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Abstract 
Traditional Programming by Demonstration (PBD) systems pri-
marily automate tasks by recording and replaying operations on 
Graphical User Interfaces (GUIs), without fully considering the 
cognitive processes behind operations. This limits their ability to 
generalize tasks with interdependent operations to new contexts 
(e.g. collecting and summarizing introductions depending on diferent 
search keywords from varied websites). We propose TaskMind, a sys-
tem that automatically identifes the semantics of operations, and 
the cognitive dependencies between operations from demonstra-
tions, building a user-interpretable task graph. Users modify this 
graph to defne new task goals, and TaskMind executes the graph 
to dynamically generalize new parameters for operations, with 
the integration of Large Language Models (LLMs). We compared 
TaskMind with a baseline end-to-end LLM which automates tasks 
from demonstrations and natural language commands, without 
task graph. In studies with 20 participants on both predefned and 
customized tasks, TaskMind signifcantly outperforms the baseline 
in both success rate and controllability. 
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1 Introduction 
Repetitive and routine tasks on GUIs, characterized by fxed pro-
cedures, can be highly time-consuming. Previous studies show 
that a large proportion of GUI-based tasks across various domains 
can be automated [1, 4, 39]. Our preliminary survey, conducted 
with 81 participants from the local university community via a 
questionnaire, revealed that approximately 38.8% of daily tasks in 
work or study are automatable. Among the various task automation 
techniques, Programming by Demonstration (PBD) stands out by 
signifcantly lowering the barriers for users to create automation 
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Figure 1: Using TaskMind to demonstrate and automate an example task (Task 16 in our dataset). In the demonstration 
phase, the user interacts with the GUI to search for and summarize a keyword’s introduction. TaskMind models this task 
by recovering 3 cognitive dependencies between operations, which are the implicit cognitive processes users undergo when 
selecting parameters for operations. During automation, TaskMind executes the task graph to infer new parameters with the 
guidance of cognitive dependencies, generalizing the demonstration to new goals and contexts (i.e. when the search keyword 
and websites change). 

programs [13, 29]. PBD systems enable users to manually demon-
strate the task process, which contains a sequence of operations 
along with their parameters (i.e., the targets of operations, such 
as the ‘Search’ button to click or the text ‘Kilimanjaro’ to input 
in Figure 1). From the demonstration, the systems generate a task 
program to automate for the same or similar task goals. PBD ofers 
an efective method for end-users without programming expertise 
to create personalized and customized automation [13, 29, 45]. 

However, existing PBD tools [25, 29, 30, 42, 45, 57] mainly fo-
cused on recording and replaying sequence of operations, overlook-
ing the trajectory of intents that guide parameter selection, which 
often involve cognitively “computing” the relationships between 
prior parameters. These processes occur internally within users’ 
mind and are implicit in the observed GUI operations. We refer to 
them as cognitive dependencies, which describe the cognitive 
processes users undergo when selecting parameters depending on 
prior operations. Cognitive dependencies are prevalent in various 
tasks, for example, as illustrated in Figure 1, consider a task of 
browsing and writing a brief introduction for a keyword. During 
the demonstration, the user frst searches for a keyword, then clicks 
a search result with the cognitive dependency “fnd the search result 
most relevant to the keyword”, which guides them to select the most 
relevant Wikipedia link. Similarly, the user then selects a paragraph 
from the page with “fnd the introductory paragraph of the key-
word”, and types a summary in the document with “summarize the 
previously selected paragraph”. When the task goal (the keyword) 
changes, subsequent parameters (the chosen search result, selected 
paragraph, and fnal input summary) should also change, following 
the same cognitive dependencies. Without understanding these de-
pendencies, PBD systems cannot adjust the subsequent parameters 
when the initial keyword changes during automation, resulting in 

failures to generalize the demonstrated task program to diferent 
task goals and contexts. 

To bridge this operation-cognition gap, we present TaskMind, 
the frst PBD system that uses the reconstruction and interactive 
disambiguation of cognitive dependencies to model user intents 
behind operations for the generalization of learned task programs. 
TaskMind automatically recovers cognitive dependencies from user 
demonstrations by analyzing the relationship between parameters 
in operation sequence with the help of LLMs. These dependen-
cies are explicitly annotated in a task graph, which serves as the 
automation program, with its dependencies used as prompts for 
LLMs to infer new parameters for diferent task goals, enhancing 
the system’s generalizability to new contexts for complex tasks 
with inter-dependent parameters. TaskMind features an interactive 
interface allowing users to check and modify the generated task 
graphs with cognitive dependencies to correct errors and defne 
new task goals before starting the automation. 

Our formative study identifed several challenges in building an 
abstract task graph from low-level GUI operations, including the 
gap between raw operations and their semantics, and the diversity 
of cognitive dependencies involved in GUI tasks. These fndings led 
to the design of TaskMind’s two new components for task analysis: 
a UI extractor that transforms low-level GUI events into semanti-
cally rich operations, and a dependency extractor that leverages 
LLMs to recognize cognitive dependencies. An operation-cognition 
knowledge base was also derived from the formative study to pro-
vide abstract categorization of dependencies, supporting LLMs in 
dependency extraction. Additionally, we introduce a self-evolving 
mechanism which employs a LLM-driven refection module run-
ning in the background to take user modifcations as input and 
update the knowledge base accordingly. 
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Our simulation study showed TaskMind’s efectiveness in gener-
alizing new parameters with a task success rate (SR) of 79.5% and a 
step SR of 93.9% before user modifcations, compared to 33.3% task 
SR and 83.2% step SR for TaskMind without explicitly annotated cog-
nitive dependencies as our baseline. Additional simulation studies 
emphasized the importance of the operation-cognition knowledge 
base and the refection module. In our within-subjects user study 
involving 20 participants on both pre-defned and customized tasks, 
TaskMind signifcantly outperformed the baseline in both efec-
tiveness and controllability. We discussed the efort-controllability 
trade-of, where using natural language (NL) instructions for the 
baseline is more intuitive but harder to specify intents, while modi-
fying task graphs requires more logical thinking but ofers better 
control through precise edits. 

In conclusion, our core contributions are: 

1. The design of a task graph with cognitive dependencies to 
enhance PBD generalizability by modeling implicit cognitive 
processes underlying operation sequences. 

2. TaskMind, a novel PBD system that automatically recon-
structs cognitive dependencies from demonstrations, sup-
ported by an operation-cognition knowledge base with a 
self-evolving mechanism. 

3. A simulation study to assess the efectiveness of TaskMind 
in automation success rate compared to a version without 
cognitive dependencies. 

4. A user study comparing the usability of modifcation 
through task graph versus NL instructions, highlighting the 
balance between efort and controllability in collaboration. 

2 Related Work 

2.1 Task Automation 
Task automation employs scripts or tools to automate repetitive 
and tedious tasks through GUI on behalf of users, reducing manual 
labor and enhancing human productivity. The automation scripts 
typically originate from four sources: machine language program-
ming such as Shell or Python, visual programming with drag-and-
drop interfaces [43, 53, 57], NL instructions, and user demonstra-
tion, each requiring diferent levels of user expertise. PBD stands 
out as a method where the system learns tasks by observing user 
demonstration on the UI and can generalize the process, ofers 
greater adaptability for personalized tasks and intuitiveness for 
non-programmers [3, 8, 13, 22, 26, 27, 29, 30, 32, 33, 35, 42, 47, 52]. 
Recently, the advent of natural language processing and pre-trained 
LLMs has led to the development of technologies capable of convert-
ing NL instructions into GUI operations [11, 14, 20, 24, 34, 46, 61], 
lowering the barrier for task automation. 

Most existing automation tools focus on mobile platforms 
[29, 30, 33, 46], and web automation for specifc use cases such 
as data collection and form flling [7, 10, 45]. Desktop-based sys-
tems are limited to single applications [27], or struggle with com-
plex tasks that involve intricate intentions [21, 22]. TaskMind is a 
PBD-based automation tool designed for personalized, repetitive, 
or routine tasks. It incorporates LLMs to better understand user 
demonstrations with complex cognitive processes, ofering a more 
fexible PBD solution. 

2.2 GUI Understanding 
Understanding GUIs is the foundation of PBD, focusing on inter-
preting task goals and automating operations intelligently. Previous 
research [50, 55, 58] used accessibility data and CV techniques to 
comprehend UI elements on mobile devices, while others [3, 37, 57] 
recorded UI elements on desktop platforms. Semantic vectors have 
also been employed to interpret UIs and elements [2, 15, 31]. How-
ever, these approaches concentrated on the basic information of UI 
elements, overlooking contextual data. A recent method [54] lever-
ages LLMs to understand contextual information within mobile UIs, 
but this approach struggles with the complexity of PC interfaces 
and is time-consuming for automating operation sequences. Task-
Mind enhances the semantics of computer elements by collecting 
surrounding UI information. Moreover, TaskMind can identify and 
extract list structures from the interface, recognizing iterative tasks 
from a single demonstration, which is an improvement over prior 
works [7, 36] that focused mainly on web and specifc tasks. 

2.3 Task Modeling for Generalization in PBD 
and Integration of LLMs 

The generalization of task scripts is a major challenge for PBD[13, 
29, 35]. Traditional systems, which primarily rely on simple record 
and replay mechanisms [3, 26, 27, 47, 52], are limited in their abil-
ity to adapt recorded scripts to new, varying contexts. In contrast, 
abstractly modeling operations and task intentions from demon-
strated sequences ofers a viable solution for generalizing tasks. 
Existing task modeling methods can be categorized into three main 
approaches: (1) Parameter extraction, where systems identify gen-
eralizable parameters by matching voice commands with operation 
sequences [29, 33, 42], recognizing looping targets for repetitive 
tasks [21, 22], or specifying semantic flters for data scraping tasks 
[44]. (2) Description of individual operations, as seen in AP-
PINITE [30] and PUMICE [32], which learn data descriptions of 
operations and task conditions from user manual input. (3) Path 
Modeling, like KITE [33], which constructs a task model from mul-
tiple demonstrations to cover all potential execution paths of a task. 
However, these methods typically require additional user input to 
clarify intentions, such as voice commands [29, 42], manual con-
fgurations of data descriptions[30], or follow-up questions[22]. In 
addition, they simply focus on generalizing independent operations. 
Therefore, more interactions are required when tasks involve mul-
tiple generalizable parameters with dependencies between them, 
making the creation of generalizable automation scripts more efort-
intensive even than manually completing them. 

Large Action Models (LAMs) leverage pre-trained LLMs or LVMs 
(large vision models) to generate action sequences from NL instruc-
tions [11, 14, 20, 24, 61]. They model task automation as a problem 
of predicting the next action based on instructions and current con-
texts, with their general operational knowledge embedded in the 
foundation models. While LAMs are not explicitly used in PBD and 
lack support for personalized tasks, they demonstrate the potential 
for using LLMs to interpret and generalize user operations. Our 
approach, TaskMind, extends traditional PBD by integrating LLMs 
to improve generalization. We use a task graph with cognitive de-
pendencies to specify cognitive dependencies between operation 
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parameters, which LLMs automatically extracted from user demon-
strations. During automation, these dependencies guide the use 
of LLM intelligence to generate parameters in new contexts. By 
leveraging LLMs, TaskMind enhances the traditional symbolic PBD 
framework, making it efective for tasks with multiple interdepen-
dent generalizable parameters. 

2.4 Cognitive Processes in GUI Tasks 
Cognitive dependency, a concept we introduce, describes the cog-
nitive process user undergo when performing GUI tasks. In this 
process, parameters from prior operations are used to inform sub-
sequent ones, such as summarizing previously selected text into a 
sentence input in the next step. Existing research on human cog-
nitive processes, primarily in psychology and education, includes 
Bloom’s Taxonomy [5], which categorized human cognitive skills 
into six levels. Marzano & Kendall’s Framework[38] further im-
proved this taxonomy. Multiple Intelligences Theory [6] modeled 
the cognition when humans perform information processing. Ad-
ditionally, some studies [51] explored cognitive dependencies in 
language from a cognitive linguistic perspective. Jerry A. Fodor’s 
work [17] advocates for an atomistic view of concepts, emphasiz-
ing simple, fundamental relationships between the mind and the 
world. Moreover, Fodor [16] highlights that thought is intrinsically 
ordered, operating through systematic, sequential, and rule-based 
patterns similar to a language. TaskMind transplants cognitive 
theories into the domain of GUI tasks, introduces an operation-
cognition knowledge base concentrating on the cognitive-driven 
relationships between operations. With the help of the knowledge 
base, it recovers and models human cognitive dependencies implicit 
in operation sequences, structuring them into the task graph. This 
feature allows TaskMind to mimic human thinking by adapting 
cognitive dependencies to infer new parameters in new contexts, 
enhancing the generalization capability of PBD. 

3 Formative Study 
To better understand the gap between system-observed operations 
and users’ actual intentions, we conducted a formative study fo-
cused on collecting real-world examples of repetitive and routine 
tasks encountered by users during computer usage. We constructed 
a dataset from the collected data, and the several challenges revealed 
by the analysis lead to the design of our task graph. 

3.1 Procedure 
Our study involved 21 participants aged 19-37 (�=29.0, �=6.6), in-
cluding 8 academic researchers, 7 undergraduates from various 
majors, 4 corporate or government ofce workers, and 2 software de-
velopers. Participants installed our data collection software, which 
recorded their screenshots, keyboard and mouse activities using 
Windows hooks [40] and IUIAutomation APIs [41]. Participants 
were instructed to record their computer usage as usual throughout 
a week, with the fexibility to activate or deactivate the recording 
software at their discretion. They were informed that the goal of 
the study was to observe their daily activities in order to identify 
tasks suitable for automation. Additionally, they were briefed about 
the potential privacy implications and provided informed consent. 

Participants were compensated at a rate of $5 per hour for record-
ing1. After the week of recording, participants engaged in informal 
interviews, during which they described any repetitive and tedious 
tasks they experienced in their computer use2. 

Consequently, only 3 participants were comfortable recording 
one hour per day throughout the entire week, mostly focusing on 
continuous tasks such as writing a paper. In contrast, 12 partici-
pants, due to privacy concerns, recorded only specifc tasks they 
considered relevant for automation, resulting in shorter sessions 
about one hour per participant, involving more targeted workfows 
such as a secretary’s work of flling out web forms. This variation in 
recording behavior contributed to a total of 51.3 hours of recorded 
data. 

For data analysis, two experts with deep understanding of cogni-
tive dependencies reviewed the recorded data along with the inter-
view results. The review process is as follows: First, they examined 
the recorded videos with mouse and keyboard events, identifed 
sequences of operations and segmented them into distinct tasks. 
Second, with insights from informal interviews, they identifed 
tasks suitable for automation based on three shared criteria: a) a 
clear goal; b) a fxed sequence of operations; c) a repetitive, tedious 
nature. Third, they annotated the cognitive dependencies in these 
tasks, and employed the open coding method[18] to summarize the 
types of dependencies. Each expert individually analyzed all 51.3 
hours of recorded data, then compared and merged their results 
to reach a consensus. By considering participants’ interview re-
sults, referencing shared criteria, and merging opinions of diferent 
experts, biases from individual interpretations were minimized. 

3.2 Findings 
From a total of 51.3 hours of recordings, we identifed 170 distinct 
user tasks, accounting for 96.8% of all the recording time. Among 
them, we selected 112 tasks that were suitable for automation, 
making up 65.9% of all the distinct tasks, and 59.1% of the total 
recording time. Tasks requiring extensive user creativity or lacking 
a clear goal, such as writing travel plans, replying to messages and 
browsing websites, were excluded. The proportion of automation 
tasks was higher than the 38.8% reported in the preliminary study 
in the introduction, likely due to participants’ selective recording of 
tasks they considered relevant for automation. Finally, we grouped 
the tasks with similar procedures or goals into 39 task groups. 
For each group, we selected a representative task as an exemplar, 
constructing a dataset with 39 tasks in total (detailed in Appendix 
E)3. Among them, 10 tasks were related to student learning, 9 to 
academic research, 9 to clerical data processing, 6 to personal fle 
management, and 5 to software development or testing. 

The repetitive or routine tasks featured several iterations of the 
same operation path. To minimize the demonstration costs while 
achieve efective generalization, our design goal was to model the 
cognitive dependencies into a task graph from a single iteration of 
user demonstration. Our analysis revealed several challenges in re-
constructing cognitive dependencies, as explained in the following 
sections. 
1The compensation was consistent with the average earning of workers in the com-
munity where the study took place.
2The study protocol was reviewed and approved by the university ethics review board. 
3https://github.com/Evennaire/TaskMind 

https://github.com/Evennaire/TaskMind
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Table 1: Operation-cognition knowledge base containing 5 main categories with proportion in the dataset, and their subcategories 
with defnitions and examples of NL descriptions. 

Main Category Subcategory Defnition Examples 
Information Recall (34.0%) Repeat Select or input something based on prior same or similar information Input the same text 

Select the element with similar text 
Format Text Changing the format, structure, or presentation while keep content structure previous data into specifc format 

Replace sufx "xlsx" by "csv" 
Polish Text Enhancing the quality or Refning the style of text Use a more formal tone 

Eradicate ambiguous expressions 
Information Comprehension (28.3%) Summarize Understanding the information and give a summary Summarize the keywords 

Summarize into one sentence 
Extract Information Understanding existing information and extract specifc data Extract student id from 

Information Creation (9.4%) Generate Text Generating newly written content Write a short essay based on the keyword 
Write an application for the post 

Logical Reasoning (13.2%) Calculate Performing mathematical calculations based on existing data add two numbers 
Evaluation Analyzing data to produce a result, comparison, or categorization compare two strings and give the result 

categorizing data based on certain criteria 
Contextual Selection (15.1%) Match Element Identifying elements based on current context Select item with the lowest price 

Find the search result most related to 
Match Text Identifying text based on current context Select the movie introduction on the webpage 

3.2.1 Identifying iterative tasks from single demonstration. 
Our analysis revealed two types of tasks: (1) Normal Tasks with 
a linear structure users may perform periodically. (2) Iterative 
Tasks with a recurrent structure, where users repeatedly perform 
the same operations on a list of objects. In our dataset of 39 tasks, 
23.1% (9 tasks) were identifed as normal, while 76.9% (30 tasks) 
were iterative. In comparison, in all recorded distinct tasks during 
the study, normal tasks accounted for 52.9% and iterative tasks 
accounted for 47.1%, with a higher proportion of normal tasks such 
as replying to messages. A key feature of iterative tasks is that at 
least one operation involves an element parameter within a list 
on the GUI, with subsequent iterations using other elements in 
the list as new parameters. To identify the task type from a single 
demonstration, it is crucial to recognize list structures on the UI. 

3.2.2 Enriching GUI operation semantics through contex-
tual information. We identifed a signifcant gap between raw 
GUI events and the semantics of operations. For instance, an input 
feld on a webpage may not indicate its intended use due to insuf-
cient element labels. GUI structure data provides contextual clues 
about surrounding elements like adjacent text labels, clarifying the 
purpose of user interactions with them. Integrating these supple-
mentary data with UI analysis techniques is crucial for accurate 
inference of the semantics behind individual operations. 

3.2.3 Understanding multiple sources of intent in parameter 
selection. For each operation, we explored the decision-making 
process involved in the selection of parameter, i.e., why users inter-
act with specifc elements or input certain text. Based on the source 
of intent, we identifed several types of operations: 

(1) Fixed-Parameter Operations: Operations where parameters 
remain constant across diferent contexts. In the example 
of Figure 1, the search button to click and the MS Word 
window to switch are fxed, regardless of the keyword. 

(2) Independent Variable-Parameter Operations: Operations 
where parameters are directly infuenced by the user’s direct 
intent, which are also essential in determining the task goal. 

For example, in Figure 1, the keyword to search is a user-
specifed parameter. In iterative tasks, such parameters may 
vary across iterations and are determined by the iterative 
element list as mentioned in 3.2.1, and we further label them 
as Iterative. 

(3) Dependent Variable-Parameter Operations: Operations 
where parameters are infuenced by prior operations and the 
user’s cognitive process. For instance, in Figure 1, the fnal 
summary depends on the selected paragraph. Each depen-
dent operation involves a cognitive dependency, linking it 
to prior operations. 

3.2.4 Recognizing diverse and task-specific cognitive de-
pendencies. We categorized the cognitive dependencies of each 
dependent operations into distinct types, based on the cognitive 
processes users undergo when interacting with the UI. Firstly, these 
dependencies can be classifed into two primary types: 

• Structure Dependency, which involves understanding UI 
structural relationships, such as identifying the same or ad-
jacent elements. These dependencies rely on rules with basic 
element information, rather than semantic understanding. 

• Semantic Dependency, which involves cognitive processes 
that deal with semantic connections between text or ele-
ment parameters. Examples include summarizing text or 
identifying elements with related text. 

By adapting existing cognitive categorization methods, including 
Bloom’s Taxonomy [5] and Marzano & Kendall’s framework [38] to 
the realm of GUI operations, we divided all the semantic dependen-
cies into fve main categories. These include Information Recall, 
Information Comprehension, Information Creation, Logical 
Reasoning, and Contextual Selection. The main categories are 
designed to be both abstract and comprehensive, encompassing the 
full range of semantic cognitive processes during GUI operations. 
Furthermore, each main category contains several subcategories, 
which are more specifc breakdowns of a main category to repre-
sent a group of similar semantic dependencies. See Table 1 for a 
complete list of all categories, which we term as an operation-
cognition knowledge base. Notably, our task automation scope 
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Figure 2: An example of a task graph on the UI, and the interaction steps with TaskMind to automate tasks: (a) record and stop 
demonstration, (b) allow TaskMind to analyze the task, (c) confrm or modify the task graph, (d) save and execute the task 
graph, (e) invoke task graphs in the repository. 

excludes cognitive processes like image/video understanding and 
emotional reasoning, which are beyond automation needs. 

We observed a diversity in semantic dependencies, many of 
which are task-specifc. For instance, in our dataset, Tasks 26 and 
27 both involve writing based on slides but difer in goals: Task 26 
focuses on personal refections, while Task 27 involves drafting a 
lecture. This highlights the necessity for a comprehensive knowl-
edge base to capture diverse semantic dependencies. However, there 
is a trade-of between abstraction and specifcity. The knowledge 
base must be abstract enough to cover many tasks, yet specifc 
enough to address the unique cognitive dependencies within in-
dividual tasks. Thus, a mechanism is required to ensure that the 
knowledge base can adapt and evolve continuously to meet varied 
and specifc demands of diferent tasks and users. 

3.3 Task Graph Design 
Based on the fndings, we designed task graph to model cognitive 
dependencies within GUI tasks. A task graph serves as a task pro-
gram, encompassing all the requisite information for automated 
execution. It comprises three components: task type, operation se-
quence, and cognitive dependencies. An example task graph on the 
UI is shown in Figure 2. 

Task Type. Normal or iterative. See 3.2.1 for details. 
Operation Sequences. Represented by nodes in the graph, 

which are sequentially connected with edges, depicting the task 
fow. Each operation has the following attributes: 

• Index of Operation. 
• Type of Operation: We defned 21 common computer opera-
tions along with their corresponding parameters, including 
Click, TextInput, Copy, etc. See Appendix F. 

• Parameters: The target of an operation, which mainly include 
text, and elements on the GUI. An element is represented 
by a dictionary with felds including ID, Name, Type, Text, 
Description (contextual information to enrich the semantics, 
see 3.2.2) and List (the list in GUI where the element resides, 
if present, see 3.2.1). Operations may have no parameters or 
multiple parameters. 

• Source of Parameter: Fixed, independent/iterative or depen-
dent, see 3.2.3 for details. 

Cognitive Dependencies. Represented by special edges in the 
graph. When operation B’s parameter depends on operation A, a 
directed edge links A to B. Operation A serves as the input, and B as 
the output of this dependency. A cognitive dependency may have 
multiple inputs, but only one output. While a task might follow 
various dependency paths, a task graph represents just one of these 
paths. The text format for a semantic dependency is: 

Output=Main_Category.Subcategory<Description>(Inputs). 
“Main Category” and “Subcategory” come from 3.2.4, and “De-

scription” provides detailed description of the dependency in NL. 

4 TaskMind 
In this section, we frst describe the user interaction scenario along 
with the system workfow of TaskMind, then present the design 
and implementation details of TaskMind, addressing challenges 
identifed in our formative study. 

4.1 Usage Scenario 
Anna, a university student studying Economics, often encounters 
unfamiliar terms while reading textbooks and blogs. To build a per-
sonal glossary, she wants to search for and browse each term, then 
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Figure 3: The overview of TaskMind system, which automatically models a task graph from the user demonstration. 

write a brief summary. She decides to use TaskMind to automate 
this repetitive process. 

Demonstration, Modifcation & Automation. Anna begins 
by demonstrating how to search the keyword “Kilimanjaro”. She 
clicks the “Start Recording” button, performs her usual process, and 
clicks “Stop Recording” (Fig. 2.a) and then “Analyze” (Fig. 2.b). Task-
Mind analyzes the recordings and generates a task graph. Anna can 
check the graph, which visualizes operations and their cognitive 
dependencies (edges with NL descriptions). She can modify the 
dependencies by adding, deleting, or editing their descriptions and 
the connected nodes (Fig. 2.c). Anna saves the graph to the task 
repository without modifcations (Fig. 2.d). Later, Anna encounters 
another term “GPT-4”. She opens the saved task (Fig. 2.e), enters 
“GPT-4” on the frst node to defne a new task goal, and clicks “Run” 
to automate the task (Fig. 2.d). However, during automation, Task-
Mind gets stuck when trying to select the “GPT-4” introduction 
on the page. Anna presses “Shift + Esc” to stop the process, and 
re-check the task graph. She identifes an unrecognized dependency 
for the operation of selecting the introduction, which causes the 
failure, as TaskMind still tries to fnd the “Kilimanjaro” introduc-
tion on the “GPT-4” website. Anna adds a new dependency—“Find 
the introduction of the keyword”—and clicks “Run” to restart the 
automation (Fig. 2.c). With this adjustment, TaskMind successfully 
completes the task. From then on, whenever Anna encounters an 
unfamiliar term, she can simply input the new keyword, and have 
TaskMind automatically add its summary in her notes. 

Refection & Evolution. Once the modifcation is made, the 
refection module analyzes it in the background, learns that “ex-
tracting specifc information” is a type of cognitive dependency, and 
incorporates this knowledge into the initial operation-cognition 

knowledge base which supports dependency extraction. Next time 
when Anna creates new tasks, such as collecting abstracts of pa-
pers, TaskMind can more accurately identify the similar cognitive 
dependency “fnd the abstract of the paper” from the demonstrated 
operations. 

Iterative Task. Now Anna has a list of papers to read and sum-
marize but limited time. She creates an Excel fle to track the papers 
and demonstrates how to search for and summarize the abstract 
for the frst paper. TaskMind identifes the papers to iterate over, 
displays them in the task graph along with cognitive dependencies. 
Anna clicks “Run” after checking it, and TaskMind automatically 
collects and summarizes abstracts for the remaining papers. 

4.2 Design and Implementation 
TaskMind is implemented as a Windows WinForm application. 
During the user demonstration, it captures screen, keyboard, and 
mouse event data, along with UI structures using Windows hooks, 
accessibility APIs, and a Chrome extension for web page events 
and DOM trees. When analyzing the task, two key modules, the UI 
extractor and the dependency extractor, process the record data into 
a task graph. In the automation phase, TaskMind executes the task 
by simulating user keyboard and mouse inputs across Microsoft 
Ofce (Excel, Word, PowerPoint), Chrome browser, and the system 
fle explorer. The system architecture is shown in Figure 3, and 
main modules are detailed below. 

4.2.1 UI Extractor. The UI Extractor is designed to enhance the 
semantics of individual operations by extracting contextual informa-
tion, and meanwhile identify iterative tasks by recognizing iterative 
UI elements. 
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Firstly, the UI Extractor uses a rule-based method to transform 
low-level GUI events into diferent types of operations along with 
their targeted parameters (element or text) (see operation types 
in Appendix F). The rules include predefned event patterns like 
grouping keyboard inputs as TextInput or recognizing shortcuts. 
Secondly, for each element parameter, the UI Extractor parses the 
UI structure to retrieves fundamental attributes such as ID, type, 
name, and text, with its additional information enriched through 
two steps: (1) Semantics Augmentation: It extracts text from parent 
and sibling elements in the UI structure as contextual information 
to save into the ‘Description’ feld, enriching the semantics of the 
corresponding operation. For spreadsheet cells, it also captures 
the headers and data in the same row. (2) Iteration Recognition: 
It identifes the list on the screen where the element resides (if 
exists), and save necessary information into the ‘List’ feld. This is 
implemented using a method inspired by Rousillon’s [7] work to 
identify the Deepest Iterative Ancestor (DIA) of an target element 
in the UI structure. The siblings of the DIA are regarded as iterative. 
The ‘List’ feld contains DIA’s parent and sibling elements, the index 
within its siblings, and the path from the DIA to the target element. 
This list information will be used to determine new iteration goals 
during subsequent automation for iterative tasks, and also identify 
structure dependency by discerning whether two elements are in 
the same list. 

Overall, these steps convert low-level GUI events into 
semantically-enriched operations, aiding in the subsequent analyz-
ing of cognitive dependencies. 

4.2.2 Dependency Extractor. The dependency extractor aims to 
uncover cognitive dependencies implicit in operations. This module 
consists of two sub-modules: structure dependency extractor 
and semantic dependency extractor. The structure dependency 
extractor utilizes augmented element information to determine 
UI structural relationships between elements. E.g., by comparing 
ID felds, it can deduce if there is an dependency to re-click the 
same element as in prior operations, and by examining List feld of 
two elements, it determines their membership in the same list and 
assesses the spatial interval between them. 

The semantic dependency extractor leverages the capabilities of 
LLMs for natural language semantic understanding. Initially, the 
semantically-enriched operations, processed by the UI Extractor, 
are organized into a structured textual format, as illustrated in Fig-
ure 3. Subsequently, this formatted data, in conjunction with the 
operation-cognition knowledge base (also formatted for standard-
ization), was fed to an LLM. To refne the LLM’s output analysis, 
we integrated several empirically derived rules into the prompt. 
The temperature of the model was set to 0.2, and instructions such 
as “Do not make up a MAINCATEGORY” are incorporated into 
the prompt, mitigating the known issue of ‘hallucinating’ in LLMs, 
where the model generates incorrect or irrelevant content [23]. We 
used a one-shot example to direct the output format, employing a 
chain of thought (COT) [56] approach to guide the model’s analysis 
for each operation, which involves following steps: First, each op-
eration’s text is repeated to enhance the LLM’s memory retention; 
Second, the LLM uses contextual operations to infer the user’s in-
tent; Third, operation parameters are assessed whether to be fxed 
or variable in new automated contexts, based on user intent; Finally, 

the LLM determines if parameters stem directly from user intent 
or depend cognitively on prior operations. In cases of cognitive 
dependency, it categorizes and recovers these dependencies with 
NL descriptions. Figure 4 outlines the workfow of the semantic 
dependency extractor. The entire prompt can be found in Appendix 
A. 

Moreover, operations directly derived from user intent are an-
alyzed using the List feld of the element parameter (if present) 
to ascertain whether this operation is iterative. Ultimately, a task 
graph is generated, encapsulating the task type, sequence of oper-
ations with parameters, and all cognitive dependencies, saved in 
JSON format. 

Figure 4: Implementation of the semantic dependency ex-
tractor. 

4.2.3 Modification & Execution. After demonstration and task anal-
ysis by two extractors, the generated task graph will be visualized 
for users as an editable diagram (see Figure 2). Before starting au-
tomation, users can make necessary modifcations to the graph to 
clarify their intents and defne new task goals. The modifcation 
include adding, deleting or editing dependencies on their NL de-
scriptions or connected operations. For iterative tasks, users can run 
the task graph immediately, since the remaining iterative elements 
represent new goals. For normal tasks, users can manually defne 
new goals by entering text or selecting screen elements as new 
parameters directly from their intents (e.g., a new search keyword). 

During execution, operations are carried out sequentially. For 
fxed operations, TaskMind uses a combination of recorded at-
tributes (ID, type, name and text) to anchor the target element. 
For operations that cognitively depend on prior ones, TaskMind 
uses the NL description of the dependency as a prompt for LLM to 
inter new parameters in new contexts. To balance the generation 
speed and execution accuracy, the system employs gpt-3.5 for text 
parameter inference and gpt-4 for determining element parameters. 
The latter involves extracting and fltering all clickable elements 
on the current UI, and assigning indices for selection by the LLM. 
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Figure 5: Implementation of the refection module. 

4.2.4 Reflection Module and Self-Evolution. The operation-
cognition knowledge base helps in extracting cognitive dependen-
cies. To achieve adaptability to diverse and task-specifc needs, we 
introduce a self-evolving mechanism that employs a refection 
module to digest user modifcations using LLMs, enabling the 
continuous updating of the knowledge base over time. In this 
mechanism, when users modify a cognitive dependency, the 
refection module—running in the background—incorporates the 
modifcation and the current knowledge base as inputs to the 
LLM. The refection process is also guided by the COT approach, 
transforming modifcations on specifc dependencies into updates 
to the abstract knowledge base. The output includes updating 
existing subcategories, adding new ones, or making no changes. 
These updates improve the knowledge base’s ability to recognize 
similar cognitive dependencies more accurately when users create 
new automation tasks in the future. Figure 5 outlines the workfow 
of the refection module, and the entire prompt can be found in 
Appendix B. 

5 Simulation Study 
We conducted both a simulation study and a user study to evaluate 
TaskMind. The simulation study focused on technical performances 
of the task graph with cognitive dependencies, the semantic depen-
dency extractor with the knowledge base, and the refection module 
(see Figure 3). We compared TaskMind to the baseline version with-
out cognitive dependencies to evaluate the impact of explicitly 
annotated dependencies on the success rate of generalizing automa-
tion programs learned from one demonstration to new task goals. 
The user study focused on usability, examining how users interact 
with the task graph and how they perceive the interaction, com-
pared to the same baseline as the simulation study, where users 
only see a task graph without cognitive dependencies and use NL 
instructions to defne new task goals and clarify their intents. To-
gether, these two studies provided a comprehensive evaluation of 

TaskMind on both the technical performance of its pipeline and the 
usability of its interfaces. 

The simulation study was conducted on the dataset derived 
from our formative study. The dataset comprised 39 tasks, each 
with a pre-annotated task graph containing cognitive dependencies, 
encompassing a total of 74 structural and 53 semantic dependencies. 
The average number of task steps (1 iteration) was 8.5, ranging from 
3 to 19. 

5.1 Evaluation of Automation Success Rate 
5.1.1 Baseline and Implementation. To better understand the 
role of task graph with an explicit notion of cognitive dependencies, 
we used TaskMind without cognitive dependencies as our baseline. 
This was implemented using an end-to-end LLM that took user 
demonstration in the format after the UI Extractor (see Figure 3) 
as the input, and directly generated parameters for subsequent 
operations, without explicitly generating cognitive dependencies 
in the task graph as an intermediate stage. The prompt includes 
user-demonstrated operation sequence, already completed oper-
ations, task automation command in NL, and available elements 
on the current page. We provided clear instructions and few-show 
examples to facilitate the in-context learning, and utilized a chain-
of-thought mechanism by instructing the LLM to analyze the intent 
of subsequent operations before generating answers to improve 
the performance. We controlled the type of the next operation to 
be the same as the demonstration in our baseline, leaving only 
the parameter generation to LLM, since TaskMind only use cogni-
tive dependencies to generalize the parameters. For iterative tasks, 
we also designated the target element of each iteration. Detailed 
prompt can be found in Appendix C. We used gpt-4-1106 as the 
foundation model for both methods. 

5.1.2 Procedure. An expert, profcient in programming and with 
a complete understanding of cognitive dependencies, demonstrated 
these tasks on a Windows 10 system. Afterward, tasks were au-
tomated with 3 methods: TaskMind using the task graph without 
any modifcation (TaskMind w/o Modifcation), TaskMind using 
the task graph with expert modifcations based on the ground truth 
(TaskMind w/ Modifcation), and the baseline end-to-end LLM ap-
proach with expert-crafted automation commands in NL to describe 
the task goal (Baseline LLM). 

We followed the metrics in Mind2Web [14] to report the task 
success rate (Task SR) and step success rate (Step SR) of parameter 
generalization and automation. To concentrate on generalizable 
operations that change parameters in diferent contexts, we cal-
culated the success rate specifcally for steps requiring parameter 
changes due to semantic dependencies (Semantic-Dependent Step 
SR). Furthermore, we considered a single automation attempt of a 
non-iterative task as one iteration, and reported the iteration suc-
cess rate (Iter SR). Since the output parameters—suitable elements 
or NL text—can vary in practical settings, we conducted a man-
ual evaluation by experts. The primary measure was whether the 
outcome of each step matched the task’s actual intended purpose. 

5.1.3 Results and Analysis. For TaskMind, 31 out of 39 tasks 
(79.5%) and 173 out of 204 iterations (84.3%) were successfully auto-
mated without any modifcations to the task graph. After applying 
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Table 2: Comparison of parameter generalization success rate (SR, %) across tasks, iterations, steps, and semantic-dependent 
steps for 3 approaches: the end-to-end LLM approach (Baseline LLM), TaskMind without modifcation to the task graph 
(TaskMind w/o M), and TaskMind with modifcation (TaskMind w/ M). 

Task 
SR 

Iter 
SR 

Step 
SR Information 

Recall 

Semantic-Dependent Step SR 

Information Information Logical 
Understanding Creation Reasoning 

Contextual 
Selection 

All 

Baseline LLM 33.3 60.8 83.0 73.3 51.7 93.8 53.7 43.8 63.1 
TaskMind w/o M 
TaskMind w/ M 

79.0 
92.3 

84.3 
92.6 

98.3 
99.5 

97.4 
98.3 

89.7 
100.0 

87.5 
100.0 

95.1 
97.6 

65.6 
90.6 

90.9 
97.7 

Figure 6: When task complexity increased, the step success 
rate of the baseline LLM declined while TaskMind main-
tained performance. 

modifcations, the success rate increased to 92.3% (36 out of 39 tasks) 
and 92.6% (189 out of 204 iterations). In contrast, the baseline LLM 
only achieved a 33.3% task success rate and a 60.8% iteration suc-
cess rate. When focusing on semantic-dependent steps, the baseline 
LLM succeeded in only 63.1% of cases, whereas TaskMind achieved 
90.9% success before modifcations and 97.7% after modifcations. 
This indicates that an explicit notion of dependencies signifcantly 
improves success rates and system reliability, particularly for steps 
critical to the generalization of demonstrations. 

The automation failures of the baseline LLM, especially in com-
parison to our method, can be summarized as follows: 

(1) Tracking Long-horizon Tasks. The LLM struggled more 
with complex tasks involving multiple operations, as shown 
in Figure 6. Results suggested the LLM often loses track of 
long-horizon tasks, a limitation also noted by [59], whereas 
a task graph is better suited for such complex scenarios. 
A typical example was Task 18 (T18), where the goal was 
to frst paste and title an introduction text, then insert an 
image to create a slide. The baseline LLM failed to insert the 
image after titling, and its pre-answer analysis showed it 
mistakenly believed the task was complete. 

(2) Linking Task Goal to Specifc Operations. The baseline 
LLM often struggled to determine which operation the goal 

described in NL command should be applied to. As a re-
sult, the baseline LLM frequently failed to generate desired 
elements or text even with a clear description in the NL com-
mand. In 19 out of 39 tasks, the LLM made errors like select-
ing incorrect elements (e.g., failing to select an introduction 
paragraph in T16, selecting an irrelevant button instead of a 
searching result in T1), outputting blank, placeholder text, or 
repeating previous text (e.g., producing nothing when being 
told to summarize a paper in T1, generating text “sentiment” 
instead of the sentiment label in T35, repeating original text 
when writing a speech in T27). This highlights the LLM’s 
difculty in fully understanding the relationship between 
intent and operations. The task graph, however, clearly an-
notated dependencies for specifc operation, making the task 
goal easier to follow. 

(3) Identifying Non-Generalizable Parameters. The base-
line LLM tended to change parameters that should remain 
unchanged in new contexts. For instance, in T5, it incor-
rectly altered the date in each birthday card’s signature, and 
in T11, it failed to switch between two windows during a 
cross-application task. In contrast, the task graph explicitly 
indicates that operations involving no dependencies should 
have unchanged parameters, resulting in better performance 
and saving time and costs by not relying on LLM intelligence 
during the automation. 

(4) Generalizing Structural Positions. The baseline LLM 
had difculty inferring positional relationships between ele-
ments, often selecting incorrect cells for input. For example, 
in T22, it flled in the wrong rows when entering multiple 
items in an Excel sheet, failing to keep the entries aligned. 
TaskMind, with its structure dependency identifed, avoided 
these issues. 

The failure of TaskMind without modifcation were mainly due 
to incorrectly recognized semantic dependencies, which fell into 
four main categories: (1) Unrecognized. E.g., it missed the contex-
tual selection “fnd the mp4 fle from current page” in T11, leading 
to failures of fnding new mp4 fles in new contexts. (2) Misinter-
preted. The user intent was misunderstood, e.g., “input the label for 
the result” with only one dependent operation, instead of “compare 
the proofreading result with the answer and output ‘recognized’ if 
match, otherwise ‘unrecognized”’ with 2 dependent operations in 
T6. (3) Overly-Specifc. Dependencies were too specifc to gener-
alize in new contexts, e.g., “fnd the cell with the year 2019” instead 
of “fnd the cell with the same year” in T7. (4) Overly-Abstract. 
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Table 3: Recall, precision and f1-score (%) in extracting semantic dependencies for TaskMind with the simplest prompt, TaskMind 
without knowledge base and the full version of TaskMind. 

TaskMind Simple TaskMind w/o KB TaskMind Full 
Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score 

Info Recall 88.9 84.2 86.5 77.8 82.4 80.0 94.4 89.5 91.9 
Info Comprehension 93.3 82.4 87.5 60.0 56.3 58.1 93.3 82.4 87.5 
Info Creation 40.0 100.0 57.1 20.0 100.0 33.3 60.0 75.0 66.7 
Logical Reasoning 57.1 57.1 57.1 71.4 83.3 76.9 71.4 83.3 76.9 
Contextual Selection 50.0 11.1 18.2 62.5 45.5 52.6 75.0 60.0 66.7 
All 75.5 49.4 59.7 64.2 66.7 65.4 84.9 80.4 82.6 

Dependencies were not detailed enough to meet task goals, espe-
cially for personalized needs, e.g., “summarize the text” instead of 
“write a presentation draft according to the text” in T27. 

After modifcation, two major failures were resolved: First, task 
execution became more fexible instead of a rigid processes. For 
example, after correcting overly-specifc ones, TaskMind could fnd 
cells with diferent years for each iteration, rather than always 
selecting the same year. Second, task execution better aligned with 
user intent, eliminating unsatisfactory outputs. For example, cor-
recting overly-abstract dependencies allowed TaskMind to generate 
a presentation draft better met the task requirements. Nevertheless, 
even with modifed dependencies, some failures persist in semantic-
dependent steps. Although the types of failed dependencies vary, 
they all stem from the LLM’s difculty in applying semantic rela-
tionships. For example, in T6, it misjudged whether proofreading 
results matched the correct answer. In T19, when trying to fnd 
a cell with text similar to “duration”, the LLM failed to select the 
correct “person-hour” cell. These errors might be addressed by in-
troducing more sophisticated text generation or element grounding 
methods. Despite these issues, the introduction of task graph and 
cognitive dependencies still presents a signifcant advancement in 
improving success rate of automating tasks. 

5.2 Evaluation of Dependency Extraction 
5.2.1 Procedure. We conducted an ablation study on the dataset 
to validate the efectiveness of our operation-cognition knowledge 
base in enhancing the accuracy of semantic dependency extrac-
tion. We compared the full version of TaskMind with (1) Task-
Mind without the operation-cognition knowledge base provided 
in the prompt, (2) TaskMind with the simplest prompt, lacking 
of operation-cognition knowledge base and the chain-of-thought 
mechanism. 

We used pre-annotated dependencies as the ground truth to 
validate the accuracy of the identifcation of dependencies from a 
operation sequence, and conducted a manual evaluation of their 
NL descriptions by experts due to the variability in NL expressions. 
Notably, although the knowledge base was derived from annotated 
data, it provided only an abstract categorization of semantic depen-
dencies, with carefully designed examples included in the prompt 
that do not overlap with specifc dependencies in the dataset. This 
ensured the knowledge base acted as a reference categorization, 
rather than a direct data source. The comparison between TaskMind 
with and without the knowledge base highlighted the contribution 

of expert-condensed categorization to the LLM’s performance in 
identifying and describing dependencies. 

5.2.2 Results. For a total of 53 semantic dependencies, the full ver-
sion of TaskMind consistently outperforms the other two, achieving 
the highest overall F1-score of 82.6%, with particularly strong per-
formance in Information Recall (91.9%), and Information Compre-
hension (87.5%), as shown in Table 3. The signifcant improvement 
observed after incorporating the operation-cognition knowledge 
base highlights its efectiveness in helping LLM understand task 
goals and the user intent of each operation. 

Notably, while the simplest version showed a slight improvement 
in recall, it sufered a signifcant drop in precision, especially in 
predicting Contextual Selection (11.1%). The model identifed many 
unnecessary contextual selection dependencies, such as “click the 
‘SUM’ button” or “select the edit area”, mistakenly interpreting these 
non-generalizable operations as requiring changes. This might be 
due to the prompt’s simplifcation, which likely narrowed the LLM’s 
focus, but also impaired its ability to understand and analyze the 
goal of generalization. Additionally, verbosity bias [48] might have 
contributed to the problem, leading to an excessive number of 
irrelevant dependencies. 

5.3 Evaluation of Refection Module 
We further evaluated the performance of the refection module by 
applying expert and non-experts modifcations to the task graph 
for improving the dependency extractor. 

5.3.1 Procedure. Our analysis included 3 groups of tasks, each 
comprising the original task where initial recognition of semantic 
dependencies requires modifcations, and 2 additional tasks with 
similar semantic dependencies drawn from the formative study 
data. In addition to an expert profcient in programming and task 
graph modifcation, we also recruited 10 participants from a local 
university (7 males, 3 females) as non-experts, none of whom had 
prior PBD experience. They were frst introduced about the concept 
of task graph and cognitive dependency, and then given time to 
modify the semantic dependencies in the original generated task 
graph for each group, with their personal interpretations. Following 
this, the refection module integrated the modifcation and updated 
the knowledge base. The evolved knowledge base after modifcation 
of each individual was then applied to the 2 additional tasks in the 
group to test its efectiveness in recognizing semantic dependencies. 
Overall, this process led to 33 modifcations of task graphs with 
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Table 4: Examples of modifcations from expert and non-expert users and corresponding updates to the initial knowledge base. 

Task Original Dependency Provider Modifcation Added Sub-category 

1 
extract a part 
of the text from 

Expert 
User 1 
User 2 

select abstract of paper based on title 
fnd the abstract of 
show the abstract of this paper 

select_based_on 
extract_specifc_information 
extract_specifc_information 

2 
summarize the 
text inside 

Expert 

User 1 

write summary and personal thoughts 
of slide content 
express personal feelings about the 
slides 

refect_and_summarize 

express_personal_feelings 

User 2 summarize the content of the slide and summarize_and_comment 
write down feelings 

Expert write the email content based on the based_on_previous_input 

3 none User 1 
email subject 
write email on given subject write_text_based_on_given 

_subject 
User 2 write detailed content text for the title elaborate_text 

66 test cases of evolution performance in total, encompassing 11 
expert and non-expert participants. We reported the average recall, 
precision and f1-score before and after each individual modifcation. 

Table 5: Average recall, precision and f1-score (%) in extract-
ing semantic dependencies for 3 groups of tasks before and 
after individual modifcations. 

Recall Precision F1-score 

Before 85.7 58.3 69.4 
After Expert Modifcations 92.9 92.3 92.7 
After Non-expert Modifcations 90.3 91.6 90.9 

5.3.2 Results. We noted a substantial improvement after the mod-
ifcation, as depicted in Table 5. The initial F1-score of 69.4% im-
proved to 92.7% after expert modifcations, and also improved to 
90.9% after non-expert modifcations. 

Table 4 displays the original inaccurate dependency descriptions, 
examples of modifcations from both expert and non-expert par-
ticipants, and the corresponding updates to the initial knowledge 
base. The updates listed in the table were all proven efective in 
enhancing the recognition of semantic dependencies for similar 
tasks. Of the 33 updates, the majority (30) involved adding a new 
sub-category to the knowledge base, with the remainder including 
alterations to an existing main category or sub-category. 

We further analyzed the behaviour of non-experts while modi-
fying dependencies, who had less knowledge about PBD and cogni-
tive dependency. There were 60 test cases of non-experts modifca-
tions in total, and 53 out of 60 test cases (88.3%) showed improved 
recognition of semantic dependencies post-evolution, with 45 cases 
(75.0%) achieving full accuracy of all dependencies. However, 15 
cases exhibited inaccuracies or omissions in recognizing semantic 
dependencies. Analysis of these cases revealed common issues: mis-
interpretation or bias in understanding intent (5 cases), omission 
of details or use of ambiguous pronouns like “this” or “previous” 

(7 cases), and lack of clarity in illustrating relationships with prior 
operations (3 cases). 

Despite these challenges, the study demonstrated the system’s 
ability to integrate task-specifc dependencies based on user modif-
cations, even when the modifcation was overly specifc or abstract. 
For instance, a general modifcation like “write detailed content 
for the title” was as efective as a more specifc instruction such as 
“write an email based on the email title.” Overall, the experimental 
results indicate that with the refection module, our system has the 
ability to learn new cognitive processes from user feedback and 
generalize them into abstract knowledge, enhancing TaskMind’s 
capability to evolve and adapt to personalized needs. 

6 User Study 
To evaluate the efectiveness, efciency, and usability of TaskMind, 
we conducted a two-phase lab study with 20 participants. We used 
the same baseline setup as in the frst simulation study (Section 
5.1.1), where TaskMind without cognitive dependencies was em-
ployed. In this setup, users could only view a task graph without 
cognitive dependencies after demonstration, and therefore use NL 
instructions to defne new task goals and clarify their intents if nec-
essary (see Figure 7), which was the same objective of modifying 
the task graph. The study aimed to answer the following research 
questions: 

RQ1. Is TaskMind more efective than the baseline approach? 
RQ2. Is TaskMind more efcient than the baseline approach? 
RQ3. Is TaskMind easier to interact with than the baseline ap-

proach? 
RQ4. Is TaskMind capable of addressing users’ real needs? 

In the frst phase, we used a within-subject study to compare Task-
Mind with the baseline using a set of predefned tasks that varied 
in difculty levels and types of cognitive dependency. In the second 
phase, participants were encouraged to complete personalized tasks 
based on their actual needs and goals, using both TaskMind and 
the baseline method. 
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Table 6: 10 predefned tasks used in the user study that varied in 2 difculty levels and 5 types of cognitive dependency. 

Easy Difcult 
Information Recall Rename image fles (Task 21) Summarize annual total (Task 7) 

Information Comprehension Introduce scenic spots (Task 18) Search for keywords (Task 16) 

Information Creation Write an email (Task 23) Write a refection (Task 26) 

Logical Reasoning Fill out a web form (Task 15) Search for papers (Task 1) 

Contextual Selection Calculate rectangle areas (Task 39) Calculate procurement expenses (Task 36) 

Figure 7: Interacting with the baseline LLM to automate tasks 
through natural language instruction, without task graph 
and cognitive dependencies. 

6.1 Participants 
We recruited 20 participants (10 male and 10 female) aged 20-36 
(�=23.1, �=1.7), including 12 (P1-P12) university students and 8 
(P13-P20) professionals. 5 participants had prior programming ex-
perience of more than 5 years, and also had used automation tools or 
written automation scripts, while 10 participants had prior program-
ming experience of 1-5 years but had no automation experience, 
and 5 participants had no programming or automation experience. 
None of them had experience with visual programming tools. 

6.2 Procedure 
Each study started with an introduction and a consent solicita-
tion, followed by a tutorial. During the tutorial, participants were 
given a document detailing necessary information and watched 
instructional videos on each method. They were informed about 
diferent interaction modes of the two methods. For TaskMind, par-
ticipants were required to review the task graph and could modify 
it by adding, editing, or deleting dependencies before automating 
the task. For the baseline method, participants needed to edit the 
automation command in NL before execution, without examining 
the task graph. If the automation failed, they could re-modify the 
task graph or NL command and try the task again. The interaction 
interfaces are shown in Figure 2 and Figure 7. Before concluding the 
tutorial, they completed a simple task (T2) using both TaskMind 
and baseline methods to prove their understanding of the basic 
usage. 

Following the tutorial, the formal study was divided into two 
stages: In the frst stage, each participant was randomly assigned 2 
tasks from a set of 10 predefned tasks, with 1 difcult and 1 easy in 
randomized order. They were asked to complete these 2 tasks using 
both TaskMind and baseline methods, and then assess the success 
based on their expectations. In the second stage, participants were 
encouraged to use both methods to complete a task relevant to 
their personal or professional contexts, utilizing their own fles 
and familiar websites. Each participant completed a total of 3 tasks 
using both methods, resulting in 6 trials per participant and a total 
of 120 trials across the study. Each predefned task was completed 
4 times using each method. To mitigate the learning efect, orders 
of methods and conditions in both phases were counterbalanced 
across tasks and participants. 

After each trial, participants flled out a survey to rate aspects of 
workload and usability on a 7-point Likert scale based on NASA TLX 
model [19] with additional questions, with 1 being the most negative 
experience and 7 the most positive. After all the trials, participants 
evaluated their overall experience on the same 7-point Likert scale. 
All survey questions are shown in Appendix D. After completing all 
tasks, they engaged in a semi-structured interview, which explored 
their thought processes during interaction with both task graph 
and NL command, their perceptions of the interaction efort and 
utility, and whether they understood and paid attention to cognitive 
dependencies. Each phase took about 40 minutes, with the entire 
process taking about 2 hours. Each participants received $12 per 
hour and $2 for each personalized tasks as compensation4. 

6.3 Tasks 
We selected 10 representative tasks from the dataset collected dur-
ing the formative study, ensuring each type of semantic dependency 
was covered by two tasks: one easy (with 6 or fewer demonstrated 
steps) and one difcult (with more than 6 demonstrated steps). The 
task list is detailed in Table 6. 

6.4 Results 
6.4.1 Success Rate and Time (RQ1, RQ2). Participants concluded 
each trial either when satisfed with the automation results or upon 
deeming the task impossible to complete. As shown in Table 7, the 
average completion times were 5.1 minutes (�=2.0) for TaskMind 
and 15.3 minutes (�=8.4) for Baseline LLM, with a statistically signif-
icant diference (p=0.0001<0.05) observed through a paired-samples 
t-test. The step success rates were 95.3% for TaskMind and 78.0% for 
4The study protocol was reviewed and approved by the university ethics review board. 

https://p=0.0001<0.05
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Table 7: Comparison of efciency between TaskMind and the baseline LLM. 

Task Complete Time (min) Modifcation Time (s) Number of Modifcations 
TaskMind 5.1 (�=2.0) 102.5 (�=38.0) 0.76 (�=0.83) 
Baseline 15.3 (�=8.4) 23.5 (�=10.3) 1.96 (�=0.95) 

Figure 8: The efectiveness of trials based on the number of 
modifcations to task graphs for TaskMind versus NL instruc-
tions for the baseline LLM. Since all participants performed 
at least one NL addition, there is no ‘0 number of modifca-
tion’ data for the baseline LLM. 

Baseline LLM. These results indicate that participants were able to 
complete tasks more efciently and reliably using TaskMind than 
with the baseline. The efciency of TaskMind mainly comes from 
its improved success rate which lowers the need for further modi-
fcations, and reduced execution time achieved by using the task 
graph as a guide to skip non-generalizable parameter inference. 

The study required TaskMind identifying a total of 61 instances of 
semantic dependencies, where it achieved a precision of 76.5%, recall 
of 79.6%, and an F1-score of 78.0%. The slightly lower performance 
compared to the simulation study was likely due to participants 
introducing additional and unintentional operations that impacted 
the recognition of semantic dependencies, as evidenced by the 
higher average number of demonstrated steps 9.6 compared to the 
8.8 steps in the expert demonstrations for the pre-defned 10 tasks 
during the simulation. 

6.4.2 Modifications and Collaborations (RQ1, RQ2, RQ3). For each 
trial, we recorded the total time participants spent making multi-
ple modifcations in the interfaces. On average, they spent 102.5 
seconds (�=38.0) with 0.76 (�=0.83) modifcations on TaskMind’s 
task graphs, compared to 23.5 seconds (�=10.3) and 1.96 (�=0.95) 
modifcations on Baseline LLM’s NL commands. When modifying 
tasks graphs, participants mainly focused on correcting dependency 
recognition errors, categorized into 4 types discussed in 5.1: adding 
unrecognized (21.1%), correcting misinterpreted (7.9%), abstracting 
overly-specifc (31.6%), clarifying overly-abstract (26.3%). The re-
maining changes (13.2%) involved deleting incorrectly identifed 
dependencies. In contrast, NL command modifcations primarily 
involved creating and expanding commands to specify task goals. 

Participants spent more time on modifying the task graph (RQ2, 
RQ3). 7/20 participants mentioned that they needed extra time to 

grasp the logic of operations and cognitive dependencies. P11 noted, 
“It took more time to understand the meaning of the arrows (cognitive 
dependencies)”, while P4 explained, “Most of the time was spent 
on creating and verifying missing dependencies”. Additionally, we 
observed that participants tended to carefully check each operation 
when working with the task graph to validate the dependencies. 
For example, P7 spent much time analyzing the dependencies in 
T7 (Summarize annual total) which involve numerous steps and 
inter-dependent operations. 

Despite extra time required for task graphs, modifying task 
graphs proved more efective than modifying NL commands with 
a higher success rate on each number of modifcations (RQ1), as 
shown in Figure 8. Participants found it challenging to describe 
the intent of specifc operations using NL commands, whereas task 
graphs provided more clarity (RQ3). P1 noted, “Task graphs pro-
vide opportunities to rewrite the logic between operations, enabling 
targeted modifcations to key steps of the task and their information 
sources.” P12 added, “It’s easier for task graphs to correct automation 
errors.” Meanwhile, when a task involved multiple dependencies, a 
single NL command was insufcient for accurate description. For 
example, facing Task 1 with 3 dependencies, P5 gradually modifed 
the NL command from a simple description to a detailed one 3 
times—“search for the title, click on a website, locate the abstract 
on the page, paste it into the adjacent cell, and write a summary 
for the abstract”, until ultimately abandoning it. 

6.4.3 Subjective Feedback (RQ3). We employed the Wilcoxon 
signed-rank test to compare the two methods on diferent met-
rics of subject ratings, as shown in Figure 9. For qualitative data 
from interviews, we used thematic analysis to identify key patterns 
related to participants’ perceptions. There were no statistically sig-
nifcant diferences in mental demand (Z=51.0, p>0.05), physical 
demand (Z=36.0, p>0.05), ease of learning (Z=12.5, p>0.05) and ease 
of using (Z=16.0, p>0.05) between TaskMind and Baseline LLM. 
However, 9/20 participants perceived that modifying the task graph 
required more mental demand and efort, especially in logical think-
ing, while NL instructions were more convenient. As P9 mentioned, 
“The task graph requires understanding each dependency and their 
connections between operations, which is a bit hard to grasp.” Notably, 
when dealing with simple tasks, 2/20 participants (P10 and P18) pre-
ferred the modifcation of NL instructions for the simplicity, as P10 
expressed, “The task graph is relatively complex and requires editing 
of details. If the task is simple, the advantages are not as noticeable.” 

Despite the efort, TaskMind signifcantly outperformed Baseline 
LLM in terms of performance (Z=12.0, p=0.0001<0.05), frustration 
(Z=25.5, p=0.005<0.05), satisfaction (Z=15.0, p=0.0001<0.05), control-
lability (Z=17.0, p=0.0001<0.05), reliability (Z=30.0, p=0.0003<0.05) 
and willingness to use (Z=6.0, p=0.03<0.05). Considering Task-
Mind’s efectiveness compared to the baseline LLM, participants 
were willing to invest more time and efort in understanding the 

https://p=0.03<0.05
https://p=0.0003<0.05
https://p=0.0001<0.05
https://p=0.0001<0.05
https://p=0.005<0.05
https://p=0.0001<0.05
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Figure 9: NASA-TLX and usability scores for each subscale with asterisks showing the statistically signifcant mean diferences 
on the Wilcoxon signed-rank test (*: p<0.05, **: p<0.01, ***: p<0.001). Crosses (x) represent mean values, and horizontal lines (—) 
represent median values. For NASA-TLX (the frst 6 scales), 7 indicates very low mental and physical demand, no time pressure, 
good performance, minimal efort, and no frustration. For usability (the remaining scales), 7 is very positive. 

task graph to achieve better utility. P1 expressed, “The task graph is 
more reliable, and after weighing the options, I’m still more willing 
to spend efort on modifying it.” Controllability also contributed to 
users’ experience when interacting with TaskMind. Based on inter-
view feedback, the sense of control was driven by two main factors: 
First, the specifcity of granular modifcations with efective feed-
back, as mentioned in Section 6.4.2. Second, the improved sense 
of mutual-understanding when collaborating with the machine. 
11/20 participants mentioned that the task graph provided a more 
transparent way to verify the system’s understanding of the task. 
As P7 noted, “The task graph is easier to understand, as the arrows 
(cognitive dependencies) clearly show how the system processes my 
requirements.” P8 mentioned, “The task graph’s clear structure al-
lows me to know whether the machine understands my requirements, 
making me easier to give clear instructions and ensuring we are on 
the same page.” This highlights the design need for a transparent, 
controllable interface that allows users to make targeted changes 
and instantly see results. 

2/20 participants expressed concerns about the risks of fexible 
automation with Baseline LLM, as it occasionally overwrote orig-
inal data row and deleted fles, as P13 noted, “it’s a bit dangerous 
when you hand over control of the computer to the automation tool.” 
Concerns about execution efciency were also raised, with 6/20 
participants complaining that Baseline LLM was time-consuming. 

6.4.4 Personalized Tasks (RQ4). The 20 personalized tasks pro-
vided by participants during the 2nd phase varied in difculty, with 
number of operations ranging from 3 to 30 (�=9.8, �=7.4), and num-
ber of semantic dependencies ranging from 0 to 4 (�=1.6, �=1.1). 
These tasks included 6 related to fle management, 9 to learning 
and academic activities, and 5 to clerical data processing. Among 
them, TaskMind successfully automated 15 out of 20 tasks (75.0%), 
while the baseline LLM automated 4 out of 20 tasks (20.0%). The 
F1-score for TaskMind in extracting semantic dependencies was 
82.4%. In addition to the issue of incorrectly applying semantic de-
pendnecies discussed in 5.1.3, TaskMind also encountered failures 
for two reasons. First, overly complex tasks increased the difculty 
of interpreting and modifying the task graph, such as P2’s attempt 
at collecting various data from a medical paper, where she failed to 
add unrecognized cognitive dependencies. Second, diverse opera-
tion paths led to automation failures, as seen in P11’s task to collect 

citations from websites with varied formats and access paths, where 
the system failed due to its reliance on a fxed path demonstrated. 

Participants believed that TaskMind could address their real-life 
needs. 12/20 participants expressed that repetitive tasks are com-
mon in their current jobs, with data organizing and processing tasks 
being the most frequently mentioned. For example, P15 noted, “I’m 
currently interning at a company where we often do repetitive spread-
sheet work, like fltering data from one sheet and flling it into the 
corresponding felds in another. Your tool would be helpful.” However, 
5/20 participants felt that there are certain requirements TaskMind 
cannot meet, including repetitive tasks with signifcant fexibility or 
require decision-making. For example, P10 expressed his concern 
that processing experimental data “is quite repetitive but requires 
thinking and analysis, which an automation tool would handle less 
efectively.” Additionally, 5/20 participants expressed interest in 
TaskMind’s future improvements in interaction and broader appli-
cation across diferent computer interfaces, suggesting features like 
“trying NL instructions frst, with the option to modify the task graph 
if results are unsatisfactory” (P11) and proactive task prediction 
and recommendations after a few operations, without requiring 
manual invocation (P4). Overall, the second phase underscored 
TaskMind’s efectiveness in automating real-scenario tasks, while 
also revealing limitations in handling intricate, fexible tasks or 
those requiring decision-making, highlighting potential areas for 
further improvement and expansion. 

7 Discussion 

7.1 Cognitive Dependency in Neuro-Symbolic 
Task Automation Systems 

Traditional PBD methods employ predefned task scripts to guide 
the automation [7, 21, 27, 29, 30, 32, 37, 57], providing reliability but 
lacking the fexibility to adapt to diverse contexts, closely resem-
bling a record-and-replay approach. Recent LLM-driven automation 
methods generate operation sequences from NL commands, relying 
on the pre-trained LLM’s internal knowledge of task operations 
[11, 14, 20, 24, 60, 61]. This allows for fexible task execution but 
leads to lower reliability and higher risks [61]. Neuro-symbolic 
systems employ a hybrid model that combines both logical and 
neural components [9, 45], integrating symbolic inference on task 
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execution logic with semantic reasoning on user intents to enhance 
both reliability and generalizability in task automation. 

Recent neuro-symbolic automation systems model tasks from 
various aspects including diverse program logics [45] to hierarchi-
cal task structure [28]. Upon existing work, TaskMind contributes 
to adding a semantic layer to represent the cognitive dependencies 
between operations, bridging the gap between observed operations 
and the user’s underlying cognitive processes. The explicit notion 
of cognitive dependencies in a task graph enriches the task rep-
resentation with additional semantic information, improving the 
generalizability for tasks with multiple interrelated parameters. 
The task graph is a hybrid representation of task knowledge, and 
is both user-interpretable and machine-referenceable, facilitating 
efective task consensus between humans and machines. We claim 
that this approach can be extended to include various types of task 
knowledge in the task graph, such as complex control logic and ex-
ception handling, providing scalability in collaborative automation 
for more intricate tasks in the future. 

7.2 Operation-Cognition Knowledge Base for 
Personalized Task Modeling 

Our simulation study without knowledge base reveals that while 
LLMs possess a foundational understanding of human cognition, 
they lack comprehensive knowledge about the cognitive processes 
specifc to GUI operations. This shortfall is likely due to the scant 
discussion in human-generated corpora, a point P8 highlighted by 
noting that people seldom refect on their intentions behind oper-
ations. To bridge this gap, we established an operation-cognition 
knowledge base through data collection, ofering an overview of 
cognitive processes involved in GUI operations, and a reference 
for future researchers who seek to abstract operation and task 
intentions as a task modeling solution. 

In addition, the challenges in recognizing personalized and task-
specifc dependencies led to our design of the hierarchical structure 
of the knowledge base, consisting of fve closed main categories, sev-
eral open subcategories for further expansion, and a self-evolving 
mechanism driven by LLM. The improvement in recognition af-
ter evolution highlighted TaskMind’s capacity to learn from user 
feedback and abstract specifc descriptions into generalized knowl-
edge. However, challenges still exist with complex dependencies 
due to the limitation of the demonstration. For instance, the demon-
stration of conditional logic proved insufcient for capturing the 
complete intent, as evidenced by a personal task from P7 who 
aimed to “replace ‘1’ with ‘Male’ and ‘2’ with ‘Female”’, yet only 
the modifcation for the frst data row was demonstrated. 

7.3 Collaboration Insights for PBD 
The diversity of personalized task requirements further underscores 
the importance of interaction in PBD to ensure alignment between 
human and machine in understanding tasks. Our user study com-
pared two interactive interfaces: task graphs and NL instructions, 
revealing an efort-controllability trade-of. We observed that NL 
instructions are more accessible to non-programming users (P3, P9, 
P5), intuitive to modify (P8, P9), but difcult to modify with speci-
fcity (P1) and appear opaque (P2, P10). Task graphs ofer better 
transparency, controllability and more reliability (P1, P2, P5, P10), 

but are initially more challenging to learn (P13) and requiring a 
more complex thought process to modify (P1, P8, P15). This trade-
of refects the tension between ease of use and the level of control. 
Existing work [49], which focuses on trust in automation agents, 
also mentioned controllability, reliability and some related criteria 
that infuence human-machine collaboration in task automation. 
We believe that exploring improved interaction methods for task 
automation is essential for enhancing the efectiveness of such 
collaborations. 

8 Limitations and Future Work 
Currently, TaskMind automates tasks in limited applications, cov-
ering a substantial range of repetitive tasks encountered in pro-
fessional and academic settings. However, user feedback indicated 
a demand for expansion to more applications such as literature 
management tools and alternative spreadsheet programs like WPS. 

One limitation of TaskMind is that the rule-based element 
grounding approach for fxed operations cannot handle dynam-
ically changing web structures. This challenge is beyond the scope 
of our current work, but future eforts can explore how to ground 
known elements, by generating fexible rules or using fast vision-
based approaches. 

Another limitation is that the infuence of cognitive dependen-
cies only afects the generalization of parameters. During the au-
tomation, the operation path remains fxed, which limits fexibility 
when dealing with complex workfows such as multiple branches 
or hierarchical sub-tasks. For example, this led to the failure of a 
personalized task that involved collecting citations from web pages 
with diferent operation paths. In the future, we will continue to 
explore more generalized neuro-symbolic approaches by modeling 
knowledge such as diverse and hierarchical workfows into the 
task graph, integrating LLMs to grant fexibility to more types of 
complex tasks. 

Finally, taskMind operates on a PBD basis, requiring users to 
manually demonstrate the entire operation process and defne task 
boundaries through explicit start and stop recording actions. Pre-
vious studies [7, 12] have tackled the challenge of identifying task 
boundaries through rule-based methods. Future versions of Task-
Mind aim to transcend these limitations by implementing advanced 
techniques for automatic and intelligent task segmentation, pro-
viding a more intuitive automation system by mining task graphs 
from users’ natural usage. 

9 Conclusion 
We introduced TaskMind, an intelligent PBD system designed to 
automate GUI tasks by recovering cognitive dependencies from 
user demonstrations. Central to its design is a task graph and a com-
prehensive operation-cognition knowledge base developed from 
an extensive formative study, which efectively models computer 
tasks. TaskMind leverages this knowledge base, integrated with 
LLMs, to identify and recover these dependencies autonomously. 
Additionally, the user feedback for the task graph contributes to 
the self-evolving of the system. This innovative approach marks a 
signifcant advancement in intelligent task automation and paves 
the way for future developments in the feld. 
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A The Prompt of Semantic Dependency 
Extractor 

system 

You are a clever computer task analyzer. I will give 
you a sequence of user computer operations with pa-
rameters, which includes Element type, Text type, etc. 
You should frst analyze the abstract and generalizable 
goal of the task, and give the global parameter of the 
task TASK_PARAM (If there are multiple, give the 
frst). Then, for each operation, you should (a) repeat 
its type, (b) analyze the user’s intention of this opera-
tion, and why the user chose this element or text, (c) 
determine if this operation is an operation with fxed 
parameters, which means the parameter should not 
change if the task will be executed in other context 
with other parameters, (d) explain why the user select 
this element or input this text, of which the reason 
should be a causal relation of this operation’s param-
eters with other parameters of previous operations. 
The relation should only be between Text or Element 
types. 
The relation should be in the following format: 
y=SUBCATEGORY.MAINCATEGORY<ADDITIONAL 
INSTRUCTION>(x). Here, y is the index of current 
operation, x is the index of a previous operation, 
MAINCATEGORY is the main category of the 
relation, SUBCATEGORY is the sub-category of the 
relation, and ADDITIONAL INSTRUCTION is a 
description of the relation. The description should 
be specifc enough to be informative but abstract 
enough to generalize to new context. 

You must choose MAINCATEGORY from the follow-
ing options. Do NOT make up a MAINCATEGORY 
by yourself! Here are all the main categories: 
1.Information recall. 
2.Information comprehension. 
3.Information creation. 
4.Logical reasoning. 
5.Contextual selection. 

You can choose SUBCATEGORY from the following 
example options. If the SUBCATEGORY you need 
doesn’t exist, you can create a new SUBCATEGORY. 
Here are examples of the sub-categories: 
1.1. Information recall: repeat. Select an ele-
ment or input something based on previously 
same or similar information. Example: re-
peat.information_recall<select the element with 
similar text>(x), repeat.information_recall<input the 
same text>(x). 
1.2. Information recall: polish text. Pol-
ish the text into specifc style. Exam-
ple:y=polish_text.information_recall<use a more 
formal tone>(x). 

1.3. Information recall: format text. Keep the 
original content intact while changing the 
format, structure, or presentation. Example: 
y=format_text.information_recall<replace sufx>(x), 
y=format_text.information_recall<structure previous 
data based on a specifc format>(x). 
2.1. Information comprehension: summarize. Under-
stand the information and give a summary. Exam-
ple:y=summarize.information_comprehension <sum-
marize into keywords>(x). 
2.2. Information comprehension: derive 
information. Understand the informa-
tion and derive some information. Exam-
ple:y=derive_information.information_comprehension 
<derive the student id from>(x). 
3.1. Information creation: generate. Generate 
or expanding new content, instead of merely 
adjusting the format of existing content. Ex-
ample:y=generate.information_creation<write 
a short essay based on the keyword>(x), 
y=generate.information_creation<write an ap-
plication for the post>(x). 
4.1. Logical reasoning: calculate. Performing math-
ematical calculations on existing data. Example: 
y=calculate.logical_reasoning<add two numbers>(x, 
y). 
4.2. Logical reasoning: evaluation. Ana-
lyzing existing data to produce a result, 
comparison, or categorization. Example: 
y=evaluation.logical_reasoning<compare 
two strings and give the result>(x, y), 
y=evaluation.logical_reasoning<categorizing 
data based on certain criteria>(x, y). 
5.1. Contextual selection: match element. Select the 
element from the current screen based on some 
criteria. Here, x can be equal to y, which means the 
result comes from the current context. Example: 
y=match_element.contextual_selection<fnd 
the movie title on the current screen>(x), 
y=match_element.contextual_selection<Select 
the item with the lowest price>(x). 
5.2. Contextual selection: match text. Select the 
text from the current screen based on some crite-
ria. Here, x can be equal to y, which means the 
result comes from the current context. Example: 
y=extract_text.contextual_selection<extract the text 
that matches a specifc pattern>(x). 

ATTENTION, here are some important rules you need 
to follow: 
1. Copy, Paste or other operations without Element 
or Text parameter, will be fxed and not have relation 
with other operations. 
2.Do NOT make up any MAINCATEGORY. 
3.If it’s an Element selection operation, you should 
only look for the relation between current Element’s 
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features with previous operation’s Text/Element pa-
rameter. If it’s a TextInput operation, you should only 
look for the relation between current Text parameter 
with previous operation’s Text/Element. 
4. Usually, the index of x should be smaller or equal 
than y, which means the parameter must come from 
the previous parameters, or the current context. 
5. An unfxed operation MUST have a relation. 
6. Try your best to fnd the relation with previous 
operations, avoiding x = y! 

Now let’s do the task step by step, operation by opera-
tion. DO NOT skip any operations! DO NOT skip any 
operations! Follow the output format of the example! 

user 

1. Click. Element=<Edit text="1.jpg" name="name" 
desc="">. 
2. Right click. Element=<Edit text="1.jpg" 
name="name" desc="">. 
3. Click. Element=<MenuItem text="" 
name="rename(M)" desc="">. 
4. Input text. Text="1(color printing).jpg". Ele-
ment=<Edit text="1.jpg" name="1.jpg" desc="">. 
5. Press. 

assistant 

The abstract task goal is to rename the fle. The global 
parameter of the task, which is the target of the goal, is 
the fle to be renamed, and the frst unfxed operation 
is 1, so the frst global parameter TASK_PARAM=1. 
There are 5 operations and I must analyze each oper-
ation without skipping any of them. 
1. Click. Element=<Edit text=""1.jpg"" name=""Name"" 
desc="""">. Operation 1: The user clicks this element 
because it’s the fle that the user wants to rename. The 
fle will be changed if the user want to rename other 
fles, so it’s unfxed. But this is the global parameter, 
so there is no relation. Conclusion: unfxed. 
2. RightClick. Element=<Edit text=""1.jpg"" 
name=""Name"" desc="""">. Operation 2: The 
user right clicks this element because the user wants 
to see the context menu of the same fle. It’s unfxed. 
Because current Element’s text feature ""1.jpg"" has 
the same text with the Element (""1.jpg"") in operation 
1, So the result is 2=repeat.information_recall<fnd 
the same fle>(1). Conclusion: unfxed. 
3. Click. Element=<MenuItem text="""" 
name=""Rename(M)"" desc="""">. Operation 3: 
The user click this element because the user wants 
to rename the fle. This operation will no change 
if the user wants to rename other fle, so it’s fxed. 
Conclusion: fxed. 
4. TextInput. Text=""1(color printing).jpg"". Ele-
ment=<Edit text=""1.jpg"" name=""1.jpg"" desc="""">. 
Operation 4: The user inputs the new name of the 
fle. The text will be changed if the fle changed, 

so it’s unfxed. Because current Text ""1(color print-
ing).jpg"" is a formatted string to previous text 
""1.jpg"" in Operation 1, So the result is 4=for-
mat_text.information_recall<add the specifc sufx 
""(color printing)"" to the flename>(1). Conclusion: 
unfxed. 
5. Enter. Operation 5: The user confrms after renam-
ing the fle. This operation has no parameter, so it’s 
fxed. Conclusion: fxed. 

So all the results are: 2=Ob-
ject_recognition.match_element_text<fnd the 
same fle>(1). 4=text_processing.edit_text<insert 
string "(color printing)" before sufx>(1). 

B The Prompt of Refection Module 
system 

You are a computer operation analysis assistant. In a 
recent analysis task you completed, there were errors 
with the answer you provided, and the user made 
corrections to it. Now, I will present the analysis task, 
the error in your answer, and the user’s correction. 
You need to: 
1.Refect on why your previous answer was incorrect. 
Examine the specifcs of the error and the root cause 
behind it. 
2.If there is a RULE in RULE-DATABASE that causes 
your answer to be incorrect, modify that RULE. 
3.Refect what areas can you improve upon for the 
next time you do this task. (For example, paying more 
attention to specifc aspects, etc.) Then summarize 
it into a new RULE. Then you should generalized 
the new RULE, so that the new RULE can be applied 
correctly to many tasks and cases. 
4.Refect whether modifying the name or example of 
a SUBCATEGORY can help you do the task better 
and fx the error. However, the new SUBCATEGORY 
must cover the range of the old one. If you can’t en-
sure that, add a SUBCATEGORY instead of modifying! 
For instance, you must not modify SUBCATEGORY 
"compose text" to "write an email on", because "write 
an email on" does not cover the complete range of 
"compose text". Then generalize the name of the SUB-
CATEGORY. 
5.Refect whether the user feedback belongs to a new 
SUBCATEGORY that better discribes this dependency. 
If true, add the SUBCATEGORY (Remember the SUB-
CATEGORY should belong to an existing MAINCAT-
EGORY.) Then generalize the SUBCATEGORY based 
on the following rules: The name of a SUBCATEGORY 
must be a general description of a class of dependen-
cies. The name of a SUBCATEGORY should not be 
task-specifc, it should cover many similar tasks and 
examples. For instance, "write an email on" can’t be 
the name of a SUBCATEGORY because it can only 
cover write-email tasks. However, "write text based 
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on" can be a SUBCATEGORY because it can also cover 
write-speech tasks, write-letter tasks, etc.. 
6.Based on your refection above, give suggestions on 
how to prevent errors in completing this task next 
time. You can choose one or more options from the 
following. Here are all the options: 

A. Modify a RULE in RULE-DATABASE. Remember 
to generalize the new RULE. 
B. Add a RULE to RULE-DATABASE. Remember to 
generalize the new RULE. 
C. Modify a SUBCATEGORY. Remember to general-
ize the new SUBCATEGORY. Then modify the origin 
examples of the SUBCATEGORY. 
D. Add a SUBCATEGORY. Remember to generalize 
the new SUBCATEGORY. Then give two diferent ex-
amples of the new SUBCATEGORY that best explains 
it. 
E. None of the above. 

Your answer should be in the following format(you 
can change the words inside {}): 
1.why my previous answer was incorrect:{answer} 
2.modify a RULE in RULE-DATABASE:{assessment 
and analyse} 
generalize the modifed RULE:{analyse and RULE gen-
eralization} 
3.add a RULE to RULE-DATABASE:{assessment and 
analyse} 
generalize the new RULE:{analyse and RULE general-
ization} 
4.modify a SUBCATEGORY:{assessment and analyse} 
generalize the name of the modifed SUBCATE-
GORY:{analyse and name generalization} 
5.add a SUBCATEGORY:{assessment and analyse} 
generalize the name of the new SUBCATE-
GORY:{analyse and name generalization} 
6.suggestion(only output the chosen suggestion): 

A. RULE-DATABASE.modify({number 
of the origin RULE},{content of the origin 
RULE}).content({content of the RULE after modifca-
tion}).[endA] 

B. RULE-DATABASE.add({the RULE you want to 
add}).[endB] 

C. SUBCATEGORY.modify({initial name of MAIN-
CATEGORY}. {initial name of SUBCATEGORY}) 
.name ({name of MAINCATEGORY}.{name of SUB-
CATEGORY after modifcation}) .example1({example 
of SUBCATEGORY, in format of y= MAINCATE-
GORY. SUBCATEGORY <ADDITIONAL INSTRUC-
TION>(x)}) .example2( {example of SUBCATEGORY, 
in format of y= MAINCATEGORY. SUBCATEGORY 
<ADDITIONAL INSTRUCTION>(x)}).[endC] 

D. SUBCATEGORY.add({name of MAINCAT-
EGORY}. {name of SUBCATEGORY you want 
to add}).example1 ({example of SUBCATEGORY, 

in format of y= MAINCATEGORY. SUBCATE-
GORY <ADDITIONAL INSTRUCTION>(x)}) .ex-
ample2 ({example of SUBCATEGORY, in format 
of y=MAINCATEGORY. SUBCATEGORY <ADDI-
TIONAL INSTRUCTION>(x)}) .[endD] 

E. NONE.[endE] 

C The Prompt for the baseline LLM 
system 

– Goal – 
You are a task automation agent. You should gener-
ate the next operation based on the automation in-
struction, the already automated operations and the 
current screen information, referring to the demon-
strated operation sequence. You should frst analyze 
the goal of the task , and then analyze the intent of this 
operation before giving the answer. Attention: When 
automating tasks, make sure your operations are the 
same as the demonstrated ones, with only the parame-
ters changing. For repetitive tasks, the demonstration 
is the frst iteration, and you should begin from the 
second iteration onward. Each iteration should follow 
the same operations as the demonstration. You should 
output the operation along with its parameters. There 
are multiple types of parameters: Text, Element, Url, 
Key and Window. For parameters of the Element type, 
you only need to select and output the corresponding 
ID as a LIST from the current screen elements. For the 
Window type, you only need to select and output the 
ID from the available windows. If the task is complete, 
use “End” operation to terminate the automation. 

– Available Operations with Parameter types – 
Click(Element), TextInput(Element, Text), 
Copy(Element, Text), Paste(Element, Text), 
Save(), WindowOpen(Element), Window-
Close(), MiddleClick(), DoubleClick(Element), 
RightClick(Element), Enter(), FunctionKey(Element, 
Keydata), MultiSelect(Element, Element), 
Drag(Element, Element?), Move(Element, Element), 
NewTab(), UpdateTab(Url), CloseTab(), Select-
Text(Element, Text), WindowFocusChange(Window), 
End() 

– Example 1 – 
Input: 
Available elements on the current screen: 
<DataItem id=""0"" text=""2024"" name=""A2""> 
<DataItem id=""1"" text=""2025"" name=""A3""> 
<DataItem id=""2"" text=""2026"" name=""A4""> 
. . . 
Demonstrated operation sequence: 
1. Type: WindowFocusChange, Window: Excel. 
2. Type: Click, Element: <DataItem text=""2024"" 
name=""A2"">. 
3. Type: Copy, 
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Automation instruction: 
I want to copy the content of each dataitem of this 
column. 
This task is repetitive. The frst iteration is already 
demonstrated. At this iteration, operation 2’s parame-
ters is: <DataItem text=""2025"" name=""A3""> 
Already automated operations: 
1. Type: WindowFocusChange, Window: Excel. 
The next automated operation should be Click. You 
MUST provide the most likely parameters, even if the 
information is incomplete. 
Output: 
This task is to copy the content of all the cells. The 
next step is corresponded to operation 2 in the demon-
strated sequence. I should click the target of this iter-
ation, so the next step is: 
Type: Click, Element: id=[1] 

– Example 2 – 
Input: 
Available elements on the current screen: 
<DIV id=""0"" text="""" name=""input""> 
. . . 
Demonstrated operation sequence: 
1. Type: Click, Element: <Div text="""" 
name=""input"">. 
2. Type: TextInput, Text: ""Beijing is a beautiful city"", 
Element: <Div text="""" name=""input"">. 
Automation instruction: 
Write a introduction about Shanghai. 
Already automated operations: 
1. Type: Click, Element: <Div text="""" 
name=""input"">. 
The next automated operation should be TextInput. 
You MUST provide the most likely parameters, even 
if the information is incomplete. 
Output: 
This task is to write an introduction. The next step is 
corresponded to operation 2 in the demonstrated se-
quence. I should write an introduction about “Shang-
hai”, so the next step is: 
Type: TextInput, Text: ""Shanghai is a bustling city, 
known as the Pearl of the Orient."", Element: id=[0] 

– Example format of other outputs – 
Type: WindowFocusChange, Window: id=[0] 
Type: MultiSelect, Element: id=[1,2] 
Type: Move, Element: id=[1,2] 
Type: End 
... 

user 

Available elements on the current screen: ... 
Available windows for WindowFocusChange on the 
current screen: ... 
Demonstrated operation sequence: ... 
Already automated operations: ... 

Automation instruction: ... 

The next automated operation should be .... You MUST 
provide the most likely parameters, even if the infor-
mation is incomplete. 

D Surveys of User Study 

D.1 Survey of Workload and Usability 
• How mentally demanding was the task? 
• How physically demanding was the task? 
• How hurried or rushed was the pace of the task? 
• How successful were you in accomplishing the task? 
• How hard did you have to work to accomplish your level of 
performance? 

• How frustrated did you feel during the task? 
• How satisfed were you with the automation result? 
• To what extend do you think the system understand your 
task? 

D.2 Survey of User Experience 
• How easy was it to learn how to use the system? 
• How easy was it to automate the task using the system? 
• How easy was it to modify the task and interact with the 
system? 

• To what extend do you think the system is reliable? 
• To what extend do you think the system is controllable? 
• How likely are you to use this system in the real life? 

E The Dataset of 39 Example Tasks 
The example tasks are listed in Table 8 and 9. It should be noted that
the column ’Count’ stands for the number of Structure Dependency 
in a single task. 

F The Set of 21 Common Computer Operations 
See Table 10. 



From Operation to Cognition: Automatic Modeling... CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

Table 8: The Dataset of 39 Example Tasks (Part 1) 

Task Name Task Description Semantic Dependency List Count 

1 Paper Abstract 
Search for the paper, paste the abstract, 
then translate and summarize the main 
points. 

1.Object_recognition.match_element_text<fnd the search result most related to> 
2.text_comprehension.extract_information<select abstract of paper> 
3.text_comprehension.summarize<summarize in one sentence> 

4 

2 
Extract Birthday 
from ID Card-1 

Extract the birthday and fll in the new 
column according to the ID number in 
the form (frst click the ID number and 
then enter the birthday). 

1.text_comprehension.extract_information<extract birthday from ID number> 3 

3 
Extract Birthday 
from ID Card-2 

Extract the birthday and fll in the new 
column according to the ID number in 
the form (directly enter the birthday). 

1.text_processing.edit_text<extract date of birth from ID number> 1 

4 Edit Formatted Data 

Form a format string to fll in a new 
column based on the data in multiple 
columns of the table (directly enter in 
the new column without instruction). 

1.text_processing.edit_text<format text according to template> 2 

5 
Generate Birthday 
Card 

Generate or modify the birthday card ac-
cording to excel sheet, which contains 
name and date information. 

1.text_creation.compose_text<create a greeting message with the name and date from 
previous actions> 

4 

6 
Character Proof-
reading 

Select and copy the cell text in the ex-
cel sheet to the browser interface, click 
proofreading, and fll in the new column 
with results and identifed problems. 

1.logical_reasoning.compare_results<compare and output "identify" if same> 
2.text_comprehension.repeat<input the same text> 

6 

7 
Data Summation 
and Aggregation 

Sum a column of data, remember the re-
sult and switch to sheet1 to input the 
result. 

1.Object_recognition.match_element_properties<fnd the same year> 
2.text_comprehension.repeat<input the same text> 

4 

8 
Batch Rename .md 
Files Rename multiple fles from 1.txt to 1.md. 1.text_processing.edit_text<replace “.txt” with “.md” and keep the number same> 1 

9 Batch Rename Paper Rename a list of fles to ’paper1’, ’paper2’, 
’paper3’, etc. 1.text_processing.edit_text<replace text with "paper" and iteration number> 1 

10 Batch Rename Files 
With fle ’xxx-1’ ready, copy more fles 
and rename the new fles to ’xxx-2’, ’xxx-
3’, etc. 

1.text_processing.edit_text<replace the number after the dash with iteration number> 1 

11 Merge Folders 
Click into sub-folders in folder A, copy 
the mp4 fle, and paste it into the corre-
sponding sub-folder in folder B. 

1.Object_recognition.match_element_text<fnd the fle with similar text> 1 

12 
Batch File Compres-
sion 

Compress multiple folders separately 
and delete all the folders before compres-
sion. 

None. 1 

13 
Batch File Decom-
pression 

Decompress multiple compressed fles 
separately and delete all fles before de-
compression. 

None. 1 

14 
Batch Rename by 
Specifc Title 

Rename each fle in a folder to 
"xx(color_printing)". 1.text_processing.edit_text<add string "(color_printing)" to the text> 1 

15 Fill in Web Forms Copy the contents of excel and fll them 
out in turn in the web form. 1.Object_recognition.match_element_properties<similar column header> 0 

16 Keyword Searching 

Type keywords in the document, switch 
to the browser to search for keywords, 
and summarize the content to the docu-
ment after browsing. 

1.Object_recognition.match_element_text<fnd the result most related to> 
2.text_comprehension.repeat<input the same text> 
3.text_comprehension.summarize<summarize in one sentence> 
4.text_comprehension.extract_information<extract detailed description from> 

1 

17 
PPT Remark Trans-
lation 

Translate the text on the PowerPoint into 
English and fll in the remarks column. 1.text_processing.translate<translate into Chinese> 1 

18 
Make PPT in 
Batches according 
to Word 

Make PowerPoint in batches according 
to Word, and make one page for each 
scenic spot in Word. 

1.Object_recognition.match_element_text<fnd the picture with the same name> 
2.text_comprehension.extract_information<extract the keyword from> 

2 

19 
Subject Fee Sum-
mary 

Copy and paste the corresponding 
columns "Name", "ID number" and "Fee" 
into the corresponding column of the 
master table. 

1.Object_recognition.match_element_text<fnd the column with similar text> 3 

20 
Rename Download 
Files 

Click a link in the web page, download 
the fles on a new page and name each 
fle the name shown on the link. 

1.Object_recognition.match_element_text<fnd the same fle> 
2.text_processing.edit_text<remove string "25-" and "(2023)" from> 

1 

21 
Rename Files with 
Sufx "fx" 

Add -fx to the flename of all the images 
in a folder. 1.text_processing.edit_text<insert string "-fx" before sufx> 1 

22 
Expenditure Detail 
Form 

Fill in the diferent items in the corre-
sponding expense table according to the 
schedule. 

1.Object_recognition.match_element_properties<extract property information> 
2.logical_reasoning.extract_information<extract how to calculate the total fee> 

8 

23 E-mail Writing 
Enter the subject of the email frst, and 
then write the message. 1.text_creation.based_on_previous_input<write an email on the subject> 0 
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Table 9: The Dataset of 39 Example Tasks (Part 2) 

Task Name Task Description Semantic Dependency List Count 

24 
Extract a List by 
Folder Names 

Click on the folder and enter the name 
of all the folders in the root directory in 
word. 

1.text_comprehension.repeat<input the same text> 1 

25 
Add Caption to Pic-
tures 

Add a common caption to two illustra-
tions that already have a caption. 

1.Object_recognition.match_element_text<fnd the same image> 
2.text_comprehension.summarize<summarize in one sentence> 

0 

26 
Write Thoughts ac-
cording to PPT 

Expand summary and thoughts to word 
document according to PowerPoint. 1.text_creation.refect_and_summarize<summarize the text inside> 2 

27 
Write a Speech ac-
cording to PPT 

Write the presentation to word document 
according to PowerPoint. 1.text_creation.compose_presentation_draft<summarize in one paragraph> 2 

28 File Movement Move all fles with names like 
"xx(color_printing) "into a folder. None. 1 

29 
Automatic 
Numbering-1 

Auto-number each line with [1][2][3]. 1.text_processing.edit_text<add iteration number before the original text> 2 

30 
Automatic 
Numbering-2 

Change the dot number from 0.1.2. to 
1.2.3. 1.text_processing.edit_text<replace the reference number with iteration number> 2 

31 
Modify Title Format 
in Batches 

Use the same format for a list of the same 
type of text, with a space between the 
number and the text. 

1.text_processing.edit_text<insert a space after "Level"> 2 

32 
Bank Card Number 
Conversion 

Replace the four asterisks in the bank 
card number column with the number 
1000. 

1.text_processing.edit_text<replace "****" with "1000"> 2 

33 PPT Text Polishing 
Polish the English text in the PowerPoint 
text box. 1.text_processing.extend_parameter<summarize in one sentence> 2 

34 
Learning Content 
Recording 

Put the title of the video being played in 
the browser into the Today plan in word 
document. 

1.text_creation.compose_text<write a sentence based on the video title> 1 

35 Sentiment Analysis Mark whether a movie review is positive 
or negative. 1.logical_reasoning.classify<judge if the statement is positive or negative> 2 

36 
Calculate the 
Amount of Materi-
als Purchased 

For a material in a row of the form, fll 
in the total amount calculation formula, 
and calculate the total amount. 

1.text_creation.compose_text<combine the values in the "other_properties"> 
2.logical_reasoning.calculate<calculate the result of the formula> 

1 

37 
Answer Chinese 
Self-test Questions Select a question and enter the answer. 1.logical_reasoning.answer_question<provide the answer to the question> 2 

38 
Take Multiple 
Choice Questions 

Select a question and enter one of the 
four options. 1.logical_reasoning.answer_question<select the most correct answer from the options> 2 

39 
Calculate Rectangu-
lar Area 

Calculate the area based on the length 
and width of the yard. 1.logical_reasoning.calculate<calculate the product of the numbers> 2 

Table 10: The Set of 21 Common Computer Operations 

Operation Parameter Types Description 

1 Click element Left mouse click 
2 TextInput element, text Input text 
3 Copy element, text Copy, including keyboard Ctrl+C and mouse click on the copy button 
4 Paste element, text Paste, same rule as above 
5 Cut element, text Cut, same rule as above 
6 Save / Save, same rule as above 
7 WindowOpen element Open application window 
8 WindowClose / Close application window 
9 MiddleClick / Page scroll 
10 DoubleClick element Double-click with an interval less than a threshold 
11 RightClick element Right-click to invoke a menu 
12 Enter / Enter key 
13 FunctionKey element, keydata Shortcut keys 
14 MultiSelect element1, element2 Drag to multi-select, such as Excel cells 
15 Drag element1, element2 Drag a UI element 
16 Move element1, element2 Move fles 
17 NewTab / Open a new browser tab 
18 UpdateTab url Navigate to a URL 
19 CloseTab / Close a browser tab 
20 WindowSwitch window Switch to another window 
21 SelectText text, element Drag to select text on a page 
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