
Selecting Real-World Objects via User-Perspective Phone 
Occlusion 

Yue Qin Chun Yu Wentao Yao 
Tsinghua University Tsinghua University Tsinghua University 

Beijing, China Beijing, China Beijing, China 
qiny19@mails.tsinghua.edu.cn chunyu@tsinghua.edu.cn yaowt19@mails.tsinghua.edu.cn 

Jiachen Yao Chen Liang Yueting Weng 
Tsinghua University Tsinghua University Tsinghua University 

Beijing, China Beijing, China Beijing, China 
yaojc20@mails.tsinghua.edu.cn lliangchenc@163.com wengyt19@mails.tsinghua.edu.cn 

Yukang Yan 
Tsinghua University 

Beijing, China 
yanyukanglwy@gmail.com 

ABSTRACT 
Perceiving the region of interest (ROI) and target object by smart-
phones from the user’s frst-person perspective can enable diverse 
spatial interactions. In this paper, we propose a novel ROI input 
method and a target selecting method for smartphones by utilizing 
the user-perspective phone occlusion. This concept of turning the 
phone into real-world physical cursor benefts from the propriocep-
tion, gets rid of the constraint of camera preview, and allows users 
to rapidly and accurately select the target object. Meanwhile, our 
method can provide a resizable and rotatable rectangular ROI to 
disambiguate dense targets. We implemented the prototype system 
by positioning the user’s iris with the front camera and estimating 
the rectangular area blocked by the phone with the rear camera 
simultaneously, followed by a target prediction algorithm with 
the distance-weighted Jaccard index. We analyzed the behavioral 
models of using our method and evaluated our prototype system’s 
pointing accuracy and usability. Results showed that our method 
is well-accepted by the users for its convenience, accuracy, and 
efciency. 
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• Human-centered computing → Pointing; Human computer 
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1 INTRODUCTION 
Mobile computing allows us to quickly and easily connect and 
interact with a large number of nearby ubiquitously distributed 
appliances or get information from nearby objects. Using the cam-
era to perceive the physical world is an intuitive way to enable 
the phone to interact with in-sight objects. For example, after con-
frming the interaction target via the rear camera, the smartphone 
can directly trigger the APP function bound to the target [15, 17] 
(e.g., scanning the QR code, issuing the user-defned command, or 
displaying a control interface), or perform multi-modal interaction 
combined with voice and gestures [43]. One of the key issues is 
how to make the smartphone quickly and accurately identify the 
target the user sees. 

Traditional methods ofer two types of solutions. The frst is to 
actively turn on the camera and render the camera preview on the 
screen. The user confrms the on-screen target by tapping it or point-
ing an on-screen selector (such as a crosshair) at the target. These 
methods usually require multiple steps, such as opening the cam-
era preview, waiting for the screen to render the camera preview, 
aligning the camera preview to the target, confrming the target, 
and fnally speaking voice commands or interacting with gestures. 
This multi-step approach can be heavy if a user wants to perform a 
quick one-shot interaction (e.g., asking "how much is that"). Some 
past works showed that reducing the explicit wake-up steps or 
the visual dependence of the screen can signifcantly improve the 
interaction efciency and user experience [50, 57, 66, 67]. Extend-
ing this idea to camera-based target selection, the second type of 
method allows the user to directly confrm the target through the 
direction the mobile phone camera is pointing or the direction the 
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Figure 1: Phone-occlusion-based object selection technique. 
A user raises the phone and approximately blocks the target 
from the frst-person perspective. 

face is facing while the screen is of [31, 43]. This method greatly 
simplifes the interaction process and allows users to directly input 
voice commands or gestures after raising the phone. However, such 
methods face the problem of inaccurate pointing due to the lack of 
visual feedback, which exacerbates the tensions and insecurities 
of the users [20, 48]. Our work aims to improve the efciency and 
accuracy of spatial interaction with smartphones without opening 
the camera preview and reduce user insecurity due to the lack of 
visual feedback. 

In this paper, we propose to use a novel selection tool to simul-
taneously improve the efciency, accuracy, and user experience of 
interacting with in-sight objects using smartphones, i.e., a resizable 
and rotatable rectangular region of interest (ROI) provided by the 
user-perspective phone occlusion. When the users want to interact 
with the objects in sight, they raise the phone, block the target from 
their perspective, and trigger the gesture commands or speak di-
rectly to the voice assistant. Our approach benefts from three parts. 
First, this posture makes it easy for the front and rear cameras to 
capture the face and target to sense the environment. Second, this 
approach gets rid of the constraint of camera preview by utilizing 
the visual feedback provided by the phone case. This allows users 
to easily be confdent that they have selected the target accurately 
while omitting the interactive steps related to the camera preview. 
Third, users can freely rotate or move the phone closer to or further 
away from the face to get a resizable and rotatable rectangular ROI. 
Compared to ray-based methods (e.g., pointing or gazing), using 
the resizable and rotatable rectangular ROI as the area cursor can 
easily select sparse targets. At the same time, utilizing the similarity 
of the ROI and the geometric features of the target to disambiguate 
dense or overlapping scenarios is potential. 

In this paper, we mainly study the following three questions: 
RQ1: How do users mentally map the occluded area (ROI) to a 

specifc target? 
RQ2: Based on the existing state-of-the-art algorithm, what is 

the pointing accuracy of our method? 

RQ3: What is the diference in user experience between our 
method and traditional methods? 

In this work, we frst developed an algorithm to calculate the 
rectangular area occluded by the phone through the images of 
the front and rear cameras. Then by collecting and analyzing user 
occlusion behaviors, we designed a target prediction algorithm to 
map the occlusion rectangle to the target object with the distance-
weighted Jaccard index. Then we conducted two user studies to 
evaluate the accuracy of the occlusion area estimation algorithm 
and the user experience when using our prototype system. The 
results showed that our prototype system could achieve an average 
pointing error of 1.28°±0.96°, and users generally agreed that the 
occlusion-based target selection technique is convenient, accurate, 
and efcient. 

2 RELATED WORK 

2.1 The 3D Target Selection Techniques 
Many diferent 3D target selection techniques are designed for dif-
ferent application scenarios and devices. The survey by Argelaguet 
et al. divides them into several categories according to diferent 
characteristics [5]. 

According to the selection tool, the target selection technique 
can be classifed into the virtual hand, ray-casting, and area/volume 
cursor. Using virtual hands to touch the objects directly is proved 
efcient when the user is close to the target [22, 52, 64]. Using 
ray-casting combined with visual feedback can efectively select 
small, dense, and far objects [29, 37]. The area cursor can quickly 
select sparse objects [26, 37], but additional disambiguation steps 
are required if multiple objects are in the selection area [18]. 

Given the diferent starting points, the 3D target selection tech-
nique could be divided into several categories, including: 1) Body-
centered ray-casting [45–47], such as fnger-rooted ray cast [11, 32], 
head-gaze ray cast [43, 65, 70], eye-gaze ray cast [69], eye-fnger 
ray cast [20, 40], or a combination of above [34, 56]. 2) Device-
centered ray-casting, which leverages the orientation of device 
(e.g., controller [41], smartwatch [3], and mobile phone[2, 59])). 

Our method is similar to eye-fnger ray-casting but at the same 
time has the feature of an area cursor to select sparse targets quickly. 
In addition, we introduce a disambiguation mechanism using ROI 
geometric similarity (distance-weighted Jaccard index) to further 
support dense and overlapping objects. 

2.2 Target Selection on Smartphones 
Speed and accuracy are critical indicators when using smartphones 
to perform one-shot interactions with in-sight objects. Most of 
the above methods cannot be used for smartphones due to smart-
phones’ lack of sensing capabilities or feedback mechanisms. The 
head-rooted or device-centered ray-casting is mainly considered in 
previous works. 

Device-centered approaches often require rendering the camera 
preview on the phone screen. To select the target, the user taps 
the target on the screen [12, 62] or fnely adjusts the orientation of 
the phone to align the on-screen selection tool at the target (e.g., 
the crosshair rendered in the center of the screen) [54, 55]. This ap-
proach has been applied to many augmented reality (AR) scenarios 
[28, 68]. However, such methods relying heavily on visual feedback 
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can compromise the efciency and smooth user experience due to 
the multiple interaction steps required before issuing voice/gesture 
commands. 

For the head-rooted approach, previous work suggested using 
head orientation or eye gaze to select the target for voice input 
with smartphones [43]. If the camera preview and the gaze-ray 
are not rendered on screen, such methods will face the problem of 
pointing inaccurately. Mayer et al. reported that the state-of-the-art 
algorithms could only achieve around ±10° angular error for the 
head-gaze and around ±15°angular error for the eye-gaze to select 
distant targets using the smartphone [43, 44]). This inaccuracy 
comes from two reasons. For head gaze, people feel it difcult to 
perceive the actual orientation of the head and feel strained [36]. 
For the eye gaze, a slight iris shift in the image may bring about 
a considerable gaze direction change, which is computationally 
unfriendly [33]. 

Our approach benefts from the use case of the handheld smart-
phone. Using the front and rear cameras to perceive the occlusion 
area, we can efectively avoid the above two problems and provide 
higher accuracy (around ±1.28° for ray-casting). On the one hand, 
our method does not require the user to control the orientation of 
the head and the phone fnely. On the other hand, we only need to 
estimate the 2D coordinates of the iris relative to the center of the 
front image to get the eye-phone virtual ray rather than estimate 
the slight ofsets of the iris relative to the eye for sensing eye-gaze, 
which will be discussed in the next section. 

2.3 User-Perspective Interaction 
The most related works to our work are user-perspective 3D object 
selection techniques. These methods use the feld of view of the 
user’s eyes as a 2D interaction plane. The previous works can 
mainly divide into two categories, image plane metaphor (similar 
to eye-fnger ray-casting) and magic lenses paradigm (a class of 
see-through interfaces or transparent area cursor). Image plane 
techniques require the users to align the target with a hand-held 
aperture [20] or with their fngers [7, 40, 49]. Magic Lenses work 
by overlaying a transparent tool glass onto the target to reveal 
hidden information, enhance data of interest, or suppress distracting 
information [9, 39, 42, 61]. 

User-perspective techniques have proven to be more natural and 
efcient than the device-centric approaches because "we do not 
have to live with the phone’s eyes" [8, 60]. However, the double-
vision problem is an important issue that restricts the use of user-
perspective techniques in the real world; that is, it almost impossible 
to "align the target with the user’s fnger" in the real world. For 
example, when the user’s gaze is focused on the distant object, the 
closer fnger will split into two ghosts. Conversely, if the user’s gaze 
is focused on the closer fnger, the distant object will be split into 
two ghosts. This means that the users cannot know which selection 
tool to use unless they closes one eye or randomly chooses one of 
the two ghosts according to the dominant eye efect. Not only the 
ray-based user’s perspective techniques but also the transparent 
magic lenses face such problem. 

Our approach is diferent from all of the above. We recommend 
using an ’opaque’ occlusion rectangle as the selection tool to solve 
the double-vision problem in the real world. When the user is 

looking at the distant target, although the selection tool will split 
into two ghosts, only one occluded area is invisible to the user, i.e., 
the intersection area of the two rectangle ghosts. This occlusion 
area is easily understood and recognized by the user. Additionally, 
we study how to utilize the resizable and rotatable rectangular area 
cursor to disambiguate dense or overlapping scenarios, which is 
suitable for use with smartphones. 

3 ALGORITHM AND IMPLEMENTATION 
In this section, we introduce the principles of occlusion-based ob-
ject selection via smartphones. We designed a three-stage pipeline 
to implement the occlusion-based object selection system on the 
mobile phone. The three components of the pipeline are occlusion 
rectangle estimation, object detection, and target prediction. We 
opened the front and rear cameras to take pictures simultaneously. 

3.1 Occlusion Rectangle Estimation 
The occlusion rectangle estimation algorithm aims to estimate the 
rectangular area which is not visible to the user in the rear camera 
image of the phone. We frst use the MediaPipe Iris [1, 23] to locate 
the 3D positions of the user’s irises, which uses the RGB image 
from the front camera of the phone with a depth error of less than 
10% [24]. And then, according to the known and fxed geometric 
relationship between the front and rear cameras, we can obtain 
the occlusion area under the user’s perspective in the rear camera 
image. Figure 2 and Equation 1 show the calculation principle of 
the occlusion rectangle estimation. 

�� 
�� = (�� − �� ) + (�� − �� ) ∗ (1)

�� 

By locating the 2D pixel coordinates of the iris from the front 
camera image, �

� 
�

� 
can be obtained. The eye-phone distance �� can 

be estimated by MediaPipe Iris [23]. �� is the fxed distance be-
tween the corner of the phone and the front camera. �� is the 
fxed distance between the front and rear cameras. The �� and 
�� can be obtained when the phone is produced. We use the rear 
dual camera of the phone to estimate the target-phone distance �� . 
The above parameters can also be estimated with the smartphones’ 
front/rear true depth cameras (e.g., structured-light and LiDAR for 
depth sensing). 

Analyzing the theoretical estimation error of our method is use-
ful for understanding its theoretical accuracy. Consider Equation 1, 
we can get the error formula of the estimator as Equation 2, where 
�
� 
�

� 
is the 2D x-coordinate of the iris in the front-camera image (the 

y-coordinate is similar), and �
� 
�

� 
is the x-coordinate of a corner of 

the occlusion rectangle in the rear-camera image. 

d
�� 

= −d �� 1 1 (�� − �� ) �� + ( + )d�� + d�� − d�� (2)
�� �� �� �� � 2 � 2 

� � 

Considering the typical values of practically applicable scenarios 
(e.g., �� , �� ,�� are around 5cm, 30cm, 400cm), we can fnd that the 
efect of d�� can be approximately ignored due to its small efect 
on estimation error. In practice, estimating the depth of the iris (i.e., 
�� , around 10% estimation error [24]) is inaccurate compared to 
estimating the coordinates of the iris in the front camera image (i.e., 
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(a) Front Image (b) Rear Image 

(c) Geometric Relationship 

Figure 2: The geometric schematic diagram of the projection 
point from the iris to the rear-camera image. The orange, 
blue, and red rectangles represent the right eye, the left eye, 
and the user’s overall invisible area. 

�� /�� , around 0.3° estimation error). According to the above analysis, 
it can be roughly concluded that the theoretical estimation accuracy 
of our approach is around 1°. In particular, when �� = �� = 0, the 
estimation error is only afected by the 2D coordinate of the iris in 
the front image (i.e., �

� 
�

� 
), but not by the depth of �� and �� . In this 

case, the error can be further reduced to around 0.3°. The actual 
pointing accuracy will be measured in Study 2. 

3.2 Object Detection 
After obtaining the occlusion rectangle in the rear camera image, 
we performed the object detection algorithm to locate the bounding 
boxes of all interactable objects. For the object detection or recogni-
tion tasks, neural networks and deep learning have shown strong 
performance in recent years [19, 21, 38, 51, 53], and there have 
been several models which can run on mobile phones in real-time 
[14, 30]. As a proof of concept, we used the YOLOv4 framework 
[10] as the object detection backend in our prototype system. 

3.3 Target Prediction 
The occlusion rectangle denotes a region of interest (ROI), but it 
does not immediately provide a well-defned object of interest. In 
our target prediction algorithm, we use Bayes’ theorem (Equation 
3) to estimate the probability of each candidate object. 

� (�� |�) ∝ � (� |�� ) ∗ � (�� ) (3) 
In Equation 3, � represents the occlusion rectangle, �� is the k-th 

target in the rear image. � (�� ) is the prior probability of selecting 
the k-th target. We assume that � (�� ) is equal for all objects. From 
the equation, we can fnd that the target prediction algorithm relies 
on the modeling of the user’s behavior model � (� |�� ) which will 
be discussed in Study 1, that is, the probability distribution of the 
occlusion rectangle when the user wants to select a certain object. 

3.4 Implementation 
We implemented our system on the iPhone 12 Pro, which had a 
width of 7.1 cm, a height of 14.6 cm, and a weight of 187g. We used 
its rear wide-angle dual camera to capture 70° feld of view (FOV) 
RGB-D images and its front camera to capture 56° FOV RGB images. 
At the same time, according to the gravity direction sensed by the 
mobile phone’s intrinsic measurement unit (IMU), we rotated and 
normalized the camera images to facilitate iris tracking and object 
recognition. 

As a proof of concept, we built an application to take photos 
on the mobile phone and deployed the iris tracking and object 
recognition algorithm on a server in the local area network. The 
server has an Intel(R) Xeon(R) E5-2640 v4 @ 2.40GHz CPU and a 
TITAN Xp GPU for calculations. The neural network models used 
for iris tracking and object recognition consume 259 MB of Memory. 
The average time for image processing is around 731ms, including 
498ms for network transmission, 138ms for iris tracking on one 
core of CPU, 28ms for object detection on a single GPU, and 67ms 
for other calculations on CPU. 

4 STUDY 1: UNDERSTANDING USER 
BEHAVIOR 

We frst conducted a user study to investigate users’ target selec-
tion behavior with phone occlusion, collecting data to analyze and 
model the behavioral term in Equation 3. Since it is easy to pre-
dict which objects the user wants to select for scenes with sparse 
targets, we mainly focus on the user’s behavior in dense and over-
lapping scenarios. In this study, we aim to collect: 1) images from 
the user’s perspective (containing the opaque phone), 2) images 
from the user’s perspective when the phone is transparent (to get 
the area that the user cannot see due to the opaque phone), 3) im-
ages from the phone’s rear camera and 4) the 3D coordinates and 
orientations of two eyes, the phone and all objects in the scene. 
Since we cannot acquire some of the data above simultaneously 
in a real-world setting (e.g., the phone area and the occluded area 
from the user’s perspective), we conducted this study in a simu-
lated VR environment refer to the previous work [16, 35]. We built 
a VR application and virtual scene to collect the above data. The 
data is analyzed ofine, so there are no real-time target selection 
algorithms running in the VR application. 

4.1 Participants 
We recruited 11 participants (7 male and 4 female) from our institu-
tion. The average age of participants was 22.7 years. All of them 
were right-handed. The whole study took around 20 minutes for 
each participant. Each participant received $10 for compensation. 



Selecting Real-World Objects via User-Perspective Phone Occlusion CHI ’23, April 23–28, 2023, Hamburg, Germany 

4.2 Apparatus and Platform 
We built a virtual room-scale scenario containing 49 common ob-
jects in VR (shown in Figure 3), and used the HTC Vive VR headset 
to render the environment. We fxed a VIVE Tracker on the phone 
case to simulate a real phone which is similar to the work of Bai et al. 
[6]. The simulated phone (including the phone case and the tracker) 
weighs 130g, whose gripping sense is similar to a real phone, and 
the size is the same as iPhone 12 Pro. The simulated phone is similar 
in weight to a real phone, but the weight distribution is slightly 
diferent. The size of virtual objects in VR is the same as real-world 
ones. We also used a Vive controller to control the experiment 
process. 

(a) VR Scene 

(b) Experiment Environment (c) VR Phone 

Figure 3: The VR indoor scene from the participant’s frst-
person perspective, experiment environment, and simulated 
phone. The targets are marked with diferent colors to facili-
tate readers to distinguish. 

4.3 Task 
The tasks are composed of three sessions. In each session, the user 
stands in a specifc position to select 49 objects in the room, as 
shown in Figure 3. Each object is required to be selected one time 
in one session. The order of selection is randomly shufed. In total, 
there are 147 (3 × 49) tasks for each participant. 

4.4 Procedure 
We frst described the concept of occlusion-based target selection 
method. Before the experiment, participants got themselves famil-
iarized with the operations. They then followed instructions and 
performed operations step by step. We told the participants that 

they could complete tasks naturally according to their own un-
derstanding. Participants were also told that they should try to 
make it possible for others to predict their target based on their 
phone’s location. In other words, the participants were not told 
the specifc rules and standards of the occlusion interaction, but 
"blocked" the target naturally, quickly, and accurately according to 
their understanding. At the beginning of each task, a red arrow wid-
get is displayed at the center of the screen indicating the position 
of the target. Meanwhile, the contour of the target is constantly 
fickering. When the participant confrms the target, he should 
press the button on the Vive controller to start collecting data, and 
the target will no longer fash. When the participant raises the 
phone and blocks the target, he needs to press the button again 
to end the recording. A two-minute break was placed after each 
session. During the experiment, The experimenter frequently asked 
participants "Why do you hold your phone in that specifc position" 
to obtain the users’ thoughts and feedback. 

4.5 Analysis of the results 
We collected the data of 1617 selections from 11 participants. On 
average, each selection took 1.39 seconds for each participant. All 
participants reported that the gripping feelings of the simulated 
phone in VR had no diference from that of a real-world phone. 

Because the positions of the two iris are diferent, there will be 
two diferent occlusion rectangles in the rear camera image cor-
responding to the left eye and the right eye. The frst issue we 
care about is how users will deal with this double-vision problem. 
Users reported that they were more inclined to stare at distant 
objects rather than focus on the nearby phone screen and used 
the "invisible area" as a psychological selection box. We have two 
assumptions about the "invisible area." The frst one is that the user 
only adopts the image seen by the dominant eye during the cogni-
tive process. Under this assumption, the invisible area corresponds 
to the occlusion rectangle of a specifc eye. The second assumption 
is that the "invisible area" is the area the user with either eye cannot 
see. Under this assumption, the invisible area corresponds to the 
intersection area of the two occlusion rectangles formed by the left 
and right eyes. From Figure 4a, we found that the data are clustered 
into one cluster, and the data for any user under the dominant eye 
assumption is of-center. The above evidence leads us to believe 
that ocular dominance plays a small role in our method and could 
be ignored. Therefore, in the following, we defne occlusion rectan-
gle as the intersection of two rectangular areas in the rear camera 
image. 

Our second focus is where the users will place the occlusion 
rectangle (i.e., the phone) in their feld of view. From Figure 4b, we 
observed that users generally held the phone vertically or horizon-
tally, and rarely tilted it. Through interviews with users, we found 
that users tended to spend less efort to achieve their purposes. 
Sometimes the users did not raise the phone to fully overlap the 
target but held it lower than the target a little bit to save physical 
efort. Therefore, the coordinates of the center point in Figure 4a 
will be slightly lower. 

On the whole, users had similar thoughts and behaviors, from 
which we concluded our observations with three points: 1) Users 
believed that the most accurate position is to align the phone’s 
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(a) (b) (c) (d) 

Figure 4: Characteristics of user behavior. (a) shows the ofset between the center of the occlusion rectangle and the center 
of the target under the three assumptions separately, i.e., left/right eye only and the intersection of two occlusion rectangles 
generated by the left and right eyes respectively (Cyclops’ eye). (b) shows that users mostly use horizontal or vertical phone 
orientation. (c) shows how many ratios of users tend to occlude the target horizontally or vertically as the aspect ratios of 
target change (d) shows the relationship between the user’s eye-phone distance and the target size. The data of user-1 in (d) is 
highlighted to refect intra-user and cross-user trends. 

center with the target’s center (as shown in 4a); 2) Users tended to 
rotate the phone to match the object’s main axis (as shown in 4c); 
It means holding the phone horizontally for fat and wide objects, 
and holding the phone vertically for thin and tall objects. 3) Users 
deemed that putting the phone closer/further to their eyes to select 
larger/smaller targets made sense (as shown in 4d). 

Considering the above factors, we chose distance-weighted Jac-
card index to establish our target prediction algorithm (shown in 
Equation 4). It can refect on the consistency of two rectangles, 
including 1) the center-to-center ofset between the phone and 
target, 2) the orientation of the phone, and 3) the size of the oc-
cluded rectangle. While it is feasible to represent the target as an 
irregularly shaped mask and model its probability distribution, as 
a proof-of-concept, we only approximate the target as a rectangu-
lar bounding box. Firstly, we considered the rectangular bounding 
box of the object �� and the occlusion rectangle of the phone � 
as two-dimensional uniform distribution. We then keep its mean 
vector � and covariance matrix Σ and transform them into Gauss-
ian function �� and � with the maximum value of 1. We use the 
weighted Jaccard index �W to measure the similarity between the 
occlusion rectangle and a single target, which is widely used to 
measure the similarity between sets and geometric shapes. When 
the occlusion rectangle and the target completely coincide, �W 
reaches its maximum value of 1. 

� (x) = exp(−(x − �� )� Σ−1 (x − �� )) � 

�� (x) = exp(−(x − �� )� Σ−1 (x − �� )) � ∫ (4)
min(� , �� )�� 

�W(� , �� ) = ∫ 
max(� , �� )�� 

A trick we found to efectively improve the accuracy of object 
prediction with distance-weighted Jaccard index is to infate small 
objects. Due to the limited length of users’ arm, it’s hard to get a 
rectangle small enough to exactly cover a small and distant target. 
Therefore, we empirically zoomed those small-size bounding boxes 

�∗ℎto = 1 ∗ 10−2 and kept their aspect ratio, where � and ℎ is the 
�� ∗�� 

width and height of the bounding box, �� and �� is the focal length 
of the camera intrinsic matrix. In our target prediction algorithm, 
we use �W(� , �� ) to approximate � (� |�� ). We fnally compare the 
shape similarity between the occlusion rectangle and all targets 
and choose one with the highest probability. 

4.6 Evaluation of Behavior Model 
We evaluated the accuracy of our target prediction algorithm with 
the other three existing white-box baselines on the data set. All se-
tups were the same except the similarity metrics. The four methods 
are as follows: 

Center-to-Area Distance (C2A) . This implementation is similar 
to the bubble cursor[25], which uses the closest distance from the 
center point of the occlusion area to the target as the metric. If 
the center of the occlusion rectangle is inside multiple objects, we 
choose the object with the smallest area. 

Center-to-Center Distance (C2C) . This implementation uses the 
distance from the center point of the occlusion area to the center 
point of the target as the metric. 

Intersection over Union (IoU) . This implementation uses the 
IoU ratio of two rectangles as the metric. 

Our method. This implementation uses the distance-weighted 
Jaccard index �W as the metric (described in Equation 4). 

Table 1 shows that our method (accuracy: 96.6%) outperformed 
the baselines. The center-to-center distance also shows good per-
formance. 

Table 1: The accuracy of the four similarity metrics on the 
evaluation data set. 

Method C2A C2C IoU Ours 

Accuracy 91.5% 92.6% 84.0% 96.6% 
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5 STUDY 2: EVALUATION OF POINTING 
ERROR 

This experiment is used to study the user’s ability to control the oc-
clusion area and evaluate our prototype system’s average pointing 
error of the occluded area estimation. We collected images cap-
tured by smart phones and analyze it ofine. The overall selection 
accuracy of our prototype system will be evaluated in Study 3. 

5.1 Participants 
We recruited 12 participants (10 male and 2 female) from our institu-
tion. The average age of participants was 21.4 years, with an average 
height of 173.2±6.1 cm, and an average arm length of 53.2±4.8cm. 
All of them were right-handed and familiar with smartphones. The 
whole study took around 20 minutes and each participant received 
$10 for compensation. 

5.2 Apparatus 
We conducted this experiment in a real room instead of in VR. 
We used iPhone 12 Pro as the experimental device, which always 
remained a black screen. We hung a 15cm × 15cm crosshair target 
on the wall, which was 150cm above the ground. This study was 
conducted in a bright and clean environment. We did not use other 
equipment except the smartphone and the crosshair target. 

5.3 Design and Procedure 
The experimenter frst gave a brief introduction to participants, 
asking for their demographic information and answering their 
questions. During the experiment, participants were asked to stand 
between 1m and 4m from the target and were required to hold the 
phone and raise it naturally with their dominant hand. When the 
corner of the phone (i.e., the intersection of two edges) was aimed 
at the center of the crosshair from their perspective, they had to 
tap on the touchscreen to capture two images by the front and rear 
cameras simultaneously. We did not provide participants feedback, 
so they could not learn during the process. Participants were asked 
to complete the experiment as quickly and naturally as possible 
without compromising accuracy. 

We employed a within-subjects design with three factors as Eye-
Target Distance (1m, 2m, 4m; three levels), Eye-Phone Distance (25cm, 
50cm; two levels) and Corner of the Phone (four corners; four levels). 
Participants had to complete 24 sessions (3 Eye-Target Distance × 
2 Eye-Phone Distance × 4 Corners). We used a Latin square to bal-
ance the order of the tasks. In each session, participants performed 
actions 10 times (raising the phone and tapping the touchscreen), 
with 5 times using only left eye to observe the target (closed right 
eye), and vice versa. A twenty-second break was arranged after 
each session. 

5.4 Result 
We performed the occlusion rectangle estimation algorithm for all 
the data and calculated the pointing error between the projection 
of the phone’s corner and the center of the crosshair. The pointing 
error is mainly composed of two parts, the algorithm (mainly) and 
the muscle jitter. In total, we collected 2880 points (12 × 3 × 2 × 
4 × 10). We fltered outlier trials with errors exceeding 3 ∗ � refer 

to the prior related work [43], which removed 13 points. Figure 
5 and Table 2 indicated the distributions of the phone and the 
corresponding pointing accuracy with diferent factors in detail. 
The pointing error (in angle) refers to the angle formed by the 
center of the rear camera, the estimated point, and the center of 
the crosshair. The ’Top-Left’ in the fgure refers to the corner under 
the user’s perspective when the user holds the phone vertically. 
Correspondingly, the rear camera of the iPhone 12 Pro is located 
near the ’Top-Right’ corner. 

Figure 5: The distribution of the projection points of each 
corner of the phone with respect to the target point. 

According to the analysis of Equation 2, we can fnd that the 
main factor causing the estimation error is the inaccuracy of the 
iris depth estimation, which corresponds to the radially outward 
distribution in Figure 5. This inaccuracy grows as �� becomes 
larger, which explains why the ’Top-Right’ corner in Table 2 is the 
most accurate, as it is the closest to the camera. 

A Shapiro-Wilk normality test showed that the Error is not nor-
mally distributed (� = .002), so we performed a three-way ART RM-
ANOVA [63]. The results showed signifcant efects of all Eye-Phone 
Distance (�1,10 = 10.745, � = .008), Eye-Target Distance (�2,20 = 
11.885, � < .001), and Corner of the Phone (�3,30 = 61.613, � < .001) 
on the Error. We further performed the post-hoc Wilcoxon signed-
rank tests on Eye-Target Distance and Corner of the Phone, respec-
tively. For the Eye-Target Distance, the diference between 1m and 
2m and between 1m and 4m is signifcant (� < .05). For the Corner of 
the Phone, all pairwise diferences are signifcant (� < .002), except 
between the bottom-left corner and the bottom-right corner. 

In summary, our current implementation achieved an average 
corner error of the occluded area estimation of 1.28°±0.96°, which 
was acquired with a generalized model without calibrations toward 
users. The average pointing error was further reduced to 0.65°±0.52° 
if we calibrated for each participant. 

https://0.65��0.52
https://1.28��0.96
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Table 2: The pointing accuracy measured by angular error (mean±SD). The three factors are the Eye-Phone Distance (Arm), 
Eye-Target Distance (Target), and the Corner of the Phone. 

Arm Target Average 
Corner of the Phone 

Top-Left Top-Right Bottom-Right Bottom-Left 

50cm 
1m 
2m 
4m 

0.98°±0.12° 
0.89°±0.15° 
0.81°±0.09° 

0.54°±0.11° 
0.49°±0.06° 
0.39°±0.06° 

2.24°±0.27° 
1.41°±0.11° 
1.39°±0.16° 

1.85°±0.18° 
1.50°±0.21° 
1.26°±0.26° 

1.42°±1.02° 
1.08°±0.7° 
0.99°±0.74° 

25cm 
1m 
2m 
4m 

1.17°±0.09° 
1.05°±0.18° 
0.92°±0.10° 

0.73°±0.14° 
0.60°±0.06° 
0.59°±0.09° 

2.18°±0.30° 
1.88°±0.20° 
1.69°±0.30° 

1.76°±0.39° 
2.10°±0.41° 
1.98°±0.25° 

1.48°±1.05° 
1.41°±1.07° 
1.31°±0.99° 

Average 0.98°±0.46° 0.57°±0.38° 1.81°±1.08° 1.77°±1.01° 1.28°±0.96° 

6 STUDY 3: USER EXPERIENCE 
We conducted a third user study to evaluate our prototype system’s 
efciency, accuracy, and usability. 

6.1 Candidate Methods 
We chose three existing camera-based object selection techniques 
from previous works [43, 54] as our baseline for comparison (i.e., 
Photograph, Snapshot, and Head-Gaze). In addition to the three 
existing baseline methods, we propose two additional methods to 
extend the concept of using the phone as a real-world physical 
cursor (i.e., Center Cursor and Corner Cursor). Except for the frst 
baseline of opening the camera to take pictures, the other methods 
do not require rendering the camera preview. The six candidate 
methods all use Center-to-Center Distance as the similarity measure 
and are described below. 

M1. Photograph. The phone renders the rear camera preview 
in full-screen, with a red point fxed at the center of the screen to 
prompt the direction of the phone to the user. The object closest to 
the red cursor would be selected (measured by Center-to-Center 
Distance in section 4.6). The camera and screen preview remain 
open throughout the experiment. We use the camera’s standard 
feld of view (1x) instead of the wide-range camera. 

M2. Snapshot. The object closest to the center of the rear camera 
image would be selected. This method is similar to M1. Photograph, 
but the phone’s screen remains dark all the time. 

M3. Head-Gaze. The user holds the phone in front of the face 
and uses head orientation as the virtual ray to select targets. The 
object with a minimum angular to the head-ray would be selected. 
The phone’s screen remains dark all the time. This method is a 
reference to the implementation of WorldGaze [43]. 

M4. Center Cursor . Similar to occlusion, the user needs to aim 
at the target with the center of the screen from the frst-person 
perspective instead of using the entire occlusion area. While there 
is not technically diferent from the M6. Occlusion, the user’s mental 
model is subtly diferent. Unlike the Snapshot (M2), this method 
uses the eye-phone ray to aim at the target. 

M5. Corner Cursor . Similar to occlusion, the user holds the 
phone vertically and aims at the target with the upper left corner 
of the screen from the frst-person perspective if the participant 
is right-handed (use the upper right corner if the participant is 
left-handed). This method was chosen because using the corners to 

point to the target may be more accurate than using the center of 
the screen refer to Equation 2. 

M6. Occlusion (Ours). The user raises the phone to occlude the 
target from the frst-person perspective. The phone’s screen remains 
dark all the time. The similarity is measured by Center-to-Center 
Distance instead of our more accurate distance-weighted Jaccard 
index to avoid better target prediction algorithms confounding the 
advantages of the design itself so that it can be compared with the 
baseline more fairly. 

Assuming that the sensing techniques can be signifcantly im-
proved in the future, we make some improvements to the baseline 
method to eliminate the limitations of the current techniques and 
focus on the interaction designs themselves. 

For baseline M1 (Photograph) in the real world, waking up the 
camera preview and waiting for rendering has certain disadvantages 
in efciency compared to the last fve methods that support direct 
input of the intent after raising the phone. Assuming that in the 
future, the camera preview can be opened automatically when 
the user is raising the phone, we simplify the wake-up gesture 
in this study and render the camera preview all the time for M1 
(Photograph). The user can trigger the photo by simply tapping the 
screen. 

In order to solve the problem of inaccurate estimation of the 
head-gaze using the smartphone, we asked the user to wear the 
head-worn camera when performing the Head-Gaze technique (M3). 
The relative orientation between the camera and the user’s head is 
calibrated so that the system can accurately measure the ground 
truth of head orientations. The users were informed to ignore the 
negative impacts of that head-worn camera while rating. 

The existing algorithm is used without special modifcation when 
users use the occlusion-base method. 

6.2 Participants 
We recruited 13 participants (6 males, 7 females) from the local insti-
tution. The average age of participants was 23.8 years. All of them 
had experience with smartphones. This study took approximately 
30 minutes. Each participant received $10 for compensation. 

6.3 Apparatus and Platform 
We conducted this study in a 7.4m length × 5.6m width × 2.8m 
height indoor environment, where we prepared 31 electrical de-
vices as interactable candidates. The scene and objects are shown 
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in Figure 6. Each device had a unique identifer to make itself rec-
ognizable, even if its appearance was the same as others. We used 
iPhone 12 Pro as our experimental device on which we could build 
our prototype system. 

Figure 6: The indoor scene of this study from the participant’s 
frst-person perspective. The 31 selectable electronic devices 
are marked in the fgure. 

The six selection techniques employed the same neural network 
model for object recognition, which was trained with 30 pictures 
of the scene from diferent perspectives. For 97.39% of the tasks 
during the experiment, the object recognition algorithm correctly 
recognized the target. 

6.4 Experiment Design and Procedure 
The participant’s task is designed to obtain the device’s name. Par-
ticipants need to focus on the user experience of the target selec-
tion process. First, an experimenter introduced the six diferent 
object selection methods and the interactable devices in the envi-
ronment. Participants only listened to a brief how-to guide without 
understanding the technical details. Participants attempted each 
technique in the Latin square order and selected the objects freely. 
When they tap the screen, the phone will speak the name of the se-
lected device via voice feedback and display its name on the screen. 
Besides, participants were asked to stand in a fxed position and 
put their hands down after each task. We measured the time cost 
of each selection. After participants had fully experienced each 
technique, we interviewed them to collect their subjective feedback. 
We asked them to fll out the NASA-TLX [27] questionnaire on a 
7-point Likert scale and the System Usability Scale (SUS) [13] on a 
5-point Likert scale as the metrics to evaluate user experience. 

6.5 Result 
The completion time of the process, the accuracy of target selection, 
and participants’ subjective ranking for the six object selection 
techniques are shown in Figure 7. 

One-way RM ANOVA were performed to compare the efect of 
Methods on Time and Accuracy with post-hoc T-tests. Friedman 
tests were performed to compare the efect of Methods on subjective 
scores with post-hoc Wilcoxon signed rank tests. 

6.5.1 Time. Result showed signifcant efects of Methods (�5,12 = 
16.326, � < .001) on Time. Post-hoc tests showed that our method 
(M6, Occlusion, mean=1.00s, SD=0.24s) was signifcantly (� < .05) 
faster than Photograph (M1, mean=1.65s, SD=0.43s), Snapshot (M2, 
mean=1.20s, SD=0.24s), Head-Gaze (M3, mean=1.59s, SD=0.46s) and 
Corner Cursor (M5, mean=1.25s, SD=0.47s). There was no signif-
cant diference between our method (M6) and Center Cursor (M4, 
mean=1.03s, SD=0.23s). 

When using the Snapshot (M2) and Head-Gaze (M3), some users 
showed a moment of hesitation before tapping the screen. Users 
reported that it usually required more time to confrm the pointing 
direction due to a lack of visual feedback because it is easy to choose 
the wrong target if the user is not focused. For Photograph (M1), 
although we told the user that they can aim at the target more 
freely, and the algorithm will choose the closest object, most users 
tended to make the on-screen selection tool fall closer to the target 
for psychological comfort. This process of fne-tuning the phone’s 
orientation made the Photograph (M1) signifcantly slower than 
Snapshot (M2). For the Corner Cursor (M5), the user felt the double 
vision efect which confused the users when looking at the corner 
of the phone. For the Center Cursor (M4) and Occlusion (M6), users 
reported that the visual feedback provided by the phone case allows 
them to easily confrm that they have correctly selected the target, 
so they can tap the screen to take a photo without hesitation. 

6.5.2 Accuracy. Result showed signifcant efects of Methods on 
Accuracy (�5,12 = 31.049, � < .001). Post-hoc tests showed that our 
method (M6, mean=95.9%, SD=4.5%) was signifcantly (� < .05) 
more accurate than Snapshot (M2, mean=85.3%, SD=7.4%), Head-
Gaze (M3, mean=65.6%, SD=14.4%) and the Corner Cursor (M5, 
mean=87.0%, SD=9.1%). Our method (M6) showed no signifcant 
diference compared to methods Photograph (M1, mean=99.4%, 
SD=1.7%) and Center Cursor (M4, mean=96.1%, SD=5.0%). 

When using the Snapshot (M2) and Head-Gaze (M3), users com-
plained that the lack of visual feedback restricted the accurate 
selection, especially for Head-Gaze (M3). Sometimes users think 
that they are pointing at the target accurately, but the ground truth 
is very deviated. For the Corner Cursor (M5), users reported that 
sometimes the double vision efect confused the correct phone cor-
ner locations. Users generally report that the Photogrash is the most 
accurate because they can see the cursor on the screen. 

6.5.3 Subjective Feedback. Friedman tests showed that Methods 
makes a signifcant infuence on both NASA-TLX (� < .001) and SUS 
(� < .001). Post-hoc tests showed that our method (M6) provides 
signifcantly (� < .05) lower task load (NASA-TLX) and higher 
system usability (SUS) than Snapshot (M2), Head-Gaze (M3), Center 
Cursor (M4) and Corner Cursor (M5). 

By conducting interviews with users, we found that 11 out of 
13 users prefer one particular technique: U3, U8, and U10 tend 
to use Photograph (M1); U2 tends to use Center Cursor (M4); U1, 
U4, U7, U9, U11, U12, and U13 tend to use Occlusion (M6). Users 
generally think that diferent methods have their own advantages 
and disadvantages, and we summarize them below. 

Photograph: Users appreciated that Photograph is easy to un-
derstand and can accurately select dense and small targets with the 
visual feedback of the camera preview. Negative comments from 
users mainly focus on: objects on the screen look too small; indirect 
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Figure 7: Completion time, accuracy of target selection, and user’s subjective feedback on the six methods. The score range of 
the subjective feedback is from 1 to 7 for NASA-TLX and 0 to 100 for SUS (higher score represents a more positive evaluation). 
The standard deviation and statistical signifcance (p<.05) are marked in the fgure. 

pointing via camera preview is not as natural as user-perspective 
pointing. 

Snapshot: The comments were polarized. A few users with a 
good sense of self (U5 and U6) appreciated Snapshot for being faster 
than Photograph. Other users were prone to making mistakes. Users, 
even the most skilled part, complain that the lack of visual feedback 
makes them less confdent and more frustrated. 

Head-Gaze: Inaccuracy was considered the most severe problem 
with Head-Gaze. The lack of visual feedback problem is more promi-
nent than Snapshot. Many users indicated that their self-perceived 
head orientation was completely diferent from the ground truth, 
and it is unnatural to control the head to point precisely at the 
target while looking at it. We think that using eye-gaze instead of 
head-gaze is a better way for users to select targets, but users will 
not be able to look at the phone screen simultaneously in this case. 

Center Cursor: Users praised the user-perspective approach for 
being natural and comfortable. The main problem of Center Cursor 
is that since the phone is entirely black,users feel it is difcult 
to estimate exactly where the center of the screen is. However, 
estimating the center of the screen from the outline and pointing 
at the target rarely selects the wrong target. 

Corner Cursor: Users complained about the double-vision prob-
lem. Unlike Center Cursor and Occlusion, which can visually see the 
occlusion area, the Corner Cursur is completely split into two vir-
tual images from the user’s perspective. This makes this approach 
feel unnatural to the user. 

Occlusion: Almost all users agreed that the concept of using 
the phone as a real-world physical cursor was novel and creative 
when they frst touched it. They also felt this method is simple 
and comfortable after attempts. Users reported low psychological 
pressure and high efciency because when they feel some overlap 
between the phone and the target or cannot see the target, they 
can easily trust that the target can be accurately selected. No users 

little impact during a one-shot interaction, it can cause arm fatigue 
during multiple consecutive uses. 

Overall, our method is comparable in accuracy to Photograph and 
faster than existing baseline methods. Users consider it convenient 
and efcient. 

7 DISCUSSION 

7.1 Example Uses 
Our approach provides visual context to support various vision-
based context-aware interactions with in-sight objects, such as 
controlling the nearby ubiquitously distributed appliances [17], 
getting information from the objects, or performing custom actions. 

For interactions with only one possible intent, such as turning 
on a device that is turned of, scanning the QR code, or performing 
a user-defned command (e.g., pet dog corresponds to opening a 
shopping app to buy dog food), just one wake-up gesture is enough. 
The iPhone supports associating a double tap on the back of the 
phone with a user-defned shortcut command. Using our method, 
the double-tap shortcut can be varied according to the selected 
target. 

If the intent is not clear enough, multimodal interactions can be 
combined with gestures or voice. Gestures with diferent semantics 
can be defned for diferent devices. For example, we can adjust 
the volume by selecting the TV or smart speaker and swiping up 
or down on the right side of the screen. Or users can perform a 
select-drag-select-release gesture between devices to mirror what’s 
playing on one screen to the other or copy confguration informa-
tion between devices. Combining voice allows users to perform 
variable interactions, such as asking "how much is that" [43], asking 
the robot to "clean up that place" [32], saying "turn on" or "play 
music" to the device, or say "translate that" abroad on the road. 

complained about the double-vision problem. Compared to other 7.2 Activation Methods methods, one disadvantage of Occlusion is that it requires the user 
Our method’s role in interaction depends on the goal of the interac-to raise the phone to a higher position. While this extra efort has a 
tion task. A complete interaction process should include wake-up, 



Selecting Real-World Objects via User-Perspective Phone Occlusion CHI ’23, April 23–28, 2023, Hamburg, Germany 

spacial object selection, and intent input. Our technique focuses on 
the target selecting step, but the other two parts are also essential. 

Users can activate our feature using a predefned gesture (e.g., 
double tap the back of the phone) or wake-up word (e.g., turn on the 
cameras after saying "Hi, Siri"). At the same time, our rectangular 
ROI provides a clear spatial intention. If the semantic analysis fnds 
that the user’s voice has a clear interaction intention with the target, 
we have the opportunity to get rid of the wake-up words entirely 
and achieve the ideal of natural wake-up-free voice interaction 
(e.g., directly say "turn on" without "Hi, Siri"). In future work, the 
wake-up-free voice interaction using the occluded area as the visual 
cues can be studied. 

7.3 Design Implications 
Based on research fndings from user experiments, we try to sum-
marize some generalized design implications for 3D object selection. 
Accuracy, efciency, ease of understanding and control are the four 
important factors we focus on that afect the user experience. 

Providing appropriate visual feedback is an efective way to 
ensure accuracy. For Snapshot and Head-Gaze, failure to provide 
visual feedback can lead to lower accuracy and undermine user con-
fdence. Our method uses the phone case to provide visual feedback, 
enabling one-shot interactions without the camera preview. In the 
future, rendering perspective-correct camera review on the screen 
(i.e., making the phone look like transparent glass [4, 58]) has the 
potential to provide more efective visual feedback for confrming 
the target and disambiguation for dense scenarios. 

To ensure efciency and ease of understanding and control, 
choosing capabilities that match the user’s psychology and prof-
ciency is desirable. We think user-perspective interaction is more 
natural than device-centric interaction in our application scenario if 
we can solve the double-vision problem. The motion control process 
of blocking the target is more like grabbing the target in mid-air 
by hand, a basic human profciency ability. In the future, inspired 
by our method, we can study better solutions to the double-vision 
problem in various scenarios, such as VR/AR/large-screen displays, 
to enable user perspective interaction to work better. 

7.4 Limitations and Future Work 
Our prototype’s object detection algorithm only recognized a pre-
defned object collection. In the future, we should consider allowing 
users to register a new object by themselves, download an object’s 
recognition model from the Internet to their smartphones, or per-
form object recognition by sending images to the cloud. 

Using the smartphone as a rotatable and scalable rectangle occlu-
sion box can select one of two small targets side by side by ofsetting 
to one side. However, a post-hoc disambiguation process may be 
necessary when faced with three or more dense small objects and 
the target cannot be determined. 

Our prototype’s current object recognition backend can only 
output a rectangle bounding box for each target, which may be 
inappropriate for those objects with complicated form factors (e.g., 
a sickle-shaped object). In the future, we can use a more accurate 
object segmentation model to enclose the object compactly and 
model it with a more refned distribution instead of a bivariate 
normal distribution. 

Since the estimation error of the depth is the main factor caus-
ing the estimation error of the occlusion rectangle, it can be im-
proved by using the smartphones’ front/rear true depth cameras 
(e.g., structured-light and LiDAR for depth sensing) in the future. 

Most commercial smartphones are large enough to adopt the 
presented occlusion-based target selection technique. However, 
holding a small smartphone vertically (e.g., smaller than 4.7 inches) 
may increase selection ambiguity since there are no invisible over-
lapped regions from users’ perspective anymore. To address this 
issue, users can hold the smartphone horizontally to block objects 
or roughly treat the phone with ghosting as an occluded area. 

8 CONCLUSION 
In this work, we present a novel object selection technique based on 
user-perspective phone occlusion which allows the user to quickly 
and easily interact with a large number of nearby objects. By analyz-
ing the users’ behavior in target selection, we model the users’ be-
havior as a distance-weighted Jaccard index. Our three experiments 
show our method performs well in both efciency and accuracy. 
Users agree that our method is convenient, accurate, efcient, and 
can be used as the preferred choice for one-time interactions with 
in-sight objects on smartphones. 
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