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Emerging terminals, such as smartwatches, true wireless earphones, in-vehicle computers, etc., are complementing our por-
tals to ubiquitous information services. However, the current ecology of information services, encapsulated into millions
of mobile apps, is largely restricted to smartphones; accommodating them to new devices requires tremendous and almost
unbearable engineering efforts. Interaction Proxy, firstly proposed as an accessible technique, is a potential solution to mit-
igate this problem. Rather than re-building an entire application, Interaction Proxy constructs an alternative user interface
that intercepts and translates interaction events and states between users and the original app’s interface. However, in such
a system, one key challenge is how to robustly and efficiently “communicate” with the original interface given the insta-
bility and dynamicity of mobile apps (e.g., dynamic application status and unstable layout). To handle this, we first define
UI-Independent Application Description (UIAD), a reverse-engineered semantic model of mobile services, and then propose
Interaction Proxy Manager (IPManager), which is responsible for synchronizing and managing the original apps’ interface,
and providing a concise programming interface that exposes information and method entries of the concerned mobile ser-
vices. In this way, developers can build alternative interfaces without dealing with the complexity of communicating with
the original app’s interfaces. In this paper, we elaborate the design and implementation of our IPManager, and demonstrate
its effectiveness by developing three typical proxies, mobile-smartwatch, mobile-vehicle and mobile-voice. We conclude by
discussing the value of our approach to promote ubiquitous computing, as well as its limitations.

CCS Concepts: • Human-centered computing → Ubiquitous and mobile computing systems and tools; Systems
and tools for interaction design; User interface management systems; Graphical user interfaces.

∗Corresponding author.

Authors’ addresses: Tian Huang, ht20@mails.tsinghua.edu.cn, Department of Computer Science and Technology, Tsinghua University, Bei-
jing, China; Chun Yu, Department of Computer Science and Technology, Tsinghua University, Beijing, China, chunyu@tsinghua.edu.cn;
Weinan Shi, Department of Computer Science and Technology, Tsinghua University, Beijing, China, swn@mail.tsinghua.edu.cn; Bowen
Wang, Department of Computer Science and Technology, Tsinghua University, Beijing, China, wbw20@mails.tsinghua.edu.cn; David Yang,
Department of Computer Science and Technology, Tsinghua University, Beijing, China, ydw22@mails.tsinghua.edu.cn; Yihao Zhu, Depart-
ment of Computer Science and Technology, Tsinghua University, Beijing, China, zhuyh22@mails.tsinghua.edu.cn; Zhaoheng Li, Department
of Computer Science and Technology, Tsinghua University, Beijing, China, zhaohengli.thu@gmail.com; Yuanchun Shi, Department of Com-
puter Science and Technology, Tsinghua University, Beijing, China, shiyc@tsinghua.edu.cn.

This work is licensed under a Creative Commons Attribution International 4.0 License.
© 2023 Copyright held by the owner/author(s).
2474-9567/2023/9-ART99
https://doi.org/10.1145/3610929

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 99. Publication date: September 2023.

HTTPS://ORCID.ORG/1234-5678-9012
HTTPS://ORCID.ORG/0000-0003-2591-7993
HTTPS://ORCID.ORG/0000-0002-1351-9034
HTTPS://ORCID.ORG/0009-0009-1358-722X
HTTPS://ORCID.ORG/0000-0001-8260-3830
HTTPS://ORCID.ORG/0000-0002-6620-3420
HTTPS://ORCID.ORG/0009-0002-0003-5062
HTTPS://ORCID.ORG/0000-0003-2273-6927
https://orcid.org/1234-5678-9012
https://orcid.org/0000-0003-2591-7993
https://orcid.org/0000-0002-1351-9034
https://orcid.org/0009-0009-1358-722X
https://orcid.org/0009-0009-1358-722X
https://orcid.org/0000-0001-8260-3830
https://orcid.org/0000-0002-6620-3420
https://orcid.org/0009-0002-0003-5062
https://orcid.org/0000-0003-2273-6927
https://doi.org/10.1145/3610929
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3610929&domain=pdf&date_stamp=2023-09-27


99:2 • Huang et al.

Additional Key Words and Phrases: GUI semantics, mobile applications, multi-device user interfaces, model-based user in-
terface description languages, UI reconstruction

ACM Reference Format:
Tian Huang, Chun Yu, Weinan Shi, Bowen Wang, David Yang, Yihao Zhu, Zhaoheng Li, and Yuanchun Shi. 2023. Interaction
Proxy Manager: Semantic Model Generation and Run-time Support for Reconstructing Ubiquitous User Interfaces of Mobile
Services. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 7, 3, Article 99 (September 2023), 39 pages. https://doi.org/
10.1145/3610929

1 INTRODUCTION
Smartphones, with the most abundant application resources, are currently mostly accessible by touching the
phone screen alone. With the rise of AIoT, people tend to choose different devices and interactions depending
on the use scenario [13], expecting applications to offer services in various forms [4, 30, 31, 46]. Just imagine a
user has a new unread message. He/she may prefer reading it on a wearable device like a smartwatch or glasses
while walking, on their PC at work for efficiency, or through a car screen or voice interaction while driving for
convenience and safety. While these alternative devices offer the potential to further enrich user experiences,
the challenge of developing differentiated user interfaces comes to our attention.

To present existing mobile applications to various terminals, there are two approaches in mainstream prac-
tice. The first involves screen-sharing technology based on video streaming, such as Google Cast 1, Miracast 2.
However, this solution is limited to visual content and does not adapt to other modalities like voice or gestures.
The second approach leverages the system-level framework. Examples include CarPlay 3 and Android Auto 4,
enabling the deployment of applications to car screens. Whereas, it is unable to assist third-party developers in
cross-device interface construction, necessitating code adaptation from application developers.

Inspired by the previous work for enhancing accessibility [61], we consider Interaction Proxy as a solution
to the aforementioned issues. This technology offers an interaction remapping mechanism that intercepts and
forwards page content and events on the phone, enabling a flexible construction of new user interfaces without
altering the code of the original application. However, despite demonstrating the potential for accessibility im-
provements, Interaction Proxy is currently at the proof-of-concept stage, with limited practical reliability [61].
Figure 1 highlights several challenges associated with Interaction Proxy, including unstable or missing mobile
page data, difficulties locating GUI widgets, and issues with synchronizing the state of each interface [32, 43].
Consequently, this technique may result in failed function execution or incomplete content of the new user
interface [6], leading to high development and debugging costs.

The challenges mentioned above primarily stem from the dynamic nature of user interfaces [29]. To eliminate
the instability brought by the interface, this paper proposes Interaction Proxy Manager (IPManager), a software
module that functions between interfaces, responsible for decoupling the application’s interface implementation
from the service semantics it contains. In the IPManager, we define UI-Independent Application Description
(UIAD), a reversed-engineered semantic model, to synchronize and manage the original application’s interface.
The model organizes the application’s information and methods in a hierarchical structure, making it widely
applicable due to its alignment with human cognition and the principles of the underlying object-oriented im-
plementation of the application.

As shown in Figure 2, the IPManager operates in two phases. In the offline phase, the registration system
aids developers in model design and establishes the relationship with the original GUI using low-effort interac-
tive annotations. This process formulates recognition strategies, maintains precise mapping relationships, and
1https://developers.google.com/cast
2https://www.wi-fi.org/discover-wi-fi/miracast
3https://www.apple.com/ios/carplay
4https://www.android.com/auto
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(a)

(b) (c) (d)

Fig. 1. Challenges posed by the dynamicity of the interface. In this example of WeChat, green boxes indicate problematic
widgets. (a) The avatar widget is not available on the layout. (b) There are a wide variety of widgets involved in the chat. (c)
The layout hierarchy is confusing. (d) A situation of unrecognizable page.

Fig. 2. How the Interaction Proxy Manager works. It extracts a UI-Independent Application Description Model from an
existing mobile application and provides information and method API for alternative interface systems to construct GUIs
on the smartwatch, car display, and VUI.

provides model APIs for new interfaces. In the run-time phase, the model responds to API calls from new in-
terfaces, delivering the requested data or controlling the phone to execute the necessary actions. Thereby, the
new interfaces can indirectly access the original GUI data, whose dynamicity is directly addressed by the model.
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Moreover, we implement techniques such as the maintenance of the run-time relationship between the model
and the original GUI, cache and route optimizations for stable and efficient communication.

Interaction Proxy Manager overcomes the limitations of existing solutions and aims to achieve the following
goals: 1)Robustness. Decoupling the interface from the service allows for a more accurate extraction of applica-
tion semantics and shields new interface systems from the original interface’s instability, leading to more reliable
operation. 2) Generality. The model can be both generated from a wide range of applications and invoked by
various devices to construct novel user interfaces. 3) Economy. Model generation can be a one-shot process,
enabling swift deployment to different devices and scenarios without burdensome modifications. 4) Flexibility.
IPManager transcends the physical limitations of a single GUI, allowing for alternative modalities beyond visual
feedback. 5) Incrementability. The model can be continuously updated and adapted to new semantic concepts
based on user requirements.

The specific contributions of our work therefore include:
• We propose Interaction Proxy Manager to eliminate the impacts of the original interface, which fulfills

semantics-based reverse engineering and provides reliable interaction mapping.
• We introduce the Interactive Annotation Mechanism for registering with the original interface, which

supports dynamic learning strategies for page classification and widget recognition, streamlines the anno-
tation process, and guarantees robust model generation.
• We provide a series of run-time support such as cache and routing optimization to properly handle the

dynamicity of the interface and efficiently respond to new interfaces’ requests.

2 RELATED WORK
This section reviews the literature relevant to our work, including prior Interaction Proxy systems, mobile GUI
semantic analysis, model-based UI development, and annotation systems with interactive machine learning.

2.1 Prior Interaction Proxy Systems
The concept of Interaction Proxy has been previously utilized in designing interactions based on existing user
interfaces for various purposes. Therein, it has been used for run-time repair and enhancement of the accessi-
bility of mobile applications [47, 61–63] or adapting user interfaces to wearable devices [58, 64]. SUGILITE [33],
KITE [37], and PUMICE [36] propose to program by demonstration or natural language inputs on smartphones.
SOVITE [34] helps users discover conversational breakdowns using the existing mobile GUIs. Rataplan [53] is
pixel-based approach for linking multi-modal proxies to automated sequences of actions in GUIs.

These systems rely on the direct remapping of interface elements or events, resulting in case-by-case connec-
tions. More importantly, they lack robust mobile page recognition, usually using pre-defined rules [61], which
leads to unreliable generation results, especially for content-rich UIs like large-screen interfaces.

2.2 Semantic Analysis for Mobile GUI
Mobile GUI layout obtained through Android’s Accessibility Service API 5 only presents the interface render-
ing without in-depth semantics. Semantic analysis addresses GUI irregularities [32, 43] and assists in reverse
engineering of application logic. We define the design space of mobile GUI semantic analysis in 4 progressively
deeper levels: Item, Label, Concept Hierarchy, and Concept Graph.
Level 1: Item. Identify all meaningful items on the GUI page. REMAUI [44] and GUI skeleton [14] recognize

GUI elements using computer vision or OCR, and extract visual features in screenshots.

5https://developer.android.com/referenc/android/accessibilityservice/AccessibilityService
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Level 2: Label. Currently, semantic labeling of GUI widgets is the focus of most research, including widget
object detection [16], UI embeddings [10, 28], natural language description of pages [56], and furthermore, UX
concept assignment to buttons and icons [15, 39, 41].

Level 3: Concept Hierarchy. The logical relationships between components are normally described in a tree, in
which the components are not GUI widgets but semantic concepts. Screen Recognition[57, 60] comes close to
this level, describing the logical relationships via hierarchical segmentation. However, the semantic information
is shallow, the components remain at the widget level, and the edges of the tree are not differentiated according
to a deeper level of semantics.
Level 4: Concept Graph. This level represents the deepest analysis, illustrating relationships between all se-

mantic concepts and necessitating integration of semantics across pages to restore the application’s workflow
and data management. Studies address mapping natural language instructions [38] or voice commands [45] to
GUI action sequences, defining concepts for GUI widgets and operation paths [36], characterizing inter-screen
semantics [35], identifying interaction trace events [21], and various UI tasks [55]. However, current research
is limited in capturing shallow cross-page semantics, necessitating further efforts to develop practical concept
graphs.

Our work is at the intersection between Level 3 and Level 4. We build the semantic hierarchy, integrate the
involved content of the multiple pages, and describe the relationships between them.

2.3 Model-Based UI Development
Model-Based UI Development (MBUID) simplifies UI development by generating code from models that define
data structure, behavior, and relationships [42, 49, 51]. The Camelon Reference Framework [23] outlines the
MBUID process, detailing layers of abstraction and their relationships: the Task and Concepts level, Abstract UI
(AUI) [52], Concrete UI (CUI), and Final UI (FUI). Various MBUID software tools have emerged [40], supporting
cross-toolkit development and element reuse. MBUID also enables reusable model creation [51] and offers design
assistance features [25].

Recent MBUID advancements focus on UX role exploration [2], enhancing interface adaptation via new frame-
works [1, 3], developing domain-specific languages for user interfaces [5, 48], developing multi-platform appli-
cations [12] and leveraging low-code platforms for swift web app development [11, 50].

While MBUID expedites code generation and eases front-end development, it neglects the complex develop-
ment requirements associated with data and functionality sources in the UI. Our approach seeks to decouple
information services from legacy smartphone applications through reverse engineering, subsequently offering
APIs for new UI development and facilitating the integration of data and functionality in new UIs.

2.4 Annotation Systems with Interactive Machine Learning
InteractiveMachine Learning (IML) enables users to iteratively build and refinemathematical models through in-
put and review cycles, without extensive background knowledge [8, 18]. This makes IML suitable for annotation
systems, reducing modeling expenses and expertise requirements for annotators.

IML enables iterative improvements based on manual evaluations. Examples include Crayons [20], CueFlik [7,
22], Abstrackr [54], and medical image clustering [26]. IML-based techniques also enhance user comprehension
of system functionality in text analysis [19], abstract annotation [59], and sentiment analysis [27]. Collaborative
semantic inference [24] further improves human-system understanding, as recently implemented in Google
Translate to prevent gender discrimination.

In our work, we use IML to help the system learn classification strategies for pages and widgets.This approach
is suitable for our task with dynamical granularity and significantly reduces annotators’ expertise and workload.
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3 UIAD MODEL SPECIFICATION
The stability and reusability of an application’s semantics far surpass that of its interface, as countless GUI ele-
ment combinations can represent the same functionality.Therefore, we propose a UIADModel that organizes the
remaining semantic knowledge after removing the UI implementation. The model aims to provide a consistent
structure for representing application semantics while adapting to multi-modal interfaces.

In this section, we introduce the UIAD Model Specification using WeChat, a popular instant messaging appli-
cation, as an example. As the model’s foundation, it defines the structure and APIs, while the specific content
becomes available only after registration with the original interface.

3.1 Model Structure
Drawing inspiration from epistemology, which divides knowledge into descriptive “knowing-that” and proce-
dural “knowing-how” [9], the model organizes application content into information and methods within a
hierarchical structure. This representation aligns with human perception of application semantics, reducing
learning costs for developers. Moreover, it is consistent with object-oriented programming principles in appli-
cation source code, enhancing the feasibility of semantic description.

The UIAD Model can describe entire applications, multiple sub-functions, or even a single GUI page by rep-
resenting the semantic structure as a tree. Tree nodes, defined as semantic elements, exemplify the hierarchical
order of the semantics via parent-child relationships. In this arrangement, child nodes embody components of
their parent nodes’ semantics.

For example, Figure 3 illustrates part of the model structure for WeChat. Once the model establishes a cor-
respondence with the application content, the semantic elements can derive values from multiple pages of the
original GUI, as shown in Figure 5, enabling the model to integrate semantic information from diverse sources.

To guide the design of the model structure for organizing information and methods, we will subsequently
provide detailed definitions for each type of semantic element. First, the information is described through the
following semantic elements:
• Root Object: The root represents the entire application.
• Object: A subtree with such an element at the root describes all the information of an Object. Different

types of Objects are distinguished by their names, such as Contact and Message.
• Object List: Elements of this class consist of several Object children sharing the same name, indicating that

these Objects exist simultaneously in the same list.
• Property: A property of an Object or Object List, consisting of the property’s name, type, and value. The

value, represented as a string, must be parsed based on the type. The value may be initially set, or left
empty during the design phase and later populated with data from the original GUI.

Relationships between semantic elements occasionally extend beyond the conventional parent-child hierarchy
found in tree structures, thereby requiring representations for lateral or cross-branch linkages. To accommodate
these unconventional relationships within the overall tree structure, we introduce a distinct semantic element,
the Relationship. As a child of the Root Object, a Relationship embodies a “link” between two previously defined
semantic elements (Object or Object List). Figure 3 illustrates a Relationship where a Contact is the “source” of a
Message.

Second, the methods are flattened in the model, differing from multipage jumps in the mobile GUI. They are
organized by the following classes of semantic elements:
• Method: Different Methods are distinguished by their names, such as “VoiceCall” and “SendMessage”. As a

child of the Root Object, a Method comprises three properties: Semantic Parameters, Operation Parameters,
and Execution Sequence.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 99. Publication date: September 2023.
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Fig. 3. Part of the UIAD Model structure of WeChat. As the starting point, Root Object has 2 fixed-value properties. It has
two Object List children: Contact List and Message List. Contact List contains Contact objects, describing all properties of
each contact. Similarly, Message List contains Message objects, organizing all data related to each message. Additionally,
two methods, “VoiceCall” and “SendMessage”, are defined with detailed parameters. At this stage, most of the Properties’
values and all the Execution Sequences are still empty, awaiting data from the original interface.

• Semantic Parameters: The list of semantic parameters of the method. Each parameter refers to a previously
defined element (Object List or Object), such as the Contact involved in the “SendMessage” Method.
• Operation Parameters: The list of the method’s parameters, excluding the semantic ones mentioned above.

They are typically required to ensure the completeness of the operation, such as the content for the
“SendMessage” Method.
• Execution Sequence: The list of operations in the original interface, i.e., operable GUI widgets that can

accept Operation Parameters or potentially initiate the Method. Initially, the sequence is empty, as shown
in Figure 3. Only after registering with the original interface, the edit box and the “Send” button will be
added to the Execution Sequence of the “SendMessage” Method, as shown in Figure 5.

The initial model structure needs to be built manually according to the functional requirements, ensuring it
includes all relevant semantic elements. For example, when deploying the function of sending messages, the
list of contacts and messages, and the parameters involved in “SendMessage” are necessary. The definitions of
these semantic elements, including their names, types, and parameters, must be specified manually before the
registration process. However, the specific values (e.g. username “Lee”) and Execution Sequence will be derived
from the original GUI widgets after registration.

3.2 Model API
To access the data in the model, two types of model APIs are supported: to get information and to use methods.
As shown in Figure 4, new interface systems can simply call these APIs to access the content of the original GUI,
and thus fill it into alternative interfaces. Particularly, Figure 10 demonstrates how a car display calls these APIs
during runtime. The three parameters required to call the API are defined as follows.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 99. Publication date: September 2023.
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• API Name: Denotes the API to call.
• Condition: Defines constraints for the model’s subtree (or forest) selection.
• Target: Identifies desired information or method.

Table 5 in the Appendix lists in detail the main supported APIs and their usages. The following subsections
introduce the two categories of APIs.

3.2.1 To Get Information. We can access the content of any node or subtree within the model. Given the Condi-
tion and Target, the model locates the relevant information in the tree and returns the result. The model supports
get_property and get_related_info for object information queries, and associated APIs for list queries.
• get_property:The properties can belong to any subtree or forest, as determined by theCondition.The Target

specifies which properties to return. In particular, if the target is anObject name, all properties of the object
are returned.
• get_related_info: Get the information of Object B that is related to Object A. The description of Object A

and their relationship are set in the Condition, and the Target specifies which properties of Object B are
required.
• list related: Supports specific operations such as retrieving list items in a set interval (get_list) and finding

an object’s position (index_of ). Considering the list’s versatility, additional APIs like filter and sort can be
implemented.

3.2.2 To Use Methods. We can use any method defined in the model. By assigning values to the required pa-
rameters in the Condition and specifying the method name in the Target, the model can trigger the method by
performing operations according to the Execution Sequence.

4 INTERACTION PROXY MANAGER
In this section, we present the IPManager, responsible for generating a UIAD Model from the original mobile
GUI and managing requests from the new interface system.

To achieve this, we first establish themapping relationship between the original pages and themodel, enabling
run-timemodel generation based on the current page.Therefore, the IPManager consists of an offline registration
system and a run-time system, depicted in Figure 4. During the offline phase, the system registers the model with
the original pages, storing the results in the Model Registration File. In the run-time phase, the system employs
this file to generate the corresponding model instance from the current GUI.

To enhance the reliability and efficiency of the run-time system, we introduce the model manager, overseeing
data exchange with new interface systems. The model manager dynamically maintains mapping relationships
between the model and the original GUI, executes simulated actions on the original GUI, manages previously
generated model instances, and preserves the latest version of the UIAD model.

4.1 Registration System
The registration system, depicted in the dashed box of Figure 4, establishes the mapping relationships between
the model and the original GUI. These relationships are integrated into the Model Registration File, which lays
the foundation for subsequent run-time semantic analysis.

Based on the functional requirements of a given application, developers organize all semantic elements and
establish the corresponding Model Specification, as described in Section 3. The system then identifies the origi-
nal GUI widgets linked to each semantic element. To achieve this, the system records three components: (1) page
classification, (2) widget recognition, and (3) page jumping graph. The first two components support widget recog-
nition within a single page, while the third enables cross-page searches. The process requires human annotation,
for which we employ an interactive annotation mechanism to reduce costs, further detailed in Section 5.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 99. Publication date: September 2023.
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Fig. 4. IPManager is in charge of the generation and run-time support of the UIAD Model. The dashed box area is the
registration system in the offline phase, and the solid box area is the run-time system.

(a) (b)

Fig. 5. Two examples of mapping rules that establish the correspondence between application content and semantic ele-
ments. (a) A contact’s username and avatar can be extracted from two classes of pages. Based on the GUI widget being
mapped, the username is taken from its text, and the avatar is taken from a screenshot at a given offset relative to it. (b) By
mapping the corresponding two widgets, the “SendMessage” Method is triggered by one edit and one click.

4.1.1 Page Classification. Mobile pages are categorized based on their topics. Page classification serves as the
first feature for GUI widget recognition and forms the foundation of the page jumping graph, helping the run-
time system identify the current state and locate the correct routes. The classification criteria can dynamically
change. When pages within the same class create ambiguity in widget recognition or necessitate a page jumping
between them, we can divide the class into subclasses.
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4.1.2 Widget Recognition. As shown in Figure 5, a mapping rule specifies the property of specific GUI widgets
(e.g., image, text, action) corresponding to a semantic element in the model tree, indicating that the GUI wid-
gets assign value to the semantic element (Figure 5a) or clarify its triggering mechanism (Figure 5b). Different
mapping rules apply to different GUI widgets; hence, when using a rule, it is necessary to recognize all applica-
ble widgets on the run-time GUI. The process involves classifying widgets according to the semantic elements
they map to. Similarly to page classification, the criteria of widget recognition can dynamically change, which
depends on the model structure.

4.1.3 Page Jumping Graph. While the previous sections cover the semantics within a single mobile page, the
page jumping graph represents the semantic relationships between pages. It helps the run-time system find the
correct routes when the required widget is not present on the currently displayed page. The graph encapsulates
both the route and the context cursor.

Route: A basic jumping graph is a directed graph generated automatically, with nodes as pages of the same
class. Edges specify the widget and its action (typically “click”) triggering the jump. With this graph, a route
between any two pages can be found, ensuring at least one route from the start page to the homepage and then
to the end page.
Context cursor: Page jumping is required not only when page classes differ, but also when semantic dif-

ferences exist among pages within the same class. For instance, if the current mobile page is for chatting with
Contact A and the target is Contact B, page jumping is needed even though both pages are chat pages. Therefore,
we define the contextual semantics of a single page as a cursor in the model, with the subtree below representing
the content covered by the page. In the example above, there are two subtrees, Contact A and Contact B, in the
run-time generated model. Since the cursor is on Contact A, page jumping is required to reach Contact B.

4.2 Run-time Semantic Analysis
After registering with the original GUI, the run-time system analyzes the semantics of the displayed page on the
phone using the Model Registration File (derived in Section 4.1). As depicted in the solid box of Figure 4, each
parsed UIAD Model at runtime contains information and methods for a single page, known as a model instance
(e.g., Figure 6). The system re-analyzes semantics whenever the mobile GUI updates.

Run-time semantic analysis follows the same two-step process as the offline phase: page classification and
widget recognition. Necessary widgets are identified and assigned to corresponding semantic elements based on
pre-designed mapping rules, adhering to a top-down layout tree order. Algorithm 2, detailed in the Appendix, is
utilized for this purpose.

4.3 Model Manager
The model manager is responsible for ensuring the UIAD Model’s availability on demand. As depicted in Figure
7, the manager continuously listens to requests from new user interfaces and generates responses through the
Processor. Since the model instances generated in Section 4.2 can only describe the current single page, the
manager relies on the Route and Cache to record the required UIAD Model instances for data integration. If an
error occurs at any stage, the Error Recovery is triggered to resolve the issue.

The following paragraphs detail the functionality of each module.

4.3.1 Processor. The Processor identifies the target subtrees in the model based on the received API request. For
getting information requests, the corresponding part of the model tree is directly returned, while using methods
requests prompt automatic phone operation according to the Execution Sequence. If data is missing, the manager
invokes the Route module to perform page jumping and retries the process.
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(a) (b)

Fig. 6. (a) The current page displayed on the phone and (b) its corresponding UIAD Model instance.

Fig. 7. Overview of how the model manager works.

4.3.2 Route. Datamissing occurs when the state of the newUI and the original mobile GUI are not synchronized.
The Route module resolves this issue in two cases:
• If the current context cursor conflicts with the target (e.g. the target is Contact B but the cursor is on Con-

tact A), the manager first performs a global back until the cursor leaves its original location and resolves
the conflict. It then initiates the second case’s processing.
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• Without context conflicts, the manager identifies all destination page classes containing the requested in-
formation or methods, based on theModel Registration File. Given the current displayed page class and the
destination page classes, the manager determines the shortest route and operates the phone accordingly.
If the route is not found or the operation fails, the Error Recovery (described below) is triggered.

4.3.3 Cache. To optimize efficiency, a cache merges all historical model instances to form a complete UIAD
Model, reducing overhead from page jumping caused by Route module triggers. If a new instance conflicts
with an old one, the cache is directly overwritten. Conflicts arise only when the same semantic element has
different values or matches different GUI widgets. Model instances generated from pages of different classes are
all preserved. The similar structures of all model instances facilitate merging or overwriting.

Additionally, a cache for lists is implemented. Synchronizing the mobile GUI and the new interface may be
challenging when list lengths differ. The manager merges list items from multiple model instances into a larger
list during phone scrolling, storing the expanded list in the cache. Cache data is prioritized when the API is
called; if insufficient, the list is controlled to scroll and obtain more data.

4.3.4 Error Recovery. Run-time interruptions due to errors include the following two cases:

• TheRoutemodule failure: On the first failure, themanager performs global backs to return to the homepage
and re-calls the Route module. If the second attempt also fails, the destination page might be missing from
the preset dataset, prompting users to add page data using the registration system.
• Inability to locate requested data even after reaching the destination page: It can stem from either the

data’s absence, requiring model adjustment manually for alternate solutions, or widget recognition errors,
which can be addressed by annotating unrecognized widgets and retraining a new recognition strategy.

5 INTERACTIVE ANNOTATION MECHANISM
Manual annotation is required during model registration with the original UI (described in Section 4.1). Among
the three components mentioned, the page jumping graph can be primarily automated [17], and the context
cursor is well-defined and easy to annotate. However, page classification and widget recognition pose greater
challenges. Since classification criteria dynamically update based on model modifications, pre-defined heuristic
rules or pre-trained data-driven models are not applicable. In this section, we propose the Interactive Annotation
Mechanism (IAM) to efficiently carry out the annotation task.

5.1 Workflow of the IAM
Since GUIs originate from human design logic and follow established design principles, the variations in GUIs
are enumerable. By extracting sufficient features from page layout data and images, it is possible to generate a
comprehensive set of rules that cover all cases.The challenge lies in refining a classification strategy for each class.
Directly proposing strategies involving complex feature combinations is impractical for annotators. Furthermore,
without a comprehensive understanding of mobile GUI design, it is impossible to confidently establish a robust
strategy based on sample interfaces. Additionally, pre-defined strategies cannot be dynamically adjusted when
false cases occur.

In contrast to abstract classification strategies, human perception of the class to which each instance belongs
is clear. To this end, we propose a human-computer collaborative mechanism that constructs the classification
strategy iteratively, allowing for continuous improvements based on simple human input. Our interactive an-
notation mechanism, shown in Figure 8, enables continuous refinement of the classification strategy through
iterative annotation and inspection.
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Fig. 8. Workflow of the interactive annotation mechanism. (1) UIAD Model Specification is designed. (2) Annotators label
the class to which each page or widget belongs. (3) The system applies pre-defined heuristic rules as the original classification
strategy. (4) Test with the dataset. (5) Annotators modify or confirm some of the results. (6) The system uses new annotations
for decision tree training. Steps (4), (5) and (6) iterate until annotators no longer make new annotations.

5.1.1 Heuristic Rules. In the first round, we construct a fixed similarity function using a predefined set of fea-
tures to determine whether two instances belong to the same class, with only one annotation to start the classi-
fication. The feature set and similarity function are available in Appendix B.

5.1.2 Iterative Update. Heuristic rules, used as the original classification strategy, cannot guarantee correctness
(Table 1). These rules are tested on the dataset, and the results are visualized for annotators to correct errors. We
use decision trees—an interpretable algorithm conducive to manual modification—trained based on new labeling
or confirmation data, and refine them until satisfactory.

5.1.3 Expanding the Training Set. To further reduce the annotation workload, a series of heuristic rules are
employed to automatically generate more negative examples based on the existing annotated data, resulting in
an expanded training set.

5.1.4 Summary. Figure 9 demonstrates an example of training a widget recognition strategy through interactive
annotation. Ideally, only one annotation per class is needed. To prevent redundancy, only unconfirmed results are
sent to annotators.The strategy is tested on new pages and adjusted with additional examples when required. For
similar cases, a single example suffices to adapt the strategy, avoiding exhaustive enumeration, as demonstrated
in Figures 9(b) and 9(c), where the incorrectly recognized message time widgets are removed.

While both pages and widgets follow the workflow above, their implementations differ significantly, as de-
tailed in Table 6.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 99. Publication date: September 2023.



99:14 • Huang et al.

Fig. 9. The annotation process for recognizing all widgets of message content, using the feature set available in Appendix
B.1.2. (a) The “Hello” widget was initially annotated. (b) The system recognized several widgets based on the annotated
example. The annotator removed the “10/24/22 5:12 PM” widget, as it represents the message’s time, not content. (c) The
system corrected the misrecognition of message time and added recognition of the “Duration: 00:04” widget. The puppy
image widget was not recognized and was manually added. (d) The system added recognition for the “1.pptx” widget,
successfully recognizing all message content.

5.2 Offline Dataset Validation
We established an offline dataset to evaluate the performance of two existing methodologies and the IAM. We
developed UIAD Models for 12 applications across 9 categories, as shown in Table 7. Our selection criteria
aimed to include applications with rich data, diverse functionality, high user engagement, and strong cross-
device interaction potential. Corresponding to thesemodels’ needs, we collected 6,413 pages and 116,516widgets,
which needed to be classified into 339 and 7,981 classes, respectively.

5.2.1 Performance of Existing Methodologies. We evaluated the following two existing methodologies.
• Pre-defined heuristic rules: A detailed implementation is available in Appendix B. This method has

been utilized by prior interaction proxies [61]. We employed a five-fold cross-validation technique on our
dataset.
• Pre-trained data-driven models: We employed Screen2Vec [35] with Euclidean distance for page clas-

sification, and the semantic-icon-classifier [41] for widget recognition. These two models were trained on
the Rico dataset [17] and tested on our dataset.

As the results in Table 1 demonstrate, both pre-defined heuristic rules and pre-trained data-driven models
exhibited limitations: the former’s uniform rules couldn’t cover every case, while the latter’s classification criteria
differed from the models’ specifications.

5.2.2 Performance of the IAM. We evaluated the performance of the annotators who used the IAM. Unlike
the above two methodologies, the IAM is a human-machine hybrid system for data annotation, rather than a
stand-alone model. Its effectiveness is assessed through the following metrics:
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Table 1. Classification Results.

Methodology Page Classification Widget Recognition
Precision Recall F1 Precision Recall F1

Pre-defined heuristic rules 0.720 0.958 0.822 0.612 0.790 0.689
Pre-trained data-driven models 0.628 0.978 0.765 0.570 0.473 0.517

• Annotation Completeness: Annotators are required to traverse all data and annotate necessary cases
until 100% precision and recall are achieved, signifying the achievement of complete annotation accuracy
through iterative human-machine interactions.
• Annotation Efficiency: It is reflected by the number of annotations needed to achieve complete accuracy.

It is important to note that the performance of these metrics is only influenced by the order of the cases in
the dataset, and is independent of the individual annotators (assuming no errors are made during the annota-
tion process). Consequently, we invited 10 annotators to individually handle all cases in the dataset. For each
annotator, the data was shuffled randomly to ensure an unbiased evaluation.

The experimental results validate that by employing the IAM, multiple rounds of verification and annotation
ensured that the recognition of all classes could be achieved with 100% precision and recall. Furthermore, IAM
offers the following advantages.
• Simplicity in generating strategies: The decision trees exhibit a complex structure, averaging 11.27

nodes (sd=5.06) and a depth of 5.18 (sd=2.26). Manually deriving such a rule set is challenging, but by the
IAM, it can be automatically extracted by adding a few instances.
• High single annotation gain: The average number of extra annotations for pages was 1.58 (sd=1.31)

times and for widgets, it was 1.95 (sd=1.60) times. Interactive annotation leverages human decision-making
to provide more representative examples, effectively avoiding the repeated annotation of similar cases that
may occur in traditional machine learning. For instance, as shown in Figure 9(c), adding one single image
is sufficient to learn a more refined classification strategy.
• Dynamic adjustability: Subdivision and merging frequently occur during model editing. Figure 9 illus-

trates an example of merging images and text into one class, which can be further subdivided based on
the message sender. This level of flexibility is not supported by pre-defined rules and pre-trained models.

6 ENHANCED DESIGN FLEXIBILITY AND DIVERSE APPLICATIONS WITH THE IPMANAGER
In this section, we highlight the enhanced design flexibility and diverse applications provided by the IPManager.
We demonstrate the capabilities of IPManager by creating three distinct user interfaces for WeChat.

6.1 Innovative Design Pattern
The innovation encompasses the following three main aspects.

6.1.1 Flexible Mapping Options. The reorganization of UI elements and various mapping options facilitate the
development of flexible and versatile design strategies for new UIs. Many-to-one pages enable data delivery from
small to large screens, one-to-many pages suitably project large to small screens, and many-to-many pages are
commonly employed in constructing multi-modal distributed interfaces in AIoT scenarios.

6.1.2 Widget Customization. Widgets can be customizedwith interesting trigger patterns.Many-to-onewidgets
bind a new UI widget to multiple original widgets with similar semantics across different mobile applications,
enabling a single action to trigger multiple application functions. One-to-many widgets allow the same original
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Fig. 10. Interaction Proxy system on the car display. The car display sends get_list and use_method API requests to the
IPManager during runtime.

widgets to be triggered in multiple ways or modalities, such as initiating phone calls via touch, voice, or physical
shortcut keys. Many-to-manywidgets combine the features of the previous two, offering the potential for service
combinations.

6.1.3 Tailoring Applications for Specific User Groups. The flat management of methods in the UIAD Model en-
ables developers to create simplified application versions tailored for specific user groups, such as accessibility
services and services for the elderly. This approach ensures that the applications address the unique needs and
preferences of these user groups, improving usability and user experience.

6.1.4 Distributed Interfaces and Data Integration. The UIAD Model’s support for distributed interfaces across
devices enables users to leverage mobile phones as data sources and integrate personal data into different UIs
for various scenarios. This feature allows for seamless data flow and user experience across multiple devices.

6.2 Application Examples
To demonstrate the three aspects mentioned above, we collaborated with the WeChat mobile application and
invited three development teams to create three distinct user interfaces based on the UIAD Model: the tablet-
sized car display GUI, the smartwatch GUI, and the voice user interface.

GUI reconstruction on the car display helps drivers interact with minimal attention cost. The car GUI
system’s layout is designed specifically for car displays, with the model APIs directly rendering the GUI. Casting
from the phone to the car display exemplifies a “small to big” transformation, allowing content from multiple
phone pages to be displayed on a single car display page, as shown in Figure 10.
GUI reconstruction on the watch improves user experience in high-mobility scenarios, such as checking

messages while running. Casting to watches demonstrates a “big to small” transformation. The parameters re-
quired for API requests may originate from multiple pages on the watch, as shown in Figure 11.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 99. Publication date: September 2023.



Interaction Proxy Manager: Semantic Model Generation and Run-time Support for Reconstructing Ubiquitous User… • 99:17

Fig. 11. Interaction Proxy system on the smartwatch. The smartwatch sends a use_method API request to the IPManager
during runtime.

Fig. 12. Interaction Proxy system on the voice user interface.

The voice user interface is built on a modality where the machine completes tasks based on users’ natural
language commands.The developers employed Large LanguageModels to parse the commands into UIADModel
APIs and their corresponding parameters, enabling the creation of a simple voice user interface.

These examples show that our approach enables developers to create user interfaces that cater to different
screen sizes, modalities, and user needs while supporting seamless data integration across devices.

7 WORKFLOW PERFORMANCE EVALUATION
Based on the aforementioned system design, we implemented the system and designed a user study to demon-
strate the effectiveness of our approach. This study has been reviewed and approved by an appropriate Institu-
tional Review Board (IRB).

7.1 Implementation
We implemented the IPManager, comprising the offline registration system and the run-time system, and devel-
oped a UI deployment tool to validate model usability.

7.1.1 Registration System. We developed an interactive annotation platform using Vue for model design and
registration with the original GUI (Figure 13). A phone application obtains GUI layouts and captures screenshots
using Android’s Accessibility Service API and MediaProjection6, while a Flask server manages data transfer and
decision tree training for classification.
6https://developer.android.com/reference/android/media/projection/MediaProjection
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Fig. 13. The interactive annotation platform implementation.

7.1.2 Run-time System. A Flask server provides real-time semantic analysis and themodel manager. It generates
the UIAD Model and sends page-jumping instructions when necessary. The phone application sends page data
to the server and receives instructions, which guide it to simulate on-screen operations and complete the jump
via Android’s Accessibility Service API.

7.1.3 Target-device UI Deployment. Given the designed target-device UI’s HTML file, the deployment tool spec-
ifies the content source of UI elements by binding model API (Figure 14). This generates executable front-end
code, allowing the GUI to run as web pages and support voice command input.

7.2 Procedure
The user study involved 4 distinct study groups corresponding to the following 4 steps.

7.2.1 Identifying Use Cases. We interviewed 3 experiencedAIoT productmanagers (P1-P3) to identify functional
requirements for various use cases. Based on their opinions, we designed 4 use cases and their corresponding
applications.

7.2.2 Developing UIAD Models. We engaged 8 participants, including 4 junior programmers (with less than 2
years of programming experience) (P4-P7) and 4 non-programming students (P8-P11), to create UIAD models
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Fig. 14. The target-device UI deployment tool implementation.

for the 4 use cases. Each participant was presented with the use cases using a Latin square design sequence
for counterbalancing. This resulted in a total of 32 models. Participants utilized our IPManager to design Model
Specifications, register with the mobile interface, and test Model APIs.

7.2.3 Developing Target-Device UIs. We hired 8 professional designers (P12-P19) to create the required UI for
each use case, tailored for the target devices. Using a Latin square design sequence, each designer used 4 UIAD
models developed in the previous step. Then they bound each UI element to the corresponding model API and
automatically deployed the new interfaces.

7.2.4 Experiencing Target-Device UIs. We invited 8 end-users (P20-P27), aged 18 to 26, to use 4 developed UIs in
different use cases with their various devices. They provided feedback to assess the usability and effectiveness of
the implemented applications on the target devices. The experiment lasted for two weeks, with each participant
spending over 5 hours using each UI.

7.3 Results
We will analyze the results of each step of the user study.

7.3.1 Identifying Use Cases. During our discussions with product managers, our approach was validated, with
P2 and P3 noting the model’s adaptability based on personalized needs. P1 stated that the deployment on various
devices can be achieved through our approach.They also expressed further expectations. P1 said “I hope to support
multi-device input and output when playing games and watching movies. However, the current solution seems to
have limited ability for video streams.” P3 suggested incorporating data from other devices, such as health data
from a smartwatch.

Additionally, they noted that our new approach would bring significant changes to product design ideas.
P2 stated “[This approach] clearly excels in multi-device adaptation, prompting us to focus on designing products
with this aspect in mind, instead of targeting specific devices as in the case of existing smart homes and smart
cockpits.” P1 added, “We can easily consider separating information presentation and input, reducing user operation
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complexity, especially when user interaction is limited, such as while driving.” P3 mentioned that in a home setting,
a smartphone could be used for control while a larger screen displays a 3D representation of the home’s status.

In the end, we selected 4 representative use cases from our interview to carry out the next steps of the user
study, as shown in Table 2. The details of these use cases are provided in Appendix F.1.

Table 2. An overview of use cases.

Use Case ID Description Target-devices
C1 Home audio system Smart speakers, large-screen TVs
C2 Map applications for vehicle head-up displays HUDs
C3 Food ordering in mobile scenarios Smartwatches
C4 Schedule and Express Delivery App Integration Smartphones

Table 3. Subjective feedback from UIAD model developers. Full results are available in Table 13 in Appendix.

Statements Median

1. You can understand how the UIAD Model works. 6
2. You think the annotation platform is easy to use. 5
3. You can design a good UIAD Model. 6.5
4. You can register the model with the original GUI. 6
5. You find the operation efficient. 6.5
6. You think the annotation platform is smart. 6.5
7. You think the UIAD model is not complicated. 5
8. You are willing to use our system. 6

Fig. 15. Distribution of participant ratings for each statement in Table 3. Ratings range from 1 (strongly disagree) to 7
(strongly agree).
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(a) (b) (c)

Fig. 16. Average time spent by participants on developing UIAD models. (a) Completion time of each task attempt. (b)
Completion time of each use case. (c) The relationship between completion time and the number of nodes in the model.
Error bars in (a) and (b) indicate standard deviation. The details of the statistical evaluation are provided in Appendix F.3.1.

7.3.2 Developing UIAD Models. We present the evaluation results of the participants’ performance, as well as
their subjective feedback using a 7-point Likert scale in Table 3 and Figure 15.

Participants reported that the learning cost was within tolerable limits (Statements 1, 2, 3, 4 and 7), with an
average training time per participant of 35.97 minutes (sd = 2.79), usingWeChat as the example. The success rate
of independently completingmodel development was 90.63%, with the remaining 3models being completed with
minimal guidance. The programmers had a 100% independent completion rate, while the non-programmers had
an 81.25% rate.

Most participants acknowledged that the model effectively reduced development costs (Statement 5) and were
willing to use the system for multi-device interface deployment (Statement 8). As shown in Figure 16a, partic-
ipants’ proficiency improved with an increase in model development instances, resulting in reduced comple-
tion time (p-value = 0.006). Figure 16b shows a difference in completion time between programmers and non-
programmers (p-value = 0.017), attributed to the model aligning more with programmers’ thinking. P5 stated,
“The model is easy to understand from an Object-Oriented Programming (OOP) perspective.” Additionally, as seen
in Figure 16c, the time spent developing a model positively correlated with its complexity, related to the require-
ments of the use case. Notably, the slopes of the fitted lines for programmers and non-programmers exhibited
significant differences (p-value = 0.010), indicating that programmers could adapt in less time as the model
complexity increased.

Notably, compared to the existing workflows where senior programmers’ estimates of development time
would require at least dozens of hours, our approach significantly reduces development time and even supports
non-programmers in developing.

Participants appreciated our approach. P6 believed that the model is released from the specific settings of
different scenarios and is configured as a more universal framework. P9 took it as a more concise, abstract, and
well-designed outer layer of applications. Participants also thought the annotation platform was very smart
(Statement 6). P10 found the overall experience smooth and the configuration steps interconnected. However,
P8 still hoped for further improvements: “Currently, the program strictly follows a step-by-step configuration, and
each attribute match must be exact… More user-friendly interaction methods can be considered.” Similarly, P10
expressed a desire for more intelligent fuzzy matching.
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(a) (b)

(c) (d)

Fig. 17. Average time spent by designers on developing target-device UIs. (a) Total time spent on each task attempt. (b) Total
time spent on different use cases. (c) Time spent on binding the API for each task attempt. (d) Time spent on binding the
API for different use cases. Error bars indicate standard deviation. The details of the statistical evaluation are provided in
Appendix F.3.2.

Participants also identified the potential of our approach. P4 said “Constructing applications for various devices
with the model as the kernel will become a new paradigm.” P5 suggested that it could be extended to gesture-
oriented user interfaces, which can save a lot of code. P6 expected that “This would enable parallel operation
across different devices.” P7 expressed a strong demand for porting more applications (such as their frequently
used running app) to the watch and interconnecting multiple AIoT devices at home through one terminal.

However, participants sometimes encountered ambiguities. P7 said “I’m not sure whether a concept should
be further split out.” P6 expressed concerns about “whether the pairing and annotation are comprehensive and
complete.” Actually, at the current stage, participants can make these decisions freely. When new requirements
or issues arise later, they can come back and modify accordingly.

7.3.3 Developing Target-Device UIs. We evaluated the designers’ development costs in the study. The average
training time per participant was 12.13 minutes (sd = 1.83), using WeChat as the example. The success rate of
completing tasks independently was 90.63%, with the remaining 3 failures resolved after clarification of require-
ments.

The total time (Figure 17a) and the time for binding the model APIs (Figure 17c) did not change significantly
with the number of tasks the participants have completed (p-value = 0.204 and 0.749, respectively). Instead, it
is strongly correlated with use cases (Figure 17b (p-value = 0.006) and Figure17d) (p-value = 0.039). The average
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time spent on API binding was 4.91 (sd = 2.37) minutes, only accounting for 2.06% of the total time, indicating
that most time was spent on UI design.

Participants reported reduced time compared to existing workflows. P12 said “It reduced the delivery cost with
the front-end development department and there was no need for the original work on organizing the information
hierarchy of the page.” P14 said “The tree is better understood than the product manager documents.” P17 and
P19 noted significant time savings when the information structure and function were well-defined. P13 said
“The design work is almost the same as before. The main learning cost is in learning the principle of the model but
completing the binding is very efficient.” P15 appreciated the run-time access to data via APIs for UI validation,
saving them from manually inputting data.

Some participants sometimes encountered confusion, but resolved issues easily. P15 said “Some nodes [in the
model] appear somewhat ambiguous and need further explanation.” P18 said “Node names [in the model] can be
unclear, but understanding improves when related to the original interface.” P14 stated that designers still needed
to build a design hierarchy upon understanding the model.

Participants found our approach met their design requirements, but it did impact designers’ thinking and be-
havior to some extent. Unlike the traditional workflow, our approach encourages independent work, reducing
interaction between designers and product managers, which can lead to occasional uncertainty in design deci-
sions. For instance, P17 expressed uncertainty regarding the display of ratings, “whether they should be stars or
specific scores”. P16 expressed confusion on whether the term “find” should be interpreted as a search box or a
search icon. P18 said “Sometimes I am unsure if my confusion is because I have not fully understood the model.”
While our approach permits design freedom, participants still sought confirmation from product managers due
to unfamiliarity with the new workflow.

7.3.4 Experiencing Target-Device UIs. The target-device UI examples corresponding to each use case are illus-
trated in Figures 21, 22, 23, 24 in the Appendix. In this study, we evaluated the performance of the developed 32
UIs and the participants’ subjective feedback using a 7-point Likert scale, as shown in Table 4 and Figure 18.

Table 4. Subjective feedback from end-users. Full results are available in Table 14 in Appendix.

Statements Median

1. You are satisfied with the target-device UIs. 6
2. The target-device UIs are easy to navigate and use. 7
3. The design of the target-device UIs are clear and understandable. 6
4. The target-device UIs are responsive and fast. 7
5. There are no errors or issues while using the UIs. 6
6. You are willing to use these target-device UIs. 6

From the usage logs of participants (P20-P27), we collected 16,704 API call logs, boasting a success rate of
99.78%, with failures primarily due to network issues. The average response time for each API call was 413.73
milliseconds (sd = 353.05), varying across different use cases (Figure 19a, p-value < 0.001).

As shown in Figure 19b, the total time spent comprises five segments, each showing significant differences
from the others (p-value < 0.001). Page loading time accounted for the largest proportion (56.48%), followed
by network transfer time (24.63%). Semantic analysis time averaged a mere 36.36 milliseconds, with relatively
small fluctuations (sd = 26.59). Waiting time, the duration required for a new page to stabilize with a ready
layout and image, depends on factors like phone performance, network conditions, page content, and application
optimization. In our experiment, we assigned a fixed empirical value as the waiting time after each operation.
With a 50-millisecond waiting time, task success rates reached 100%; without it, they dropped to 67.64%.
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Fig. 18. Distribution of participant ratings for each statement in Table 3. Ratings range from 1 (strongly disagree) to 7
(strongly agree).

(a) Average response time for each API call in different use
cases. Error bars indicate standard deviation

(b) The distribution of the response time.

Fig. 19. The average response time for each API call. The details of the statistical evaluation are provided in Appendix F.3.3.

In reality, due to the multi-thread, cache, and background updates, a considerable portion of the time is not
user-perceived. This is particularly evident in Use Case 2 and Case 4, featuring many background automatic
updates not requiring user intervention.

Table 4 shows that most participants found the developed target-device UIs satisfactory in terms of ease
of use (Statements 2 and 3), robustness (Statement 5), and perceived delay (Statement 4). The enthusiasm to
use these UIs was evident among participants (Statements 1 and 6). For example, P22 stated “The ordering app
wasn’t previously compatible with watches or voice, but now I can order while I am riding bikes. It is amazing.”
P25 said “[Use Case 4] The combination of the functions of two apps is fantastic.” P21 and P24 liked the ability to
use their familiar navigation software on the HUD. Interestingly, P27 said “Removing ads is great.” Despite these
positive remarks, there were suggestions and concerns. P27 expressed a desire for faster startup times. Privacy
and security issues were also noted. P26 stated “I’m worried about having my phone content collected.”. P23 said
“If I accidentally display private information on the big screen, it wouldn’t be good.”
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Additionally, new requirements also surfaced that were not considered during the development phase. These
emerged in two areas: the first pertained to overlooked original phone data, as exemplified by P20’s observation
that certain food combination options weren’t included in the ordering interface. The second area was user-
generated requirements. A case in point is P24’s expectation for a one-click feature to copy a song from chat,
paste it into a music app, and play it directly. To address these issues, we informed participants that our ap-
proach allows for incremental updates and low-cost modifications to accommodate new requirements, thereby
enhancing functionality.

8 DISCUSSION
In this section, we discuss our approach based on the findings from the user study conducted above.

8.1 Design Guidelines
To enhance speed and robustness, we propose the following design guidelines for utilizing the model:
• Minimize the number of page jumps on the phone, as they significantly increase time usage and the risk

of unstable page loading. Try to avoid any cache miss when calling the API. For instance, the progression
of the new UI should align as closely as possible with the natural flow of context switching, mitigating
cross-level or frequent jumps of the context cursor on the model tree.
• Be aware of spontaneous updates to the original GUI - changes that are not user-driven, such as “receiving

a new message”. Such updates may not always be tracked by the system, especially if the phone isn’t
displaying the “new message found” page at that time. To counter this, the new interface system should
proactively call the API to monitor updates.
• Keep inmind thatmapping newUI elements andAPIs primarily supports basic cases. If the newUI requires

more complex display logic, such as a multistep API with nested parameters, developers will need to
manage the new interface state and relevant parameter variables within their own code.

8.2 Capabilities of the UIAD Model
Compared to the preliminary Interaction Proxy[61], which is still in the proof-of-concept stage and not fully im-
plemented, our proposed UIAD model offers several capabilities by efficiently decoupling a mobile application’s
UI and service:
Understandable Description and Efficient APIs: Unlike existing proxies [58, 62] that directly map the

original UI to the target one, leading to repetitive handling of the original UI’s complexity and dynamicity,
the UIAD model offers a more holistic solution. It generates a structured and understandable description of an
application’s service semantics that is comprehensible to both programmers and non-programmers. This model,
applicable across different target devices, offers efficient APIs that allow developers to focus on application
functionality, unencumbered by the original UI’s intricacies. This approach simplifies the development of new
interface systems. Further, with the corresponding run-time support, these APIs guarantee the high performance
of new interface systems.
Robust UI Reconstruction: Existing interface mapping algorithms, which use heuristic rules to compute

layout signatures based on developers’ specifications, are rudimentary. As Zhang et al. pointed out [61], “It can
therefore be challenging to reason about the state of an app.” To overcome this challenge, we employ the IAM to
build the model that ensures a low annotation burden while maintaining high recognition accuracy for pages
and widgets. This approach guarantees the robustness of new interface systems.

Complex FunctionsManagement: In comparison to single-task-oriented programming by demonstration[33],
the UIAD Model encompasses the full range of an application’s functionality. It empowers developers to freely
organize and invoke diverse APIs, such as chaining and nesting, to support complex tasks. Given its adeptness
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at handling intricate semantic relationships, the model is particularly suited for the heavily engineered task of
UI reconstruction.

Crowd Engagement: As evidenced by our user study, the UIAD Model’s ease of comprehension extends to
both programmers and non-programmers. This accessibility broadens user engagement, reduces the develop-
ment threshold and cost, and thereby enhances its adoption and effectiveness.

8.3 Feasibility of the UIAD Model in the Future
We discuss the future feasibility of the proposed model from three aspects:

Technical Feasibility: The maturity of Robotic Process Automation (RPA) in PC platforms validates the
potential of automating user interface interactions. Coupled with AI research into web page understanding,
extending these technologies to smartphones supports the prospects for automated model construction.

Implementation Feasibility: Our user study results confirm that our model meets various departmental
needs and effectively curtails development costs. Primarily aimed at functional migration, it can support cur-
rently incompatible applications such as video streaming or gaming with the simple addition of video transmis-
sion technology.
Market Feasibility: The limited number of applications for AIoT devices like smartwatches presents a chal-

lenge to ecosystem development. Our model can expedite the migration of existing applications to these plat-
forms, thereby fostering long-term growth and diversity.

9 LIMITATIONS & FUTURE WORK
This section highlights our work’s limitations and proposes potential future directions.

Enhancing Data Loading: Our current reliance on Android’s Accessibility Service API results in slower
data retrieval and limited availability. Future work could explore acquiring data directly from the phone system,
which could potentially reduce page loading time and enhance the semantic richness of the model.

Automating Model Generation: Our goal is to automate the process of generating UIAD Models from
existing mobile GUIs through reverse engineering. The main challenge is the subjective nature of the seman-
tic analysis, which complicates controlling the model structure without human intervention, especially when
handling complex semantics in various applications. Accurately representing intricate nested structures and rela-
tionships is crucial for optimal UI generation. We also need to take into account privacy rights, data importance,
and additional functions when dealing with advanced semantics. The integration of these factors may help auto-
mated model generation to better cope with real-world complexities, leading to more efficient and user-friendly
interfaces.

Automating User Interface Construction: Our current application requires human input to determine the
new UI layout and which APIs to call. We aim to generate UIAD Models from existing device interfaces, learn
the transformation from models to different interfaces, and utilize context modeling [28] along with existing
model-based UI deployment tools to automatically generate optimal user interfaces, potentially utilizing large
models for lower development costs.

10 CONCLUSION
This paper presents Interaction Proxy Manager, which decouples interface and semantics for reliable UI recon-
struction. Therein, the UIAD Model is defined based on the semantic analysis of existing mobile applications
and offers APIs for alternative device systems. IPManager functions through two distinct phases: the offline
phase and the run-time phase. In the offline phase, the Interactive Annotation Mechanism assists annotators
in registering with mobile pages and learns the classification strategies for pages or widgets. It effectively re-
duces annotation difficulty and cost, while ensuring recognition accuracy, as validated by an offline dataset.
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Subsequently, the run-time system generates the UIAD Model using learned strategies, providing information
or invoking methods based on requests received from new interface systems. We showcased IPManager’s design
flexibility and application diversity by developing three applications that extended phone services to car dis-
plays, smartwatches, and voice-oriented interfaces. We conducted a user study to evaluate the entire workflow,
involving product managers, developers, designers, and end-users. The result validates the usability, efficiency,
comprehensibility, and robustness of our approach. We anticipate that our work will contribute to the broader
field of UI reconstruction, facilitating the deployment of more services across diverse devices and ultimately
enriching the user experience.
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A UIAD MODEL API
Table 5 shows the UIAD Models APIs and their usages.

B PRE-DEFINED HEURISTIC RULES

B.1 Feature Set
B.1.1 Page Classification. The text location rule set describes several texts and their corresponding screen co-
ordinate position. Each class of pages has a unique rule set. For example, Figure 20 shows the text location rule
set corresponding to the WeChat contact list page.

B.1.2 Widget Recognition. We present a total of 26 features for widget recognition, which can be divided into
three categories:

(1) Style and position on images:
Coordinates relative to the entire screen’s left edge, right edge, top edge, and bottom edge; coordinates
relative to the list item’s left edge, right edge, top edge, and bottom edge; X-axis and Y-axis centerlines
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Table 5. Model APIs and their usages.

Type API Name Example Condition Target Result

To Get
Information

get_property Get all information
about Lee.

{type:Contact,
Username:“Lee”} Contact

Phone:“xxxxxxxx”,
Avatar: Base64 encoded,
Recent_message:“Hi!”
……

get_related_info Get the chat history
with Lee.

{type:Contact,
Username:“Lee”,
Relationship:source}

Message List [Message0, Message1, …]

get_list Get the first five
contacts. {type:Contact List} {from: 0,

num: 5}
[Contact0, Contact1, …,
Contact4]

index_of Get the index of Lee
in the Contact List.

{type:Contact,
Username:“Lee”} index 0

To Use Methods use_method
Make a video call
with Lee.

{type: Contact,
Username:“Lee”} VideoCall (The smartphone automates the task.)

Say hello to Lee.

{type: Contact,
Username:“Lee”},
{type: text,
value:“Hello!”}

SendMessage (The smartphone automates the task.)

Fig. 20. Text Location rule set corresponding to the WeChat contact list page.

relative to the entire screen; X-axis and Y-axis centerlines relative to the list item; average RGB within the
region; maximum color block RGB within the region.

(2) Style and position on layouts:
Depth, node class, resource ID, clickable, editable, scrollable, path in the layout tree, path in the layout
tree (ignoring subtree numbering), path in the layout tree (ignoring list item numbering), text, content
description

(3) Page segmentation:
The segmentation scheme from the start of the entire page to the widget, consists of a sequence composed
only of Horizon (H) and Vertical (V).
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B.2 Similarity Function
Using our own dataset, we determined whether two items belonged to the same class through a similarity func-
tion (Algorithm 1). We established thresholds by leveraging the Receiver Operating Characteristic (ROC) curve.

Algorithm 1: Similarity Function
Input: two pages or widgets, 𝐴 and 𝐵
Output: a real number indicating the similarity between the two pages or widgets

1 𝑠𝑖𝑚 ← 0;
2 foreach feature ∈ featureSet do
3 𝑠𝑖𝑚 ← 𝑠𝑖𝑚 +match(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒, 𝐴, 𝐵) ×weight(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒); // Calculate the matching ratio of

each feature of 𝐴 and 𝐵

4 end
5 return 𝑠𝑖𝑚

C RUN-TIME SEMANTIC ANALYSIS ALGORITHM
Algorithm 2 is utilized for run-time semantic analysis.

Algorithm 2: Run-time Semantic Analysis Algorithm
Input: the current layout tree’s root 𝑐𝑟𝑡𝑅𝑜𝑜𝑡 and screenshot 𝑖𝑚𝑔.
Output: a UIAD Model instance.

1 𝑝𝑎𝑔𝑒𝐼𝑑 ← PageClassification.getPageId(𝑐𝑟𝑡𝑅𝑜𝑜𝑡 , 𝑖𝑚𝑔);
2 𝑟𝑜𝑜𝑡𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦← WidgetRecognition.getStrategy(𝑝𝑎𝑔𝑒𝐼𝑑);
3 𝑚𝑜𝑑𝑒𝑙𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ← match(𝑟𝑜𝑜𝑡𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦, 𝑐𝑟𝑡𝑅𝑜𝑜𝑡); // Matching is done in a top-down order.

4 return𝑚𝑜𝑑𝑒𝑙𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ;
5 Function match(𝑐𝑟𝑡𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦, 𝑐𝑟𝑡𝑅𝑜𝑜𝑡):
6 𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝑁𝑜𝑑𝑒𝑠 ← 𝑐𝑟𝑡𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦.findNodes(𝑐𝑟𝑡𝑅𝑜𝑜𝑡);
7 𝑐𝑟𝑡𝑀𝑜𝑑𝑒𝑙 ← package(𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝑁𝑜𝑑𝑒𝑠); // Extract the corresponding data from

𝑚𝑎𝑡𝑐ℎ𝑒𝑁𝑜𝑑𝑒𝑠.

8 foreach 𝑐ℎ𝑖𝑙𝑑𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 ∈ 𝑐𝑟𝑡𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦.children do
9 foreach 𝑛𝑜𝑑𝑒 ∈𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝑁𝑜𝑑𝑒𝑠 do
10 𝑐𝑟𝑡𝑀𝑜𝑑𝑒𝑙 .children← match(𝑐ℎ𝑖𝑙𝑑𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦, 𝑛𝑜𝑑𝑒);
11 end
12 end
13 return 𝑐𝑟𝑡𝑀𝑜𝑑𝑒𝑙 ;
14 return

D THE IMPLEMENTATION OF THE IAM
While both pages and widgets follow the workflow of IAM, their implementations differ significantly, as detailed
in Table 6.
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Table 6. Differences between the page classification and the widget recognition.

Page Classification Widget Recognition

Purpose Each page corresponds to a unique class. A widget can be mapped to multiple se-
mantic elements in the model.

Model Implementation A multi-class decision tree. A bi-class decision tree for each semantic
element.

Annotation for Each Iteration Modify or confirm the classes of pages. Remove False-Positive widgets
and add False-Negative ones.

Feature Set Text location rules detailed in B.1.1. Three categories of widget features detailed
in B.1.2, forming 26-dimensional vectors.

Expansion of the Train Set
Classification with conservative heuristic
rules, such as identifying the resource-id
and the title.

Heuristically expand the set of negative
examples, which are near positive examples.

E OFFLINE DATASET VALIDATION
Aiming to validate the IAM, we constructed an offline dataset by developing UIAD Models for 12 applications
across 9 categories, as shown in Table 7.

Table 7. An overview of applications with corresponding page and widget count evaluated.

Application Category Pages Page Classes
Widgets

(remove meaning-
less ones)

Widget Classes
(page classes×

semantic elements)

Model Size
(Registration File)

(in kBs)
WeChat Message 123 17 2364 238 931
Taobao Shopping 232 22 4921 528 1276

JingDong Shopping 560 51 11264 1632 1651
Amap Map 1238 33 19391 363 786

NetEase Music Music 1598 45 28943 945 716
QQ Music Music 508 42 10216 798 614
MeiTuan Dilivery 462 29 12110 899 988
Eleme Dilivery 376 26 9626 780 854

Himalaya Audio 234 12 4199 228 561
Alipay Pay 554 26 6094 416 603
TikTok Social 152 17 1778 527 920
iQIYI Video 376 19 5610 627 1066
All - 6413 339 116516 7981 10966

F WORKFLOW PERFORMANCE EVALUATION

F.1 Use Cases for Workflow Performance Evaluation
We listed the following use cases based on the requirements from the AIoT product management to evaluate the
performance of our workflow:
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F.1.1 Use Case 1: Home Audio System. In a home environment, this use case employs voice control for music
apps, combining rich information displayed on a large screen to address the limitations of Voice User Interface
(VUI) output capabilities. The application synchronizes smartphone screen information with smart speakers and
large-screen TVs. The functional requirements are as follows:

(1) Access smartphone music app album lists, playback lists, and song details on a large screen.
(2) Trigger music app functions on a large screen, such as play, pause, select playlists, discover, podcasts, and

subscriptions.
(3) Support using voice to access the above information or trigger the above functions.

F.1.2 Use Case 2: Map Applications for Vehicle Head-up Displays. In a driving scenario, this use case extracts
key road information from smartphone map apps like Amap and projects it to a HUD in vehicles, realizing
information dimensionality reduction from smartphone to HUD. Functional requirements include smartphone
Amap key road information extraction, such as text descriptions, road sign guidance, real-time maps, speed, and
other vehicle status data.

F.1.3 Use Case 3: Food Ordering in Mobile Scenarios. In mobile scenarios (such as running, walking, or cycling),
this use case involves ordering food using smartwatches. The functional requirements are as follows:

(1) Support Voice activation of the food order system.
(2) Access Store recommendation list.
(3) Access Food recommendation list.
(4) Support search, selection, browsing, and other functions.
(5) Support Payment and confirmation options.

F.1.4 Use Case 4: Schedule and Express Delivery App Integration. This use case explores multi-app integration
by combining a Schedule and an Express Delivery App, integrating the information in a new interface to conve-
niently remind users to pick up their deliveries in a timely manner. The functional requirements are as follows:
• Display existing ToDo list.
• Automatically add express delivery information to the ToDo list.
• Support common operations for each ToDo item, such as marking it as complete, modifying, searching,

etc.

F.2 Target-Device UI Examples
The target-device UI examples corresponding to each use case are illustrated in Figures 21, 22, 23, 24.

F.3 Statistical Evaluation
F.3.1 Developing UIAD Models. We provide an in-depth statistical analysis of our findings, as previously men-
tioned in Section 7.3.2. To elucidate the factors influencing the time required for participants to develop UIAD
models, we employed a Generalized Estimating Equations (GEE) model. The dependent variable in our analysis
was the time taken by participants, while the independent variables encompassed the participant group (cate-
gorized as either programmer or non-programmer), the count of task attempts each participant undertook, and
the specific use case guiding the task’s execution.

We transformed the categorical “Use case” variable into binary dummy variables: UseCase_1, UseCase_2, Use-
Case_3, and UseCase_4. To prevent multicollinearity, we dropped UseCase_4, retaining only UseCase_1, Use-
Case_2 and UseCase_3.

As shown in Table 8, a participant’s programming background, the count of task attempts, and specific use case
significantly affect the time to develop UIAD models. Non-programmers tend to take longer, with an increase in
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Fig. 21. A Target-device UI example for Use Case 1. (a) The original mobile phone interface of NetEase Music. (b) New
deployed UI.

Fig. 22. A Target-device UI example for Use Case 2. (a) The original mobile phone interface of Amap. (b) New deployed UI.
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Fig. 23. A Target-device UI example for Use Case 3. (a) The original mobile phone interface of Meituan. (b) New deployed
UI. The images have been post-processed to change the text into English.

Fig. 24. A Target-device UI example for Use Case 4. (a) The original mobile phone interface of Schedule Application. (b) The
original mobile phone interface of Express Delivery Application. (c) New deployed UI. The images have been post-processed
to change the text into English.
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Table 8. GEE model results evaluating the impact of various independent variables on the completion time of participants
for developing UIAD models. Coefficient estimates, standard errors, z-values, p-values, and 95% confidence intervals are
listed.

Independent variables coef std err z P>|z| [0.025 0.975]
Intercept 15.588 0.896 17.405 < 0.001 13.832 17.343
Group(Programmer=0, Non-programmer=1) 1.418 0.595 2.382 0.017 0.251 2.585
The count of task attempts -0.607 0.219 -2.771 0.006 -1.037 -0.178
UseCase_1 8.417 0.623 13.519 < 0.001 7.197 9.637
UseCase_2 -6.314 0.744 -8.487 < 0.001 -7.773 -4.856
UseCase_3 3.142 0.648 4.849 < 0.001 1.872 4.412

Table 9. OLS regression results evaluating the difference in slopes of the regression lines between programmers and non-
programmers. Coefficient estimates, standard errors, z-values, p-values, and 95% confidence intervals are listed.

Independent variables coef std err z P>|z| [0.025 0.975]
Intercept -0.752 3.609 -0.208 0.836 -8.145 6.641
x 0.872 0.174 5.026 < 0.001 0.517 1.227
Group(Programmer=0, Non-programmer=1) -5.884 4.344 -1.354 0.186 -3.016 14.783
x × Group 0.523 0.190 2.761 0.010 -0.911 -0.135

time by 1.418 units. As participants attempt more tasks, they become more efficient, decreasing the completion
time. Additionally, the results suggest that the characteristics of different use cases profoundly affect the time to
develop UIADmodels. In particular, tasks under UseCase_2 appear to be easier or more straightforward, leading
to quicker completion times.

To test whether there is a significant difference in the slopes of the regression lines of the two groups in Figure
16c, we constructed a model that includes an interaction term: 𝑦 = 𝑎 × 𝑥 + 𝑏 ×𝐺𝑟𝑜𝑢𝑝 + 𝑐 × 𝑥 ×𝐺𝑟𝑜𝑢𝑝 + 𝑑 . The
Ordinary Least Squares (OLS) results are shown in Table 9. The coefficient of 𝑥 ×𝐺𝑟𝑜𝑢𝑝 is 0.523 with a p-value
of 0.010, proving that the difference in the slopes of the two lines is significant.

F.3.2 Developing Target-Device UIs. Similarly, we also employed a GEE model to elucidate the factors influenc-
ing the time required for participants to develop target-device UIs (previously mentioned in Section 7.3.3). The
dependent variable in our analysis was the total and binding time taken by participants, while the independent
variables encompassed the count of task attempts each participant undertook, and the specific use case guiding
the task’s execution.

Consistent with the prior approach, we transformed the categorical “Use Case” variable into binary dummy
variables: UseCase_1, UseCase_2, UseCase_3 (UseCase_4 was removed).

According to the GEE model results in Table 10 and 11, UseCase_3 has a significant impact on both the total
(p-value=0.006) and binding time (p-value=0.039), indicating that this particular use case might involve higher
complexity or demands. Additionally, the count of tasks each participant attempts does not have a substantial
effect on the completion time in this context (p-value=0.204 for the total time and 0.749 for the binding time).

F.3.3 Experiencing Target-Device UIs. We utilized an OLS model to analyze whether a specific use case would
influence the response time for each API call, as previously discussed in Section 7.3.4. Consistent with the prior
approach, we transformed the categorical “Use Case” variable into binary dummy variables: UseCase_1, Use-
Case_2, UseCase_3 (UseCase_4 was removed).
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Table 10. GEE model results evaluating the impact of various independent variables on the total time of participants for
developing target-device UIs. Coefficient estimates, standard errors, z-values, p-values, and 95% confidence intervals are
listed.

Independent variables coef std err z P>|z| [0.025 0.975]
Intercept 128.438 49.571 2.591 0.010 31.280 225.595
The count of task attempts 18.125 14.280 1.269 0.204 -9.863 46.113
UseCase_1 58.750 38.998 1.506 0.132 -17.685 135.185
UseCase_2 3.750 23.006 0.163 0.871 -41.342 48.842
UseCase_3 193.750 69.833 2.774 0.006 56.879 330.621

Table 11. GEE model results evaluating the impact of various independent variables on the binding time of participants
for developing target-device UIs. Coefficient estimates, standard errors, z-values, p-values, and 95% confidence intervals are
listed.

Independent variables coef std err z P>|z| [0.025 0.975]
Intercept 3.9688 1.015 3.908 < 0.000 1.979 5.959
The count of task attempts 0.1125 0.351 0.320 0.749 -0.576 0.801
UseCase_1 1.0000 1.170 0.855 0.393 -1.293 3.293
UseCase_2 -0.2500 0.985 -0.254 0.800 -2.181 1.681
UseCase_3 1.8750 0.908 2.065 0.039 0.096 3.654

Table 12. OLS regression results evaluating the impact of use cases on the response time for each API call. Coefficient
estimates, standard errors, z-values, p-values, and 95% confidence intervals are listed.

Independent variables coef std err z P>|z| [0.025 0.975]
Intercept 572.667 19.306 29.663 0.000 534.805 610.529
UseCase_1 -219.583 22.499 -9.760 < 0.001 -263.706 -175.459
UseCase_2 -304.696 24.857 -12.258 < 0.001 -353.444 -255.947
UseCase_3 -3.155 24.958 -0.126 0.899 -52.102 45.791

According to the OLS model results in Table 12, UseCase_1 and UseCase_2 significantly decrease the response
time for each API call. On the other hand, UseCase_3 does not significantly affect the response time, suggesting
that its performance is similar to the omitted category (UseCase_4 in this case). This highlights that the specific
use case does indeed have an influence on the API call’s response time.

Additionally, to evaluate whether there were significant differences among the five segments of response time
illustrated in Figure 19, we conducted a Friedman test. The results with a statistic of 3575.456 and a p-value less
than 0.001 suggest that there is a statistically significant difference among these five segments.

F.4 Subject Feedback
The subjective feedback details are shown in Table 13 and Table 14.
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Table 13. Full results of the subject feedback from UIAD Model developers on a Likert Scale from 1 (strongly disagree) to 7
(strongly agree). Statement numbers refer to Table 3.

Participant Statements
S1 S2 S3 S4 S5 S6 S7 S8

P4 6 5 7 7 6 7 5 6
P5 7 6 7 6 7 7 6 7
P6 7 6 7 5 6 7 6 7
P7 6 5 7 7 6 7 5 5
P8 5 4 3 4 6 5 4 6
P9 4 3 2 6 7 5 4 5
P10 6 5 4 7 7 6 5 5
P11 3 3 6 5 7 4 5 6

Table 14. Full results of the subject feedback from end-users on a Likert Scale from 1 (strongly disagree) to 7 (strongly agree).
Statement numbers refer to Table 4.

Participant Statements
S1 S2 S3 S4 S5 S6

P20 6 7 6 7 6 6
P21 7 6 7 7 7 7
P22 5 4 5 6 5 5
P23 7 7 6 7 6 7
P24 5 6 5 6 5 5
P25 6 7 6 7 6 6
P26 7 7 6 7 7 7
P27 5 7 6 7 6 6
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