are presented as the 
average (standard deviation) of MSE. 

8 Towards real-world use cases 
While the previous study results suggest that our proposed model 
could efectively compute the noticeability of redirection under 
various basic visual stimuli (transparency-, color- and scale-based), 
we aimed to explore how the model could be used in real-world sce-
narios. To showcase the potential benefts of our model in practical 
use cases, we implemented an adaptive redirection technique 
and developed two real-world applications to demonstrate its 
generalizability and usability. We also performed a proof-of-concept 
study to gather user feedback while interacting with the two appli-
cations and the adaptive redirection technique. 

8.1 Adaptive motion redirection technique 
As discussed in the Introduction (section 1) and Related Work (sec-
tion 2), users in real VR applications may face complicated visual 
efects that can impact the noticeability of redirection movements. 
This, in turn, infuences the efectiveness and overall user experi-
ence of redirection techniques. While it is impractical to predict the 
specifc visual efects users will encounter beforehand, content cre-
ators can only predefne a static redirection intensity, which limits 
the efectiveness of redirection techniques. To address this limita-
tion, our proposed model enables designers to dynamically adjust 
the redirection during usage based on the user’s gaze behavior. 
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(a) (b) 

Figure 12: We developed two real-world applications to 
demonstrate the capabilities of our adaptive redirection tech-
nique: (a) Adjusting the difculty of VR action game: In this 
application, mid-air coins and monsters serve as visual cues 
for the target poses that users are asked to perform. Our 
adaptive redirection technique enables the system to adjust 
the game’s difculty without the user noticing, ensuring a 
balanced and engaging experience. (b) Opportunistic ren-
dering for boxing training in VR : Here, users are learning 
boxing movements by following a blue avatar. Leveraging 
our adaptive redirection technique, the system can simu-
late opportunistic rendering which reduces requirements for 
computation resources. 

Our model computes the noticeability of redirection as a foat 
value ranging from 0 to 1. With this output, we implemented an 
adaptive redirection technique by using the Three-class model de-
scribed in subsection 6.3. For each class of noticeability, we prede-
fned corresponding redirection: 25 degrees for Low Noticeability, 
15 degrees for Medium Noticeability, and 5 degrees for High No-
ticeability. When the computed noticeability falls into one of these 
classes, the corresponding redirection is applied. The redirection 
technique initializes with a 10 degree ofset. When a change in 
redirection is required according to the noticeability changes, we 
use linear interpolation to transition the redirection gradually over 
a 10-second period. To maintain immersion, the redirection is ad-
justed only when the user’s arm is in motion, since if the redirection 
changes while the physical arm remains static, the virtual arm will 
be moved and lead to break of immersion and sense of embodiment. 

To be noted, this adaptive redirection technique serves as a 
demonstration of the usability of our proposed model. Designers 
can leverage the model’s probabilistic output to create their own 
redirection techniques tailored to specifc applications. 

8.2 Real-world applications 
8.2.1 Adjusting the dificulty of VR action game. Based on our adap-
tive redirection technique, we implemented a VR action game in-
spired by the VR game Beat Saber 2. In the game, users are asked to 
perform certain poses with their arms based on visual and musical 
guidance. The game difculty could be adjusted by redirecting the 
user’s movement, for example, slightly amplifying their movements 
could make it easier and faster to achieve the targets. Meanwhile, 

2https://beatsaber.com/ 

users need to focus on the targets to obtain sufcient information, 
and thus they paid less visual attention to their virtual body move-
ments. As shown in Figure 12a, when the visual guidance for the 
target arm pose is highly detailed and draws signifcant attention 
from the user, the noticeability of redirection might be lower and the 
system can take the risk of applying large redirection for functional 
gains. However, when the user interacts with a simpler interface 
and focuses mainly on their virtual arm, a low level redirection 
might be applied with the high noticeability prediction. 

8.2.2 Opportunistic rendering for boxing training in VR. We im-
plemented a boxing training system designed to reduce rendering 
computation as our second application. Accurate motion recon-
struction and rendering may require high computing power [8]. 
While users may not always focus on their virtual movements, there 
is a chance to apply opportunistic rendering based on the user’s 
visual attention to save computing capability and avoid being no-
ticed by users. As shown in Figure 12b, the user is learning boxing 
poses with a virtual coach in VR. When the user is looking at the 
coach and observing them performing the pose, our model may 
output a lower level of noticeability and thus it allows the system 
to update the user’s movement less frequently which leads to the 
virtual movement has a ofset with the user’s physical movement 
and save computing resources. While the user shifts their attention 
back to his arm and is going to practice the boxing poses, our model 
can compute that the noticeability of motion ofset is higher than 
in the previous scenario. Therefore, the system can allocate more 
resources to render the user’s movement, to ensure that they can 
perform and learn the accurate poses in VR. To be noted, we imple-
mented this application as a simulation of opportunistic rendering 
to demonstrate the potential of our model, rather than fully imple-
menting it and measuring the computational resources it would 
save. 

8.3 Proof-of-Concept study 
To further demonstrate and evaluate the how our model supports 
adaptive redirection techniques, we conducted a proof-of-concept 
evaluation study on two applications. 

8.3.1 Design. We conducted a within-subject factorial study de-
sign, with the independent variable being the experimental condi-
tions, including Adaptive Redirection (AR) and Static Redirection 
(SR). In the VR action game, participants were tasked with perform-
ing poses that aligned with a moving target. The target’s appearance 
frequency progressively increased, starting at intervals of 2 sec-
onds and accelerating to 0.5 seconds and the game lasted for 60 
seconds. In the boxing training application, participants engaged 
in a 60-second motion-learning task, attempting to replicate the 
movements demonstrated by a virtual coach. For the SR condition, 
the redirection magnitude was fxed at 15 degrees, which is the 
same as the medium level magnitude used in the AR condition. 
After completing the tasks in each condition, participants rated the 
tested conditions on physical demand ("The interaction was physi-
cally demanding"), mental demand ("The interaction was mentally 
demanding and I had to concentrate a lot."), embodiment ("I felt as if 
the virtual body was my body") and agency ("I felt like I could control 

https://2https://beatsaber.com
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Figure 13: Proof-of-concept study results indicate that par-
ticipants experienced less physical demand and a stronger 
sense of embodiment and agency when using the adaptive 
redirection technique compared to the static technique. 

the virtual body as if it was my own body") with a 7-point Likert 
scale, using the questions from similar studies in prior work [14, 52]. 

8.3.2 Apparatus & Procedure. We implemented the applications 
with a HTC Vive pro headset in Unity 2019, powered by an Intel 
Core i7 CPU and an NVIDIA GeForce RTX 2080 GPU. During the 
study, participants were equipped with three Vive Trackers afxed 
to their left shoulder, elbow, and waist using nylon straps. 

After being introduced to the study, participants had a warm-
up session to learn about the study tasks and get familiar with 
controlling the virtual movements. Once they were comfortable 
with the virtual movements and tasks, they proceeded to experience 
one condition across both applications. After completing the two 
applications under the frst condition, participants provided their 
ratings before moving on to experience the second condition. The 
order of conditions and applications was counterbalanced. The 
study lasted around 20 minutes, and each participant received a 
compensation of 10 US dollars for their participation. 

8.3.3 Participants. We recruited 8 new participants (2 females, 6 
males, average age of 25.63 with �� = 1.85) from a local university. 
These participants reported their familiarity with VR as an average 
of 3.75 (�� = 1.16) on a 7-point Likert-type scale from 1 (not at all 
familiar) to 7 (very familiar). 

8.3.4 Result. Figure 13 summarizes the study results. We con-
ducted Wilcoxon signed-rank tests to analyze the reported sub-
jective metrics. Participants reported lower physical demand in the 
adaptive redirection (AR) condition (� = 3.50, �� = 1.00) com-
pared to the static redirection (SR) condition (� = 4.50, �� = 0.50, 
� = 2.00, � < 0.05). This is due to the larger redirection allowed in 
AR when visual stimuli were intense, reducing the need for exten-
sive physical movement. Despite the adaptive nature of AR, partic-
ipants did not perceive a higher mental demand (� = 4.25, �� = 
0.60) compared to SR (� = 4.25, �� = 0.43, � = 5.00, � > 0.05). 
This suggests that AR does not introduce additional cognitive ef-
fort for participants to control their virtual motion during interac-
tions. Participants reported a stronger sense of embodiment (� = 
5.13, �� = 0.60) and agency (� = 5.25, �� = 0.43) in AR compared 

to SR, where embodiment (� = 4.13, �� = 0.92,� = 2.50, � < 0.05) 
and agency (� = 4.13, �� = 0.92, � = 3.00, � < 0.05) were rated 
lower. This can be attributed to the reduced possibility of detecting 
the redirection in AR, which enhanced participants’ sense of control 
and immersion. In contrast, the frequent detection of redirection in 
SR reduced their sense of agency and embodiment. 

These results suggest that our technique efectively adapts the 
redirection magnitude to the visual stimuli, aligning with the pre-
dicted noticeability from our computational model. This demon-
strate the potential benefts and capabilities of the model in enhanc-
ing redirection interactions. 

9 Discussion 
In this paper, we investigated the efects of visual stimuli on to what 
extent users notice inconsistencies in their physical movements 
versus avatar movements. We further contribute a regression model 
that computes the noticeability of redirection under various visual 
stimuli, based on users’ gaze behavioral data. With the model, we 
constructed two applications in realistic scenarios with diferent 
types of visual stimuli to demonstrate the potential advantages and 
extensions of our method. In the following, we discuss possible 
extensions to our model, as well as limitations and future work. 

9.1 Redirection and visual stimuli 
While prior work [13, 14, 41] explored how the properties (such 
as magnitude, direction, location) of redirection infuenced its no-
ticeabiltiy, we investigated the noticeability under visual stimuli in 
this paper. However, we acknowledge that the redirection proper-
ties and the visual stimuli may afect the noticeability in diferent 
manners. The redirection properties could determine the upper and 
lower bounds of redirection noticeability, while the visual stimuli 
can only reduce the noticeability in a limited range. For subtle redi-
rection that are barely noticeable even when the user is focused 
on their body movements, adjusting visual stimuli does not sig-
nifcantly alter the noticeability. Similarly, users will likely notice 
salient redirection even with a glance, unless the redirection is com-
pletely out of their feld of view. Therefore, in this paper, we fxed 
the redirection magnitude to be 20 degrees (as a control variable), 
for which the resulting noticeability ranged from approximately 
20% to 80%. This relatively large range enables us to quantify the 
impacts of visual stimuli extensively. However, we believe that ex-
ploring the interaction efect of redirection properties and visual 
stimuli and combining their infuence on noticeability could be 
important and interesting future work. 

9.2 Diverse visual stimuli 
In this paper, we used several abstract visual stimuli and changed 
their intensity in our user studies. We acknowledge that beyond 
these static visual stimuli tested in this paper, there exist various 
complicated visual stimuli in realistic use cases. For instance, a 
moving object or a wiggling notifcation may also afect users’ gaze 
behavior and therefore infuence the noticeability of redirection. 
We consider visual stimuli appearing and staying at a static loca-
tion to be a standard design paradigm in presenting notifcations 
(e.g., highlighting app icons when new messages are received) on 
desktop [49], VR [58], and AR interfaces [37]. Though we validated 
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our model on new type of abstract visual stimuli and in realistic 
scenarios, we acknowledge that verifying the generalizability of 
our regression model on motion-based or other more complicated 
visual stimuli is an important future work. We expect that our re-
search methodology and the presented gaze behavioral patterns 
can also apply to the investigation of other visual stimuli. 

Besides, the visual stimuli investigated in this paper primarily 
served as external cues for object selection or observation, rather 
than being directly related to users’ body movements. In scenarios 
such as motion training and learning, users may observe their body 
movements through a mirror or from a third-person perspective, 
making redirected motion part of the visual stimuli. This raises an 
open question of how to decouple redirection from visual stimuli 
to investigate their specifc infuence on the noticeability of redi-
rection. We acknowledge this as an important direction for future 
research. 

Furthermore, in more realistic usage scenarios, the stimuli could 
be in diferent formats, including instant notifcations, environmen-
tal events, or even the user’s implicit observation of the virtual 
scene. We acknowledge that in such cases, diferent behavioral 
patterns or even physiological signals, such as EEG signals and 
heart rate variations, can also be indicative of the noticeability of 
redirection. We expect that our research method can be adopted to 
explore further the behavioral patterns that refect the noticeability 
in a more realistic setting. 

9.3 User awareness and adaptation 
In our user studies, we hide the true purpose from the participants 
by disguising it as an accuracy evaluation for a motion tracking 
system. The consideration was to mitigate the potential bias of users 
being aware of the existence of redirection, which might nudge 
them to be more attuned to or hyper-aware of the redirection. In 
addition, our study lasted at most 40 minutes with multiple breaks, 
which allowed users to regain their perception of their physical 
movements and prevent fatigue. However, if a long-term redirection 
is applied in real-life applications, users might become desensitized 
to the redirection gradually. Users may adapt to the redirection after 
noticing them multiple times and assume that the redirection exists 
consistently, which could reduce the noticeability of the redirection. 
We argue that the regression model should take into account the 
user’s awareness and their ability to adapt their interaction behavior 
to continue computing the noticeability accurately. 

9.4 Limitations and Future Work 
In our user studies, we treated the ending arm poses that we applied 
redirection on as a control variable. We clustered 25 arm poses from 
the CMU MoCap dataset [34] that are common poses in real-life 
activities, randomly selecting and testing one of them in each trial. 
This enabled us to average the impacts of diferent arm poses and 
focus on the infuence of visual stimuli on redirection noticeability. 
However, we acknowledge that the selected pose set is still limited 
in size compared to the amount of arm poses that are possible to 
perform in real life. We regard extending our study to include more 
arm poses and apply redirection on other body parts as important 
future work. 

We implemented the regression model with the data from 12 
users and evaluated it with another 24 new users. The results 
showed that our model could compute the noticeability accurately 
with new users while they experienced novel visual stimuli that 
never appeared in the training set. However, we envision that a 
personalized model could improve the regression performance by 
collecting more data from the same user and capturing their unique 
behavioral patterns more accurately. In addition, as we primarily 
focus on modeling the relationship between the visual stimuli and 
the redirection noticeability, we adopted SVR in the implementa-
tion of the regression model as it is relatively stable and did not 
overft. We note that when applying the fndings into real life ap-
plications, more advanced regression/classifcation methods (e.g., 
deep learning models) and more fne-tuned parameters are worth 
exploring to optimize the regression performance. As past work 
has demonstrated the relationship between hand redirection no-
ticeability and users’ physiological data [14], we will explore how 
to add physiological data into the regression model in the future. 

We investigated the efects of visual stimuli on noticeability and 
implemented a regression model with highly-controlled study de-
signs and abstract visual stimuli. Our goal was to study whether and 
how visual stimuli afects noticeability by controlling the factors 
and showcasing the potential applications that can beneft from 
our model. We regard it as important future work to investigate the 
efect in a feld study with more realistic tasks. We will also further 
generalize our contribution with a longitudinal study to consider 
how users adapt their interaction patterns to redirection over time. 

10 Conclusion 
In this paper, we investigated and modeled the efects of visual 
stimuli on the noticeability of redirection using users’ gaze behav-
iors in VR. We frst conducted a confrmation study to verify if 
users’ noticeability of redirection was afected by visual stimuli and 
whether their gaze behaviors were correlated with the noticeability 
results. After confrming that visual stimuli could infuence the 
noticeability of redirection, we conducted a data collection study 
with refned visual stimuli. With the data, we built up a regression 
model and selected efective features to compute the noticeability of 
redirection based on gaze behavior data, achieving an accuracy of 
0.011 MSE. We then evaluated our model on unseen visual stimuli 
with 24 new users and results suggested that our prediction model 
could generalize to new visual stimuli. We then implemented an 
adaptive redirection technique based on our model and conducted a 
proof-of-concept study comparing it to static redirection technique. 
Results suggested that participants felt less physical demanding 
while kept a high sense of body ownership using the adaptive redi-
rection technique based on our model. We believe that our model 
could support more efective and immersive redirection interactions 
in VR. 

Acknowledgments 
We thank Yu Jiang for her research insights. This work is supported 
by the National Key Research and Development Program of China 
under Grant No.2024YFB2808803 and the Natural Science Founda-
tion of China under Grant No. 62102221, 62132010, 62472244, the 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Li, et al. 

Tsinghua University Initiative Scientifc Research Program, and the 
Undergraduate Education Innovation Grants, Tsinghua University. 

References 
[1] Parastoo Abtahi and Sean Follmer. 2018. Visuo-haptic illusions for improving 

the perceived performance of shape displays. In Proceedings of the 2018 CHI 
Conference on Human Factors in Computing Systems. 1–13. 

[2] Sonja Annerer-Walcher, Simon M Ceh, Felix Putze, Marvin Kampen, Christof 
Körner, and Mathias Benedek. 2021. How reliably do eye parameters indicate 
internal versus external attentional focus? Cognitive Science 45, 4 (2021), e12977. 

[3] Mahdi Azmandian, Mark Hancock, Hrvoje Benko, Eyal Ofek, and Andrew D 
Wilson. 2016. Haptic retargeting: Dynamic repurposing of passive haptics for 
enhanced virtual reality experiences. In Proceedings of the 2016 chi conference on 
human factors in computing systems. 1968–1979. 

[4] Mahdi Azmandian, Mark Hancock, Hrvoje Benko, Eyal Ofek, and Andrew D. 
Wilson. 2016. Haptic Retargeting: Dynamic Repurposing of Passive Haptics for 
Enhanced Virtual Reality Experiences. In Proceedings of the 2016 CHI Conference 
on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’16). 
Association for Computing Machinery, New York, NY, USA, 1968–1979. https: 
//doi.org/10.1145/2858036.2858226 

[5] Mathias Benedek, Robert Stoiser, Sonja Walcher, and Christof Körner. 2017. Eye 
behavior associated with internally versus externally directed cognition. Frontiers 
in psychology 8 (2017), 1092. 

[6] Robert Bixler and Sidney D’Mello. 2016. Automatic gaze-based user-independent 
detection of mind wandering during computerized reading. User Modeling and 
User-Adapted Interaction 26 (2016), 33–68. 

[7] Eric Burns, Sharif Razzaque, Abigail T Panter, Mary C Whitton, Matthew R 
McCallus, and Frederick P Brooks Jr. 2006. The hand is more easily fooled 
than the eye: Users are more sensitive to visual interpenetration than to visual-
proprioceptive discrepancy. Presence: teleoperators & virtual environments 15, 1 
(2006), 1–15. 

[8] Lu Chen, Sida Peng, and Xiaowei Zhou. 2021. Towards efcient and photorealistic 
3d human reconstruction: a brief survey. Visual Informatics 5, 4 (2021), 11–19. 

[9] Lung-Pan Cheng, Eyal Ofek, Christian Holz, Hrvoje Benko, and Andrew D 
Wilson. 2017. Sparse haptic proxy: Touch feedback in virtual environments 
using a general passive prop. In Proceedings of the 2017 CHI Conference on Human 
Factors in Computing Systems. 3718–3728. 

[10] Lionel Dominjon, Anatole Lécuyer, J-M Burkhardt, Paul Richard, and Simon Richir. 
2005. Infuence of control/display ratio on the perception of mass of manipulated 
objects in virtual environments. In IEEE Proceedings. VR 2005. Virtual Reality, 
2005. IEEE, 19–25. 

[11] Andrew T Duchowski, Krzysztof Krejtz, Izabela Krejtz, Cezary Biele, Anna 
Niedzielska, Peter Kiefer, Martin Raubal, and Ioannis Giannopoulos. 2018. The 
index of pupillary activity: Measuring cognitive load vis-à-vis task difculty with 
pupil oscillation. In Proceedings of the 2018 CHI conference on human factors in 
computing systems. 1–13. 

[12] Myrthe Faber, Robert Bixler, and Sidney K D’Mello. 2018. An automated be-
havioral measure of mind wandering during computerized reading. Behavior 
Research Methods 50 (2018), 134–150. 

[13] Martin Feick, Niko Kleer, André Zenner, Anthony Tang, and Antonio Krüger. 
2021. Visuo-haptic illusions for linear translation and stretching using physical 
proxies in virtual reality. In Proceedings of the 2021 CHI Conference on Human 
Factors in Computing Systems. 1–13. 

[14] Martin Feick, Kora P Regitz, Anthony Tang, Tobias Jungbluth, Maurice Rekrut, 
and Antonio Krüger. 2023. Investigating Noticeable Hand Redirection in Virtual 
Reality using Physiological and Interaction Data. In 2023 IEEE Conference Virtual 
Reality and 3D User Interfaces (VR). IEEE, 194–204. 

[15] Martin Feick, André Zenner, Simon Seibert, Anthony Tang, and Antonio Krüger. 
2024. The Impact of Avatar Completeness on Embodiment and the Detectability 
of Hand Redirection in Virtual Reality. In Proceedings of the CHI Conference on 
Human Factors in Computing Systems. 1–9. 

[16] Tiare Feuchtner and Jörg Müller. 2018. Ownershift: Facilitating overhead in-
teraction in virtual reality with an ownership-preserving hand space shift. In 
Proceedings of the 31st Annual ACM Symposium on User Interface Software and 
Technology. 31–43. 

[17] Scott Frees, G Drew Kessler, and Edwin Kay. 2007. PRISM interaction for enhanc-
ing control in immersive virtual environments. ACM Transactions on Computer-
Human Interaction (TOCHI) 14, 1 (2007), 2–es. 

[18] Alastair G Gale. 1997. Human response to visual stimuli. In The perception of 
visual information. Springer, 127–147. 

[19] James J Gibson. 1933. Adaptation, after-efect and contrast in the perception of 
curved lines. Journal of experimental psychology 16, 1 (1933), 1. 

[20] Colleen J Gillon, Jason E Pina, Jérôme A Lecoq, Ruweida Ahmed, Yazan N Billeh, 
Shiella Caldejon, Peter Groblewski, Timothy M Henley, Eric Lee, Jennifer Luviano, 
et al. 2024. Responses to pattern-violating visual stimuli evolve diferently over 
days in somata and distal apical dendrites. Journal of Neuroscience 44, 5 (2024). 

[21] Eric J Gonzalez, Elyse DZ Chase, Pramod Kotipalli, and Sean Follmer. 2022. A 
Model Predictive Control Approach for Reach Redirection in Virtual Reality. In 
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. 
1–15. 

[22] Eric J Gonzalez and Sean Follmer. 2023. Sensorimotor Simulation of Redirected 
Reaching using Stochastic Optimal Feedback Control. In Proceedings of the 2023 
CHI Conference on Human Factors in Computing Systems. 1–17. 

[23] Mar Gonzalez-Franco and Jaron Lanier. 2017. Model of illusions and virtual 
reality. Frontiers in psychology 8 (2017), 1125. 

[24] Mar Gonzalez-Franco, Eyal Ofek, Ye Pan, Angus Antley, Anthony Steed, Bernhard 
Spanlang, Antonella Maselli, Domna Banakou, Nuria Pelechano, Sergio Orts-
Escolano, et al. 2020. The rocketbox library and the utility of freely available 
rigged avatars. Frontiers in virtual reality 1 (2020), 20. 

[25] Theodore Grosvenor and Theodore P Grosvenor. 2007. Primary care optometry. 
Elsevier health sciences. 

[26] Carl Gutwin, Andy Cockburn, and Ashley Coveney. 2017. Peripheral popout: The 
infuence of visual angle and stimulus intensity on popout efects. In Proceedings 
of the 2017 CHI conference on human factors in computing systems. 208–219. 

[27] Kenneth Holmqvist, Marcus Nyström, Richard Andersson, Richard Dewhurst, 
Halszka Jarodzka, and Joost Van de Weijer. 2011. Eye tracking: A comprehensive 
guide to methods and measures. oup Oxford. 

[28] Stephen Hutt, Jessica Hardey, Robert Bixler, Angela Stewart, Evan Risko, and 
Sidney K D’Mello. 2017. Gaze-Based Detection of Mind Wandering during Lecture 
Viewing. International Educational Data Mining Society (2017). 

[29] Stephen Hutt, Caitlin Mills, Shelby White, Patrick J Donnelly, and Sidney K 
D’Mello. 2016. The Eyes Have It: Gaze-Based Detection of Mind Wandering 
during Learning with an Intelligent Tutoring System. International Educational 
Data Mining Society (2016). 

[30] Luv Kohli. 2010. Redirected touching: Warping space to remap passive haptics. 
In 2010 IEEE Symposium on 3D User Interfaces (3DUI). 129–130. https://doi.org/ 
10.1109/3DUI.2010.5444703 

[31] Luv Kohli, Mary C Whitton, and Frederick P Brooks. 2012. Redirected touching: 
The efect of warping space on task performance. In 2012 IEEE Symposium on 3D 
User Interfaces (3DUI). IEEE, 105–112. 

[32] Daniel G. Krakowczyk, David R. Reich, Jakob Chwastek, Deborah N. Jakobi, 
Paul Prasse, Assunta Süss, Oleksii Turuta, Paweł Kasprowski, and Lena A. Jäger. 
2023. pymovements: A Python Package for Processing Eye Movement Data. In 
2023 Symposium on Eye Tracking Research and Applications (Tubingen, Germany) 
(ETRA ’23). Association for Computing Machinery, New York, NY, USA. https: 
//doi.org/10.1145/3588015.3590134 

[33] Krzysztof Krejtz, Andrew T Duchowski, Anna Niedzielska, Cezary Biele, and 
Izabela Krejtz. 2018. Eye tracking cognitive load using pupil diameter and mi-
crosaccades with fxed gaze. PloS one 13, 9 (2018), e0203629. 

[34] CMU Graphics Lab. 2021. CMU Graphics Lab Motion Capture Database. http: 
//mocap.cs.cmu.edu/. Online; accessed September 2023. 

[35] Eike Langbehn, Paul Lubos, Gerd Bruder, and Frank Steinicke. 2017. Application 
of redirected walking in room-scale VR. In 2017 IEEE Virtual Reality (VR). 449–450. 
https://doi.org/10.1109/VR.2017.7892373 

[36] Anatole Lécuyer. 2009. Simulating haptic feedback using vision: A survey of 
research and applications of pseudo-haptic feedback. Presence: Teleoperators and 
Virtual Environments 18, 1 (2009), 39–53. 

[37] Hyunjin Lee, Sunyoung Bang, and Woontack Woo. 2023. Efects of coordinate 
system and position of AR notifcation while walking. Virtual Reality 27, 2 (2023), 
829–848. 

[38] Yongseok Lee, Inyoung Jang, and Dongjun Lee. 2015. Enlarging just noticeable 
diferences of visual-proprioceptive confict in VR using haptic feedback. In 2015 
IEEE World Haptics Conference (WHC). IEEE, 19–24. 

[39] Marjorie R Leek. 2001. Adaptive procedures in psychophysical research. Percep-
tion & psychophysics 63, 8 (2001), 1279–1292. 

[40] Zhipeng Li, Yi Fei Cheng, Yukang Yan, and David Lindlbauer. 2024. Predicting 
the Noticeability of Dynamic Virtual Elements in Virtual Reality. In Proceedings 
of the CHI Conference on Human Factors in Computing Systems. 1–17. 

[41] Zhipeng Li, Yu Jiang, Yihao Zhu, Ruijia Chen, Ruolin Wang, Yuntao Wang, Yukang 
Yan, and Yuanchun Shi. 2022. Modeling the Noticeability of User-Avatar Move-
ment Inconsistency for Sense of Body Ownership Intervention. Proceedings of 
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 2 (2022), 
1–26. 

[42] David Lindlbauer, Anna Maria Feit, and Otmar Hilliges. 2019. Context-aware 
online adaptation of mixed reality interfaces. In Proceedings of the 32nd annual 
ACM symposium on user interface software and technology. 147–160. 

[43] Andreas L Lohse, Christofer K Kjær, Ervin Hamulic, Ingrid GA Lima, Tilde H 
Jensen, Luis E Bruni, and Niels C Nilsson. 2019. Leveraging change blindness 
for haptic remapping in virtual environments. In 2019 IEEE 5th Workshop on 
Everyday Virtual Reality (WEVR). IEEE, 1–5. 

[44] Sebastian Marwecki, Andrew D Wilson, Eyal Ofek, Mar Gonzalez Franco, and 
Christian Holz. 2019. Mise-unseen: Using eye tracking to hide virtual reality 
scene changes in plain sight. In Proceedings of the 32nd Annual ACM Symposium 
on User Interface Software and Technology. 777–789. 

https://doi.org/10.1145/2858036.2858226
https://doi.org/10.1145/2858036.2858226
https://doi.org/10.1109/3DUI.2010.5444703
https://doi.org/10.1109/3DUI.2010.5444703
https://doi.org/10.1145/3588015.3590134
https://doi.org/10.1145/3588015.3590134
http://mocap.cs.cmu.edu/
http://mocap.cs.cmu.edu/
https://doi.org/10.1109/VR.2017.7892373


Modeling the Impact of Visual Stimuli on Redirection Noticeability with Gaze Behavior in Virtual Reality CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

[45] Mykola Maslych, Eugene Matthew Taranta, Mostafa Aldilati, and Joseph J Laviola. 
2023. Efective 2D Stroke-based Gesture Augmentation for RNNs. In Proceedings 
of the 2023 CHI Conference on Human Factors in Computing Systems. 1–13. 

[46] Leland McInnes, John Healy, and Steve Astels. 2017. hdbscan: Hierarchical density 
based clustering. J. Open Source Softw. 2, 11 (2017), 205. https://doi.org/10.21105/ 
joss.00205 

[47] Caitlin Mills, Robert Bixler, Xinyi Wang, and Sidney K D’Mello. 2016. Automatic 
Gaze-Based Detection of Mind Wandering during Narrative Film Comprehension. 
International Educational Data Mining Society (2016). 

[48] Roberto A Montano Murillo, Sriram Subramanian, and Diego Martinez Plasencia. 
2017. Erg-O: Ergonomic optimization of immersive virtual environments. In 
Proceedings of the 30th annual ACM symposium on user interface software and 
technology. 759–771. 

[49] Philipp Müller, Sander Staal, Mihai Bâce, and Andreas Bulling. 2022. Designing 
for Noticeability: Understanding the Impact of Visual Importance on Desktop 
Notifcations. In Proceedings of the 2022 CHI Conference on Human Factors in 
Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing 
Machinery, New York, NY, USA, Article 472, 13 pages. https://doi.org/10.1145/ 
3491102.3501954 

[50] Nami Ogawa, Takuji Narumi, and Michitaka Hirose. 2020. Efect of avatar appear-
ance on detection thresholds for remapped hand movements. IEEE transactions 
on visualization and computer graphics 27, 7 (2020), 3182–3197. 

[51] Cristian Patras, Mantas Cibulskis, and Niels Christian Nilsson. 2022. Body warp-
ing versus change blindness remapping: A comparison of two approaches to 
repurposing haptic proxies for virtual reality. In 2022 IEEE Conference on Virtual 
Reality and 3D User Interfaces (VR). IEEE, 205–212. 

[52] Tabitha C Peck and Mar Gonzalez-Franco. 2021. Avatar embodiment. a standard-
ized questionnaire. Frontiers in Virtual Reality 1 (2021), 575943. 

[53] Lisa Perkhofer and Othmar Lehner. 2019. Using gaze behavior to measure 
cognitive load. In Information Systems and Neuroscience: NeuroIS Retreat 2018. 
Springer, 73–83. 

[54] Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst, and Tadao Ichikawa. 1996. 
The go-go interaction technique: non-linear mapping for direct manipulation in 
VR. In Proceedings of the 9th annual ACM symposium on User interface software 
and technology. 79–80. 

[55] Sharif Razzaque. 2005. Redirected walking. The University of North Carolina at 
Chapel Hill. 

[56] Michael Rietzler, Martin Deubzer, Thomas Dreja, and Enrico Rukzio. 2020. Tele-
walk: Towards free and endless walking in room-scale virtual reality. In Pro-
ceedings of the 2020 CHI Conference on Human Factors in Computing Systems. 
1–9. 

[57] Irvin Rock and Jack Victor. 1964. Vision and touch: An experimentally created 
confict between the two senses. Science 143, 3606 (1964), 594–596. 

[58] Rufat Rzayev, Sven Mayer, Christian Krauter, and Niels Henze. 2019. Notifcation 
in VR: The Efect of Notifcation Placement, Task and Environment. In Proceedings 
of the Annual Symposium on Computer-Human Interaction in Play (Barcelona, 
Spain) (CHI PLAY ’19). Association for Computing Machinery, New York, NY, 
USA, 199–211. https://doi.org/10.1145/3311350.3347190 

[59] Majed Samad, Elia Gatti, Anne Hermes, Hrvoje Benko, and Cesare Parise. 2019. 
Pseudo-haptic weight: Changing the perceived weight of virtual objects by ma-
nipulating control-display ratio. In Proceedings of the 2019 CHI Conference on 
Human Factors in Computing Systems. 1–13. 

[60] Gregory Shakhnarovich. 2005. Learning task-specifc similarity. Ph. D. Disser-
tation. Massachusetts Institute of Technology, Cambridge, MA, USA. http: 
//hdl.handle.net/1721.1/36138 

[61] Frank Steinicke, Gerd Bruder, Jason Jerald, Harald Frenz, and Markus Lappe. 
2009. Estimation of detection thresholds for redirected walking techniques. IEEE 
transactions on visualization and computer graphics 16, 1 (2009), 17–27. 

[62] Evan A Suma, Seth Clark, Samantha L Finkelstein, and Zachary Wartell. 2010. 
Exploiting change blindness to expand walkable space in a virtual environment. 
In 2010 IEEE Virtual Reality Conference (VR). IEEE, 305–306. 

[63] Evan A Suma, Zachary Lipps, Samantha Finkelstein, David M Krum, and Mark 
Bolas. 2012. Impossible spaces: Maximizing natural walking in virtual environ-
ments with self-overlapping architecture. IEEE Transactions on Visualization and 
Computer Graphics 18, 4 (2012), 555–564. 

[64] Jiahui Wang, Pavlo Antonenko, Mehmet Celepkolu, Yerika Jimenez, Ethan Field-
man, and Ashley Fieldman. 2019. Exploring relationships between eye tracking 
and traditional usability testing data. International Journal of Human–Computer 
Interaction 35, 6 (2019), 483–494. 

[65] Johann Wentzel, Greg d’Eon, and Daniel Vogel. 2020. Improving virtual reality 
ergonomics through reach-bounded non-linear input amplifcation. In Proceedings 
of the 2020 CHI Conference on Human Factors in Computing Systems. 1–12. 

[66] Run Yu and Doug A Bowman. 2020. Pseudo-haptic display of mass and mass distri-
bution during object rotation in virtual reality. IEEE transactions on visualization 
and computer graphics 26, 5 (2020), 2094–2103. 

[67] Johannes Zagermann, Ulrike Pfeil, and Harald Reiterer. 2016. Measuring cognitive 
load using eye tracking technology in visual computing. In Proceedings of the sixth 
workshop on beyond time and errors on novel evaluation methods for visualization. 

78–85. 
[68] André Zenner, Chiara Karr, Martin Feick, Oscar Ariza, and Antonio Krüger. 2023. 

The Detectability of Saccadic Hand Ofset in Virtual Reality. In Proceedings of the 
29th ACM Symposium on Virtual Reality Software and Technology. 1–2. 

[69] André Zenner, Chiara Karr, Martin Feick, Oscar Ariza, and Antonio Krüger. 2024. 
Beyond the Blink: Investigating Combined Saccadic & Blink-Suppressed Hand 
Redirection in Virtual Reality. In Proceedings of the CHI Conference on Human 
Factors in Computing Systems. 1–14. 

[70] André Zenner and Antonio Krüger. 2019. Estimating detection thresholds for 
desktop-scale hand redirection in virtual reality. In 2019 IEEE Conference on 
Virtual Reality and 3D User Interfaces (VR). IEEE, 47–55. 

[71] André Zenner, Kora Persephone Regitz, and Antonio Krüger. 2021. Blink-
suppressed hand redirection. In 2021 IEEE Virtual Reality and 3D User Interfaces 
(VR). IEEE, 75–84. 

[72] Yiwei Zhao and Sean Follmer. 2018. A functional optimization based approach 
for continuous 3d retargeted touch of arbitrary, complex boundaries in haptic 
virtual reality. In Proceedings of the 2018 CHI Conference on Human Factors in 
Computing Systems. 1–12. 

https://doi.org/10.21105/joss.00205
https://doi.org/10.21105/joss.00205
https://doi.org/10.1145/3491102.3501954
https://doi.org/10.1145/3491102.3501954
https://doi.org/10.1145/3311350.3347190
http://hdl.handle.net/1721.1/36138
http://hdl.handle.net/1721.1/36138


CHI ’25, April 26–May 01, 2025, Yokohama, Japan Li, et al. 

A Target pose samples 
In this section, we present a set of 25 target poses sampled from 
the CMU MoCap dataset [34], using the HDBSCAN clustering al-
gorithm [46] for pose selection. The samples represent a diverse 
range of human body postures. 

Figure 14: Sampled target poses from the CMU MoCap 
dataset, clustered using HDBSCAN. 
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