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Programming a smart home is an iterative process in which users configure and test the automation during the in-situ
experience with IoT space. However, current end-user programming mechanisms are primarily preset configurations on GUI
and fail to leverage in-situ behaviors and context. This paper proposed in-situ programming (ISP) as a novel programming
paradigm for AIoT automation that extensively leverages users’ natural in-situ interaction with the smart environment. We
built a Wizard-of-Oz system and conducted a user-enactment study to explore users’ behavior models in this paradigm. We
identified a dynamic programming flow in which participants iteratively configure and confirm through query, control, edit,
and test. We especially identified a novel method “snapshot” for automation configuration and a novel method “simulation”
for automation testing, in which participants leverage ambient responses and in-situ interaction. Based on our findings, we
proposed design spaces on dynamic programming flow, coherency and clarity of interface, and state and scene management
to build an ideal in-situ programming experience.
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1 INTRODUCTION
Recent years have witnessed the development of AIoT (Artificial Intelligence of Things) enabled smart homes,
bringing new opportunities for smart home automation. A plethora of smart devices, AI-based intelligent agents,
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Fig. 1. Example of a user using the in-situ programming (ISP) system to configure amoviemode. Fig. a) shows the experimental
environment for ISP and the device state before programming. Fig. b) c) d) show that the user uses multimodal (gesture,
voice) and context (position, posture) to control the device to complete the in-situ interaction. Fig. e) shows the scene after
configuration and respectively shows the process of automation programming by using “snapshot” and demonstration
approaches. Fig. f) g) h) shows the process of the user using the “simulation” approach for automation testing. After the user
sits on the coach, the rule is triggered, and the scene changes from g) to h).

and end-user programming (EUP) techniques empower end-users with a ubiquitous programmable IoT ecosystem
in which they can tailor automation services based on household routines [96]. Smart home assistants such as
Amazon Alexa [1], Apple HomeKit [4], Google Assistant [2], and task automation tools (TA) [41] like IFTTT [5],
and Zapier [6] allow users to connect various smart devices and web services via smartphones or PCs. Generally,
users configure IoT automation based on the rule-based trigger-action programming (TAP) paradigm [122], in
the form of “IF triggers, THEN actions”.

Despite the TAP paradigm being easy to learn and use [122], it has limitations in user experience [43, 66, 122].
Particularly, we identify two issues:

• Unnatural Programming Interaction: In the actual smart home experience, users express their needs
throughmulti-model interfaces and natural behaviors (e.g., language, gestures, etc.). However, contemporary
paradigms commonly adopt a fixed structure and workflow through a graphic user interface on smartphones
or PCs, which is inconsistent with users’ natural and intuitive interaction patterns in smart homes.

• High Programming Cost: The increasingly growing IoT ecosystem makes programming IoT automation
more demanding. It set challenges for users to deal with relationships of various entities (i.e., people,
devices, environment) and complex real-life scenarios. While contemporary paradigms commonly rely on
users to anticipate and pre-define the automation, which brings programming cost to design, configure and
debug [123].

Thus, the contemporary programming mechanisms separate the programming process from the actual interaction
in smart homes, failing to utmost utilize the contextual information and human behaviors in IoT space to facilitate
natural and low-cost programming.
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To overcome these issues, we claim that a new IoT-related programming paradigm should be designed and
coordinated with the smart home experience. Under this vision, we proposed in-situ programming (ISP), as a
novel programming paradigm that allows users to program smart home automation with in-situ contextual
information and interaction patterns. The goal of ISP is to allow end–users to program smart environments in
an immersive and seamless way with ubiquitous programming interfaces. We aim to frame the design spaces
of this paradigm by identifying users’ intuitive behavior patterns and interaction models as the optimal design
references.

In this paper, we first introduced the concepts, the roles, and the general design goals of ISP. Then we built a
Wizard-of-Oz system prototyping based on our design goals and state-of-art end-user programming technology
as our research environment. Furthermore, we conducted a user study with the following research questions: 1)
How do users interact with the system during in-situ programming? 2) How do users intuitively understand
in-situ context and leverage in-situ behaviors in smart home programming? 3) How do in-situ features affect the
programming model and facilitate the programming process?

We found that the participants go through a dynamic programming flow, and iteratively configure and confirm
by four interaction nodes: query, control, edit, and test. We especially identified a novel method “snapshot” for
configuration and a novel method “simulation” for testing, in which participants leverage ambient responses and
in-situ interaction. We further proposed 3 design spaces for ISP: 1) dynamic programming flow, 2) coherency and
clarity of interface, 3) state and scene management.
The contributions of our work include:
(1) We propose the in-situ programming (ISP) paradigm in IoT scenarios which greatly leverages in-situ

contextual information and user interaction. We systematically investigate users’ behavior models and
mental models under this paradigm.

(2) We frame the programming flow and approaches in an ISP scenario. We proposed two novel approaches: 1)
a configuration approach “snapshot” in which users configure automation by in-situ controlling devices and
preserve the instant states. 2) a test approach “simulation”, in which users test the rules with assumptions.

(3) We design and prototype a Wizard-of-Oz system to support the ideal ISP scenario. We validate the system’s
effectiveness through a user-enactment study and proposed design spaces on programming mechanism,
interface, and scene management.

(4) We collect multi-modal data from the user study and form a text-based dataset of user-system interaction
annotated with interaction features, acts, and intentions for IoT end-user programming research.

2 RELATED WORKS

2.1 In-Situ Interaction in Smart Homes
Considerable research highlighted in-situ interaction with the ubiquitous ambient intelligence [11, 62, 64, 101].
Basically, there are two key features of in-situ smart home interaction.

One is a synthesis of pervasive multi-modality interfaces beyond traditional graphic user interfaces (GUI) on
smartphones [38], including voice interface [124], tangible interface [14], gesture interface (movement, motion)
[60, 71, 88], etc. These modalities are further applied in situated interaction approaches, e.g., pointing to, facing,
or gazing at devices [25, 78, 107] accompanied by spatial descriptions verbally [77]. In recent years, smart
speakers with intelligent virtual agent [18] has become the most popular entrance for smart home control
[23, 45, 102], which allows users to ask for contextual information (e.g., the weather or temperature), and control
IoT devices [99] and automation [117], and compose simple rules [13], e.g., Google Assistant [2], Amazon Alexa
[1]. Literature studied how users communicate with intelligent systems in smart homes [35, 69] by articulation,
simplification, supplementation, and correction [80, 100]. Chiang et al. [35] reported that users dynamically
changed communication strategies depending on the current confidence [53] of the system.
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The second feature is the utilization of contextual information. The context in a smart home is defined as any
information that can be used to characterize the situation of an entity, including the person, environment, and
devices [7, 44, 52, 101, 120]. Past literature proposed spatial sensing techniques and context-awareness [65, 97]
computing paradigms into smart home architecture to sense and reason in real-time and situated contexts. Further,
this contextual information is explored to enhance in-situ interaction, especially in spatial and human-related
contexts. [120] studied spatial expressions including topological terms (on, in), distance-related terms (close,
far), and path-related terms (across, through). Others [17, 95] proposed spatial interaction approaches based on
proximity, orientation, location, and movement. These in-situ approaches are believed to enhance natural and
seamless smart home interaction.

2.2 End-User Programming Paradigms in Smart Homes
End-user programming (EUP) is a set of methods, techniques, and tools that aim to empower end users, especially
non-technical users’ program software artifacts [19, 89]. In the smart home context, EUP enables end users
to program a smart environment by automating smart devices and services [20]. For decades of development,
the most widely used EUP paradigm is the rule-based Trigger-Action Paradigm (TAP) [59, 66, 122, 123]. It is
embedded in popular automation tools such as IFTTT [5], in which users set triggers and actions of the rule
by defining how a set of device behaviors respond to certain events [59]. Although literature [20, 39, 122] has
proved that TAP is intuitive, understandable, and easy to use, smart home automation is mostly adopted by
pilot users with expertise knowledge [31, 98, 106, 110, 112]. Non-technical users (i.e., passive users) still found
the programming process demanding and tedious with high programming costs and unnatural programming
mechanisms [43, 66, 122].

Hence, a large body of literature worked on supporting users to better understand and express TAP-based rules.
One direction is to improve the expressiveness of TAP in complex tasks. Huang and Cakmak [66] investigated the
mental model accuracy of different triggers (states and events) and actions (instantaneous, extended, and sustained
actions) to improve its expressiveness in rules with multiple triggers and actions. Event-Conditional-Action
(ECA) paradigm, i.e., IF (trigger), WHILE (condition), THEN (action), is found more intuitive and extends TAP by
incorporating multiple conditions, exceptions, and logic operators to rule specifications [20, 50, 105].

Another direction is to leverage natural user expressions like language and behavior in TAP to facilitate natural
programming mechanisms. [37, 61] outlined the importance of natural language programming. [15, 39, 56]
incorporated context-awareness capability into TAP to support semantic programming parameters, like “darker”
and contextual intentions. InstructableCrowd [67], Heytap [40] and Convo[125] developed conversational agents
(CA) which facilitated users to composite IF-THEN rules by specifying their needs or the contents of rules.

Recent works also explored voice-based EUP to replace traditional smartphone-based GUIs [13, 18, 27, 33, 37].
Van Brummelen et al. [125] stressed the criticalities of a voice-based approach and the issues of flexibility,
transparency, and cognitive load. De Russis et al. [48] found that users composed rules vocally in a similar trigger-
action format and rephrased the rules until it is correctly understood by the system. [35, 45, 47, 76, 79, 82, 94, 118]
explored approaches to composite or modify rules via smart speakers with natural language (e.g., If it is 7 am turns
on the light). Others [15, 15, 56, 68, 91, 128] incorporated user traces of behaviors (activities, operations) as input
of TAP rules. Programming by demonstration (PBD) [24] approach is applied in IoT programming [36, 51, 82–84],
in which users directly manipulated physical devices and demonstrated natural instructions with either or both
mobiles and tangible interfaces.

2.3 State of Art of In-Situ Smart Home Programming
In-situ programming paradigms are widely explored in end-user robot programming [10], which refers to
programming robot behaviors situated in the task context [113]. Basically, these approaches are related to

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 66. Publication date: June 2023.



Understanding In-Situ Programming for Smart Home Automation • 66:5

tangible interfaces, contextual information, spatial interaction via situated instruction, and deictic gestures
[55, 72, 113, 114]. In smart homes, in-situ programming paradigms allow users to configure the IoT automation
grounded on the actual using scenarios and IoT environment [74, 109]. Literature highlighted in-situ programming
style benefits users with consistent and seamless user experience [74, 82, 90] and a direct understanding of
IoT settings [16]. Ariano et al. [16] propose an augmented reality solution to provide situated visualization,
monitoring, and programming experience among various IoT devices. However, the switch between the screen
and the scene may interfere with the programming process [82]. Some voice-based EUP methods applied in-situ
contextual information to improve expressiveness and usability. For example, Jarvis [79] supports users to set
non-trivial TAP rules with time-based, event-based, contextual awareness, and causality queries. CoMMA [76]
incorporated disambiguation strategy into modification dialogues such as checking parameters and modifying
positions, etc. Despite hand-free flexibility [13], the sole voice interface lacks information from users’ situated
interactions.

Summarily, the above explorations suggest the feasibility and significance of a natural programming paradigm
grounded on in-situ change and interaction. While the state-of-art [16, 76, 79] approaches propose easy-to-learn
and workable programming solutions, it is still an open question if these paradigms aligned with users’ natural
behavior models and mental models. To the best of our knowledge, we are the first to use the Wizard-of-Oz
approach to investigate the paradigm and natural user behavior characteristics of in-situ programming in IoT
scenarios. We focused on the explore the unique mechanisms and patterns when users can leverage more in-situ
context and behaviors when programming the smart environment.
.

3 OVERVIEW OF IN-SITU PROGRAMMING PARADIGM
This section has an overview of in-situ programming (ISP). We first introduced the concepts, roles, and general
design goals, then we design and prototype the ISP system with the Wizard-of-Oz techniques [43].

3.1 Concepts, Roles and Design Goals
In-situ programming (ISP) is defined as a programming paradigm featuring in-situ interaction with the smart
environment that can be embedded into the Trigger-Action paradigm (TAP) [122]. The umbrella term in-situ
(the abbreviation of in-situation) refers to “on-site” or “in-place”, meaning the prerequisite that the user is
programming in the IoT environment to be programmed. ISP is built upon ruled-based TAP, so the semantic space
that ISP can represent would not exceed that of TAP. The role of ISP focuses on the mechanisms to construct and
modify the rules more naturally, seamlessly, and easily for users in an in-situ programming scenario (Fig. 1).

The design goals of ISP are proposed based on the analysis of the relevant literature and extend previous in-situ
EUP solutions in three aspects:

• on-the-fly: It allows live programming [9, 119] with real-time feedback and dynamic control flows. It
supports rapid rule editing, iterating, testing, debugging, and learning.

• in-place: It allows situated programming, leveraging in-situ smart home interaction and situated context
information. It supports programming in the consistent task context where the program is actually executed.

• multi-modality: It allows multi-modality programming consistent with users’ interaction patterns in a
smart home. It supports multi-modal input and feedback via voice, gesture, and tangible interface.

ISP comprehensively coordinates smart devices (D, including device states and events), human behavior (B,
including voice, gesture, and tangible operation), and time-spatial context (C, including time, location, orientation,
spatial relation. etc.) in programming smart home automation. The formulation of the traditional TAP rule (𝑟 )
achieved by one-time voice-based editing can be represented as 𝑟 = 𝑆𝐼 (𝑉 ) = [𝑇𝑟 (𝑉 ) → 𝐴𝑐 (𝑉 )], where 𝑆𝐼 , 𝑇𝑟 ,
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𝐴𝑐 , respectively represent the semantic interference module, the trigger, and the action extracted from the voice
command as defined in the TAP. In ISP, we extend this formula into:

𝑟𝑛𝑒𝑤 = 𝑆𝐼 (𝑉 , 𝑟𝑜𝑙𝑑 ,𝐺,𝑇 ,𝐶) = [𝑇𝑟 (𝑉 , 𝑟𝑜𝑙𝑑 ,𝐺,𝑇 ,𝐶) → 𝐴(𝑉 , 𝑟𝑜𝑙𝑑 ,𝐺,𝑇 ,𝐶)] (1)
where 𝑟𝑜𝑙𝑑 represents either the last version of the rule or a null rule. Under such a paradigm, three unique

specifications of ISP can be derived: 1) the introduction 𝑟𝑜𝑙𝑑 allows a comparative (𝑟𝑛𝑒𝑤 v.s. 𝑟𝑜𝑙𝑑 ) and iterative
editing strategy (e.g., optimizing 𝑟𝑛𝑒𝑤 with multiple rounds of interaction); 2) the introduction of in-situ context
𝐶 , can be leveraged to represent spatiotemporal information and relations between entities (human, devices,
environment); 3) multi-modality input like gestures 𝐺 and tangible operations 𝑇 allows the user to expand their
input channel with better expressiveness.

3.2 Designing and Prototyping Wizard-of-Oz In-Situ Programming System
In order to rapidly verify the ISP and explore users’ natural behavior, we constructed a high-fidelity living
room smart home scenario (Fig. 4) and designed a Wizard-of-Oz system [43] to support users completing in-situ
programming under our design goals. The participation of wizard ensures that the response of the experimental
system has higher flexibility to support users’ rich interaction so that the users can focus on how they prefer
to interact with ISP, rather than how to adapt the ISP. The scenario contains 16 popular smart home devices,
including a TV, an air conditioner, a sweeping robot, a fan, a humidifier, a TV speaker, two smart speakers, five
spotlights, one ceiling light, one light strip, and a lamp. Detailed device list is in Appendix.A.3.Table 2.

Fig. 2. In-situ programming (ISP) system architecture diagram. Black boxes represent ISP system components, and green
boxes represent programming environments and users. The blue lines represent the user and environment inputs to the
system, and the red lines represent environmental control and user feedback provided by the system.

The in-situ programming system is built in the smart home environment, which completes the management
and control of smart devices by interacting with users and combining environmental information. Based on our
design goals and related literature, we divided the Wizard-of-Oz system into four parts: interaction, sensing,
control, and inference (Fig.2). The control part is responsible for device management and control, the sensing part
is used for environmental context information perception and some user behavior sensations, and the interaction
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part is responsible for communicating with users to assist them in completing programming. The inference layer
is responsible for information integration, recognizing interaction intent, and establishing rules.

3.2.1 Control. The control part is responsible for device control, as well as automation control and generation.
We connected and controlled all the smart devices with the Home Assistant Platform [3] via Bluetooth or Wi-Fi.
We wrote software that standardizes the control interface of all devices and can obtain and store the states of
the devices. When users performed automation settings, we saved the trigger and action contents in the system
and recorded them as a shortcut command. The experimenter will input the command to the script on the PC
to execute the action when the triggers are met, to provide users real-time automation response. The saved
contents are organized in the form of Trigger-Action rules in the automation database. Fig.3.a shows the software
architecture of the Wizard-of-Oz system.

a) b)

Fig. 3. Software settings. a) Software architecture of the auxiliary experimental system. b) The visual feedback interface.

3.2.2 Interaction. The interaction part is responsible for multi-modality interaction with the users, collecting
active input information and providing real-time feedback.

For the voice interaction, we set up an intelligent agent named XiaoCheng in the system. We settled on basic
design principles and commonly used feedback scripts, including greetings, control, queries, error responses, and
replies related to automation settings (configuration process, rule broadcasting). For improvised dialogues on the
spot, we reserved a text input interface so that the experimenter can directly convert the input text into speech
feedback to the user. During the experiment, the PC running the script was connected to the smart speaker in the
experimental environment via Bluetooth.
For tangible interactions, we linked BlueTooth physical switches to the lights in the room. We put all the

tangible buttons on the tea table so that users can easily control the lights. In addition, the user can directly
control the device through the original remote control and the physical buttons on the device. The input from
the tangible interface is synchronized in the control console.
For visual-based interaction, we build a graphic user interface (GUI) to display the status and content of the

rules (Fig.3.b). The rules are synchronized from the automation database and structured into trigger-action rules
with concise language.

Based on our design goals and the previous literature on in-situ smart home interaction, the programming
interfaces should be flexible, real-time, and multi-modal. Through the user study, we supported: 1) voice input
with XiaoCheng, 2) tangible input through tangible buttons and remotes, 3) posture and gesture input through
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C

D

A

B

a) b) c)

Fig. 4. Physical configuration of the user study: a) The physical environment. The red dotted box marks the location of the
recording cameras. Box A marks the real-time video stream. b) The wizard perspective. The left wizard conducts system
control. The right wizard conducts voice feedback. Box B displays the video stream from Box A. c) Interface setting. Box C is
the GUI display. Box D is the tangible buttons of lights.

wizard real-time observation through a live camera. For real-time feedback, we provided 1) voice feedback through
XiaoCheng which can broadcast the rules, 2) ambient feedback which can display the rules with the ambient
response, 3) visual feedback through a tablet on the table which displays the rule.

3.2.3 Sensing and Inference. The sensing part is responsible for perceiving users’ explicit multi-modal expression
and implicit in-situ context information.
The Inference part comprehensively analyzes the information the remaining three parts provided, extracts

high-level semantics and understands user intent, obtains parameters for automation generation, and provides in-
formation to the interaction and control parts. Specifically, the inference part analyzed multi-modality interaction,
situated context, and previous automation, to support current automation generation and system responses.
Since the capacities of sensing and inference significantly impact the experiment, we use the wizards’ obser-

vation and inference to replace system recognition and inference. During the user study, the wizards observed
the participants through a live camera stream and gave corresponding voice and ambient responses. When the
experimenter cannot accurately judge the users’ intention, the users will be prompted by voice, asking them to
repeat the request to ensure that users’ needs can be accurately understood.

4 USER STUDY
In this section, we conducted a user study to explore behavior models and mental models under in-situ pro-
gramming (ISP) scenarios based on the Wizard-of-Oz system described in Section 3.2. We aimed to explore the
following research questions: RQ1: How do users interact with the system during in-situ programming?
RQ2: How do users intuitively understand in-situ context and leverage in-situ behaviors in smart
home programming? RQ3: How do in-situ features affect the programming model and facilitate the
programming process?

4.1 Participants
16 participants (7 males, 9 females) with an average age of 24.1 (SD=1.93) were recruited through an online HCI
recruiting notice. Each was compensated 150 - 200 Chinese Yuan based on their experiment time. Through a
background survey, we collected participants’ demographic information, residential situation, profession level
of programming experience, smart home experience, and IFTTT experience. The participants’ information is
illustrated in Table 1. We presented the basic information such as age, gender, educational background, and
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Table 1. Information of Participants

ID Genders and ages Educational background Programming ex Smart Home ex IFTTT ex
P1 Female,24 Design 0 1 1
P2 Male,26 Electrical engineering 1 4 4
P3 Female,25 Economics 0 2 1
P4 Female,26 Design 0 1 1
P5 Male,24 Computer science 1 2 1
P6 Male,26 Computer science 1 3 2
P7 Female,23 Design 0 2 1
P8 Male,24 Economics 0 2 2
P9 Female,25 Design 0 3 3
P10 Female,23 Network sciences 1 2 1
P11 Female,24 Design 0 1 1
P12 Female,26 Computer science 1 2 1
P13 Male,18 Electrical engineering 1 3 1
P14 Male,24 Computer science 1 4 1
P15 Female,24 Design 1 4 1
P16 Male,24 Computer science 1 2 1

whether they have programming experience (labeled as 0 or 1). Their smart home experience (scored 1-5) was
self-evaluated based on their smart home usage years, the number of devices, frequency of use, and interaction
methods. IFTTT experience score (scored 1-5) is self-evaluated based on their familiarity with IFTTT, the number
of configuration rules and experience in writing automation, etc.

Summarily, 9 of the participants have co-occupants such as parents (N=2) and peers (N=7), and 7 of them live
alone. Half of them have technical backgrounds skilled in programming and half are non-technical backgrounds,
with 1 of them having programming knowledge. Participants scored their smart home and IFTTT experience on
a scale of 1-5 (1 means no relevant experience, 5 means very familiar). The majority are familiar with smart home
experience (N=13) but with no IFTTT experience (N=12).

4.2 Scenario and Task Design
We designed ISP scenarios and tasks focusing on in-situ settings and context. We conducted a user-enactment
process [35, 103], in which we asked the participants to intuitively act in the given scenarios which are structured
in the dimensions we are interested in. We distilled user behaviors by observation and a following semi-structured
interview.

We totally design 12 scenario scripts (Fig.5), equally divided into 2 groups. Both groups were used equally. The
scripts are designed under the analysis of the relevant EUP literature and popular IoT-related rules from IFTTT
website [5], grounding to our experimental ISP system. To investigate the performance of ISP in non-trivial rules,
we choose more in-situ tasks with multiple actions. Besides, to utmost support participants to act more naturally
and openly, we do not give concrete rule contents but only the scenario description. Participants are allowed to
create the rules based on their understanding of scenarios and the rule varies from person to person. Hence the
user-created rules may contain more triggers and actions than the requirements set. To ensure the task covers
the features we focused to explore, we set task requirements and assigned the features within each group. The
chosen features include:
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• Action complexity: Rule complexity is a key factor to investigate the paradigm expressiveness and affects
users’ behavior in conceiving and expressing. We choose action complexity to better relate the task to
the situated scenario. We choose the action features based on the research on rule complexity [29, 66, 79],
including the numbers of actions, the numbers and varieties of involved devices in actions, the temporal-
constrained actions, and the conditional branches of actions. The temporal-constrained action [66] involves
temporal information in action expression (such as delayed, period, repetitive [79]). Conditional branches
refer to the transmission of rule action flows under multiple triggers [50]. We scale the action complexity
into 3 levels: Level I: single action or single-type devices configuration. Level II: multiple types of devices
configuration or temporal-constrained actions. Level III: with conditional action branches.

• In-situ entities: The types of in-situ entities (person, devices, environment) may lead to different manners
to leverage contextual information and interaction [16]. This dimension is to discover how different entities
are interpreted and configured and we ensured that both groups cover all the entity types in triggers
or actions. Specifically, both the script groups cover all the in-situ devices and at least involved 3 rules
related to in-situ human states or activities, and 3 rules related to in-situ environmental context (e.g., time,
temperature).

• Sequential/Parallel actions. This dimension describes the temporary relationships of multiple actions,
respectively referring to the actions that are expected to execute in sequential and non-sequential orders
[42]. We aim to discover whether and how users manage the distributed devices differently under a process-
oriented and state-oriented scenarios. The two groups both contain these two types of rules and the total
rule numbers of each type are equally 3.

4.3 Procedure
The study was composed of three sessions: an introductory session, an enactment session, and an interview
session. The whole process lasted around 60-90 minutes and was recorded by the cameras. Each participant was
invited to the Wizard-of-Oz environment with two wizards and one moderator’ participating (see Fig.6 and Fig.4).
One of the wizards is responsible for equipment control and interface feedback, and the other is responsible for
automation management and voice feedback (Fig.4.b).
In the introductory session,the moderator introduced the basic concepts and instances of smart homes,

automation rules, and our user study goals. Then the moderator detailed introduced the system, including
smart device functions, the intelligent agent XiaoCheng, and multi-modality interfaces (introduction scripts see
Appendix.A.1). The participant was then given 10 minutes to get familiar with the system during which the
moderator gave necessary demonstrations and instructions.
Then the participant was assigned a script group and started the enactment session. In order to keep the

participant immersive in the situated environment rather than the script document, the moderator broadcast the
script one at a time off-site. The participant was asked to enact the scenario and create a rule through intuitive
and natural behaviors. After the given 6 tasks in each group, the participant was allowed to freely configure rules
as he/she wished. The moderator observed participants through the real-time video stream and recorded the
issues we cared about.
After the enactment session, we immediately conducted a semi-structured interview. We first asked open

questions on the specific issues we observed during the enactment. To investigate the underlying mental model,
we asked the participant to retrospect the detailed process, the chain of thoughts, and opinions of specific behavior
features and methods they applied. We avoided concluding for participants and provided the video recording for
users to recall. Then we concluded with structured questionnaires (Appendix.A.2), investigating factors they care
about, preferences for the programming paradigm (interaction flow, interface, approach, and feedback), benefits
and drawbacks of in-situ programming, and expectations of system improvement. Finally, each participant rated
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Device  Human Environ-
ment

Parallel Sequential

T1
You usually go straight to bed and

sometimes forget to turn off some of the
appliances in the living room.

Create a rule to help you turn off appliances when
you go to bed.

1 √ √

T2
Every time you open the curtain, you
have to manually turn off the lights in

the living room.

Create a rule to help you turn off the lights when
you open the curtain.

1 √ √

T3 Your requirements for the living room
environment are similar every day.

Create a rule for your living room environment.
Include at least light and temperature settings.

2 √ √

T4
As a movie lover, you watch a movie
every weekend. You wish to make the

living room more immersive for movies.

Create a rule to adjust the atmosphere when
watching movies. At least include the light and

multimedia settings.
2 √ √ √

T5
When you come home from work every

Friday, you wish to make your home
welcome you.

 Create a rule to make the devices respond to the
human activities sequentially.  Include at least 2

kinds of human states.
3 √ √ √ √

T6 You wish to have a good rest every
weekend afternoon.

Create a rule to set the living room environment
according to the weather or the people in the house.

Include at least 2 conditional branches.
3 √ √ √

T7 Every time the curtain is closed, it will
block the sweeper robot.

Create a rule to open the curtain when the robot is
working.

1 √

T8 You wish the living room temperature
can be adjusted automatically.

Create a rule to adjust the air conditioning according
to the living room temperature.

1 √ √

T9 You are used to taking a 10min nap on
the couch at noon every day.

Create a rule for your lunch break. Set the start and
end of the lunch break, and make the devices

wake you up after a period of time.
2 √ √ √ √

T10
You often read on the sofa and you wish
the living room environment to be more

suitable for reading.

Create a rule to adjust the atmosphere for reading.
Include at least the light and music settings.

2 √ √ √

T11 You often stay up late watching TV and
feel tired at work the next day.

Create a rule to remind you go to bed early. Make the
reminder changes acording to your different

responses over time. Include at least 2 situations.
3 √ √ √ √

T12

You like to play smartphones or watch
TV or take a nap on the sofa, but it is

troublesome to adjust the environment
manually.

Create a rule to automatically adjust the environment
according to your activities. Include at least 2 kinds

of activities.
3 √ √

Group A

Group B

 User-Enactment Scripts

ID Scenario Task Comple
-xity

In-situ Entity Features Action Features

Fig. 5. Task List of User-Enactment: Each script contains a scenario and a task. The scenario describes the background to
enact. The task provides task goals and requirements.

the immersion of the study based on whether the study environment affected their natural expression (1-5,
immersion rate from lowest to highest).

4.4 Data Analysis
Through the study, we collected a total of 42 hours of video footage and 213 rules. After cutting off the irrelevant
parts, we finally got 33 hours of user behavior footage and 9 hours of interview footage. We conducted three
rounds of analysis based on inductive approaches [121] including open coding [75] and affinity paradigm [92].
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Fig. 6. User Study Configuration

Round 1: For the rule analysis, we labeled the rules features including the trigger counts, action counts,
involved device counts, in-situ features, and human-related features.
For the behavior footage, four researchers independently watched the video, recording, and labeling every

step of the user’s activities. We defined one step as an acting unit (AU) which refers to a coherent and self-
contained user act recognizable in context as a complete interaction with an independent agent. For each AU, we
labeled the objective interaction characteristics, including interaction objects (device, agent. etc.), interaction
modalities (voice, gesture, posture, tangible), concrete interaction contents (utterances, gestures, movement,
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towards, etc.), feedback (voice, GUI, ambience.etc) and direct intentions (control devices, configure triggers..etc).
For the interview material, the audio was transcribed, aligned to the corresponding AU, and labeled by open-code
keywords.

We constructed a dataset based on experimental data and annotation results. An example of the annotation is
shown in Fig.7. Each piece of data contains eight fields.

Fig. 7. Data Sample(Field from left to right: Timestamp, Interaction Mode, User Behavior Description, Interaction Intent,
Target Device & Operation, System Feedback, User Feedback, Automation Intent)

Round 2: In the second round, the researchers top-down discussed the behavioral characteristics compre-
hensively based on the first round results. We followed a general user interaction model [70] in which we went
through a hierarchical analysis to understand users’ intentions, behavior, and feedback in three dimensions
(task-level, rule-level, and content-level). We settled on a standard analysis norm of AU and rules. Then researchers
exchanged the data to revise and further analyzed.
Round 3: In the third round, the researchers conducted an affinity diagramming approach. We grouped and

labeled the topics according to our research questions and discussed the controversial notes. We literately updated
the affinity wall until finally reached a consensus. This process fostered five high-level themes which we detailed
and presented in the next session.

Fig. 8. A structural overview of our findings.
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5 FINDINGS
From the results of the user study, we found that participants dynamically leverage the in-situ interaction and
feedback to configure and confirm the rules. We unfold our findings into five main categories: 1) interaction
flow, 2) usage of in-situ context, 3) in-situ interaction style, 4) in-situ configuration approaches, and 5) in-situ
confirmation approaches. Fig.8 illustrates a structural overview of our findings and how these findings echo our
three research questions.

5.1 Interaction Flow
We frame the interaction flow of in-situ programming (Fig.9), defined as a session of user-system interaction in
one programming task. We identify two phases, that is, configuration and confirmation, which are dynamically
realized by four main interaction nodes: query, control, edit, and test. Specifically, these nodes refer to a higher
level of interaction intention, independent of the specific ways to perform it. These nodes are labeled in the
dataset based on the following definitions.

• Query: Participants acquire information on the context, system capacity, rules, etc.
• Control: Participants conduct operations on devices.
• Edit: Participants edit the rules’ contents, including names, triggers, and actions.
• Test: Participants activate the rules to check the correctness.

Generally, ISP starts with the configuration phase and ends with the confirmation phase. Query (n=101, 5.8%)
includes directly asking the agent and checking the feedback of the interfaces. Edit (n=528, 30.3%) is the core part
of rule configuration, including the rule-level editing (create, modify, delete) and content-level editing. Especially,
control and test are two unique interaction nodes in ISP. Control (n=768, 44.1%) leads to directly changing the
state of the environment by which participants can obtain in-situ ambiance responses. Test (n=345, 19.8%) is also
intuitively conducted to confirm the rules. After testing that the rules are correct, participants completed the final
confirmation and finished the whole programming, otherwise, they iteratively configure and confirm the rules.

The programming flow of ISP presents a significant dynamic nature, in which participants iteratively and
flexibly undertake configuration and confirmation.

5.1.1 Iterative. s Generally, participants configure a rule through iterative refinement and confirmation based
on the in-situ effects and feedback, with 83% of the rules (n=177) completed through iteration. Besides, instead
of a batch process in traditional paradigms, participants adopted incremental acts in one task. For example,
participants progressively supplement details of the rules, e.g., adding triggers, specific condition branches, and
names.

5.1.2 Flexible. Flexibility is greatly reflected in the expression style and the applied approaches. Participants
flexibly switch the intention nodes and comprehensively utilize in-situ interaction to construct different in-situ
methods. Especially, the combination of control and edit is highlighted as a new in-situ configuration approach
“snapshot”(Section 5.4). The combination of query and test is addressed as a new in-situ confirm approach
“simulation” (Section 5.5).

Besides, the mental model of the trigger-action paradigm is still recognizable albeit fuzzy. Participants followed
a more flexible expression and rule structure based on their understanding of the scenarios and their
needs. Through interviews, all of them reported that they conceived the trigger first then the action (N=16).
While in practice, 66% of the rules (n=140) are without names; 48% (n=102) are without triggers. 31% of rules
(n=66) are configured by adding triggers or names after setting actions.
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Snapshot

Control
“turn on the front 

light…”
“turn on TV…”

Edit
Save the current 

state as Mode

Free Demonstration

Edit
“If I want to watch a movie, 
turn on the front light…”

Configure 
Approach

Configuration

Start

Simulation Test by 
Activating 
the rules
“Enter the 

movie mode”

If rules activated 
in situ?

YesNo

Confirm 
Approach

Query
rule content
Auto Replay

Rule repetition or 
visually check

Confirmation

If rules 
correct?

Iterative 
Configure

No

Iterative 
Confirm

Not Sure

End

Yes
Interaction Node

EditControlQuery Test

Query with
Assumptions

“What will you if..”

Test with
Assumptions

“ It’s Sunday now.”

Fig. 9. Interaction flow of in-situ programming

5.2 Usage of In-Situ Context
We found that participants interpret in-situ context based on spatial, comparative and integral references,
which reduces the cognitive load and interaction load in configuring spatial-related dynamic rules and
batch operations.

5.2.1 Spatial Reference. The spatial references [120] are counted 85 times, 55% are expressed by explicit ar-
ticulation (n=47), 45% are by pointing gestures and indicative pronouns (n=47), e.g., saying “open that light”
and pointing to the specific device. The majority (n=74, 87%) are used to target the lights distributed in the
environment, including absolute reference(n=8, 9.4%) like “the light front”, relative reference (n=77, 90.6%) like
“the light above the TV” or “the light above me”. 23% of the spatial reference is used to describe the function with
spatial-related parameters (n=21), e.g., “air conditioning blowing upward”.
In addition, participants tend to locate the devices based on their real-time location and orientation,

leading to rules with dynamic in-situ parameters (n=17, 8%). For example, “let the fan towards me”(P1, P14).
“Wherever I go, turn on the lights above me” (P3, P6, P7, P16). “When I snap my fingers at something, please help
me switch it on or off” (P6, P16). These dynamic rules are all set in their free configuration process.

From the interview, participants agreed that it is intuitive to establish a self-centered spatial relationship with
the surroundings. P2, who is experienced in the IFTTT setting, reported that “it is easier to select devices and
describe those human-related parameters that may be dynamic.”

5.2.2 Comparative reference. We found that participants interpret the rules based on a comparative reference
with the current situation. They explicitly query the in-situ context and have comparative expressions.
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Query about the in-situ context (n=81) takes 60.3% of all the queries, e.g., the current temperature, time, and
device states. Indicative pronouns to the current situation are counted 104 times. For example, “save current mode
as daily mode” (P2, P8, P16), and “Please remind me to sleep at this time every day” (P12). Comparative references
based on in-situ states of the context are counted 59 times, in which participants express incrementally based
on their current situation. Comparative terms are used to set parameters related to devices or environment,
e.g., “brighter”, “warmer”, etc., in which participants fine-tune by fuzzy configuration instead of specifying
the exact value. Especially, once they achieve the expected effects, they do not seek to be informed of the exact
value. From the interview, they reported the in-situ state of the environment is enough for them to confirm
the outcomes. P5 stated that “The fuzzy expression of parameters could clearly convey my needs as I could
perceive the straightforward effects in the field.” Most inexperienced participants (N=8) reported it is useful to set
parameters as it is hard to match their needs to an accurate value. However, P12 and P14, who are experienced in
programming while inexperienced in IFTTT reported that they prefer an exact value to build confidence in the
configuration.

5.2.3 Integral Reference. We found participants build an integral understanding based on the in-situ context
rather than focusing on individual devices setting. Integral references are counted 87 times and mostly are used
for batch control and configuration of devices. Generally, participants described the relationship between the
part and the whole, e.g., “close all the lights except for the main light”.

Group selection is also combined with spatial and quantity information, e.g., “turn off the two lights in front”. As
is explained in the interview, participants reported that the spatially adjacent devices are naturally identified
as a group. Specifically, in-situ light setting is more integral. P8 said, “Basically, I tend to set a group of lights to
the same parameters, then tune the parameters in groups to see the holistic effects.” P5 also said “I care more
about the whole light effects and it is more straightforward to make integrated adjustments rather than configure
individual lights then make coordination.” From the interview, a majority (N=13) agreed that it is more convenient
for operations in a group as they can express themselves easily with more in-situ references.

Beside, participants pay more attention to the holistic scene (the situated room), and some made commands to
control the scene. For example, P10 and P15 made similar commands like “close the current scene”. From the
interview, they explained the specific meaning of the commands that they expected to reverse or withdraw all
state changes of the devices in the current scene.

5.3 In-Situ Interaction Style
Participants intuitively follow a multi-modality and communicative interaction style, which is consistent
with the interaction patterns they have when interacting with the smart homes. Generally, they prefer voice
interfaces as dominant input and multi-model interfaces as feedback.

5.3.1 Voice for main input, others for supplementary. Voice interface is used as dominant input while other
interfaces like gestures and tangible interfaces are used as supplementary to support configuration accuracy. Voice
interface is the most used modality (n=1369, 87.4%), respectively for query (n=90, 89.2%), control (n=569, 74%),
edit (n=468, 88.8%) and test (n=242, 70.2%). Other interfaces are primarily used as supplementary. Gesture and
posture are the second used modality (n=160, 10.2%), control (n=70, 43.8%), edit (n=9, 5.6%), and test (n=81, 50.6%).
Pointing is greatly used to assist in targeting devices. Especially, a gesture is used as a demonstration when
there is a gesture-related trigger in the rules. For example, P3 set a rule as “XiaoCheng, when I do this, turn on
the air conditioner.” She made an action demonstration of finger snapping at the same time. Besides, participants
applied gestures to activate specific rules in the test. Noteworthy, participants showed great interest in the
gesture-triggered rules both during the study and in the later interview. They explored more gesture-triggered
rules in a free configuration process. The tangible interface is only adopted as an alternative way when
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they do not how to express the specific function. It is rarely used (n=38, 2.4% ) through the user study, for
control (n=32, 84.2%), edit (n=1, 2.6%), and test (n=5, 13.2%).
From the interview, we found that accuracy and cost are two key factors affecting the choice of the input

interface. Participants agreed on a strategy that they would search for a shortcut to ensure the highest
expression accuracy at the lowest expression cost. A majority (N=15) reported they preferred the voice
interface because it is more accurate and easy to express their needs. P5 explained that “I prefer to make fewer
gestures if the system can understand me correctly. I prefer to stay lazy and leisurely at home.” Actually, as we
observed, most of our participants leaned on the sofa through the entire configuration after they get familiar with
the system. Except for testing the rules triggered by human positions such as “someone come in”, participants
rarely moved around the room and use the distributed tangible interfaces.

5.3.2 Multi-modal Interfaces as feedback. With the three kinds of feedback forms we provide, participants
reported that they benefit from all kinds of forms, especially a multi-model combination based on different
scenarios in both configuration and confirmation processes.

Ambient feedback is straightforward but limited in visibility and ambiguity.Ambient feedback includes
static reference and dynamic response when users control devices or rules. In the confirmation process, ambient
responses provide straightforward feedback, which reduces the strong dependency on other external channels.
86% of rules (n=183) are confirmed only by testing the execution of the rules without seeking the specific content
through voice or visual feedback. In the configuration process, ambient feedback is a key reference to build and
fine-tune the rules.

However, ambient feedback has limitations in visibility. For one thing, the response is only visible when there
is a perceivable change in the device states. For example, P7 transited from movie mode to daily mode. She
was confused because these two modes were similar, and she could not see obvious changes. Another issue is
ambiguity, as ambient feedback provides a vague reference to the accurate content of the rules. A few participants
reported that they could not recall what they had set and felt insecure about the configuration (P1, P12). However,
a majority (N=10) reported that it was not necessary for them to be acknowledged with accurate content.

Voice feedback facilitates coherent interaction. Voice feedback is a primary channel that intelligent agents
communicate with users. In the configuration phase, voice feedback is preferred. Participants reported that it
built coherent communication with the system, as they primarily used the voice interface as an input channel. All
agreed that the voice feedback closely followed their commands and explicitly assisted them to ensure the validity
of the input and clarifying the process of configuration. While in the confirmation phase, rule broadcasting is less
used (n=40). P4 and P10 reported concerns that “it will be annoying and demanding when the rule is complex.”
Visual display is a nice-to-have in confirmation but limits immersive configuration. Visual display

was mostly used in the confirmation process, especially when participants needed to be informed of the specific
contents of the rules. The display is explicitly checked (n=24), mostly when participants were confused about
the system failure. From the interview, a majority (N=10) reported they did not need display-based feedback
when configuring rules but welcome it in later confirmation or management. Some (N=6) reported the visual
display helped them confirm complex rules. However, visual display distracts participants’ immersion in
the environment in the configuration process. P11 approved the point, saying “I do not look at the display
when configuring, as it distracts my attention from the environment.”

5.4 In-Situ Configuration Approach
We identified two user-enacted configuration approaches in which participants leverage in-situ interaction
style and feedback. We outlined the approaches as “snapshot” and “free demonstration”. Generally, participants
individually or comprehensively applied these two approaches based on their understanding of the task.
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Fig. 10. Programming Examples of Snapshot and Free demonstration: AU means the number of action unit (AU) in a complete
configuration process.

5.4.1 Snapshot: save the current state as a scene. “Snapshot” is a novel state-oriented programming-by-demonstration
(PBD) paradigm [24], in which participants adjust the environment to their desired state by controlling devices.
When the holistic environment state meets their requirements, they “save” the current scene or command that
“next time [trigger], keep the scene this way”. For modification, participants replaced the old states with the new
states and resaved the scene. Compared with process-oriented PBD approaches, participants do not explicitly
record the sequential behaviors/events [66] of devices but record a set of parallel activated states.

The snapshot patterns are found (n=71, 33% ), mostly used in non-sequential tasks, e.g., setting a movie scene.
Fig. 10 shows two example cases of snapshot expression. Case A saves a set of device states as the rule’s action
and case C saves the relationship of two devices in a rule. The system reacts to every user command and provides
in-situ responses. When asked about the objects they preferred to record, participants reported they most cared
about the devices which were activated in the scene or manipulated during configuration.
Snapshot is highly valued by the most (N=15) from the interview. They reported that the approach provides

a straightforward preview of the rules. P4 reported, “I wasn’t quite sure about the exact effects until I actually
experienced it because I couldn’t set the precise parameters by imagination.” Besides, snapshot simplifies config-
uring rules with multiple devices by naturally splitting a long description of multiple devices into step-by-step
control commands. However, some are also concerned that snapshot is limited in expressing complex rules with
multiple conditions branches or sequential requirements.

5.4.2 Multi-model Free Demonstration. Free Demonstration is an approach that participants configure by multi-
modality demonstration, that is, language specification with acting as supplementary. Compared with
traditional voice-based EUP, the rule specification is more flexible, improvisational, and incremental based on the
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traditional trigger-action form. Basically, participants demonstrated in sequential order, successively editing the
trigger and then the action. The most used scripts include “when Trigger occurs, Action”, “if Trigger/Condition,
then Action”, or sequential description like “first step, then...”. Also, it is used to modify rules, in which participants
directly described the contents of the revision. For example “turn on the main light in TV Mode”, “set the air
conditioner to 25 in Get up Mode”. As is shown in Fig.10, the system does not react until the end of the users’
complete specification.
Acting with demonstration is primarily found in complex rules with dynamic human-related contents like

position, and gesture. For example, P4 set a rule in which she wanted the environment responded to the changes
in human position (Script T5). The rule is sequential and has three condition branches. To set the rule, P4 acted
on the position change while specifying the rule contents. In the later interview, she said this acting is helpful for
her to conceive such complex rules.

67% of the rules (n=142) are configured by free demonstration and participants also applied the approach as an
important complement to “snapshot” to modify or add the settings. Through the interview, participants reported
that the free demonstration increased expressiveness in rules with dynamic and human-related parameters.
However, the expression cost increases when the complexity of rules rises. For example, although P8 approved of
good experience in using free demonstration, he reported concerns.

I was under a lot of pressure when specifying the rules and it took me a long time to think. I was
concerned about how to make the system understand me. I would be in a hurry to express myself
because I was afraid the system will interrupt me early. Sometimes, I would say something wrong or
pause to think and be afraid that the system gets it wrong and leads to trouble.

5.5 In-Situ Confirmation Approach
We found participants intuitively test the rules in the confirmation phase, greatly in place of seeking
feedback on rule contents. Participants enacted two kinds of test methods based on if the rule can be in-situ
activated.

5.5.1 Proactively activate rules with in-situ triggers. For the rules which can be in-situ activated, participants
tended to proactively activate the rules to test. In this phase, they expected to preview the whole execution of the
rules and observe the obvious state transition of the environment.
Generally, they conducted different test practices after “snapshot” and “free demonstration”. Tests more

naturally followed the “free demonstration” as participants could not obtain the in-situ responses through
configuration. It is expected as a type of rule auto replay (P6, P16), that is, participants asked for a test, the
system automatically executed the rule actions and demonstrated the skipped parts (usually triggers and time
delays, etc.). With regard to “snapshot”, participants preferred a reset-and-replay method. Because when
completing “snapshot”, they are in the exact scene they just set. To test the rule, they tended to change the current
state first, then activate the rule. For example, they would reset the environment by commanding “close all the
devices” or “restore to the state before configuration”.

5.5.2 Simulate In-Situ Triggers by Assumptions. For triggers that can’t be rapidly in-situ activated (e.g., specific
time or temperature, long time delay, multiple family members), participants used assumptions to simulate the
triggers. For example, to test a rule with the trigger as “9 pm on Friday”, participants said “XiaoCheng, it’s nine
o’clock on Friday.” To rapidly simulate time delays such as “10 minutes later, turn on the lights”, participants said
“XiaoCheng, 10 minutes are up.” However, some (P10, P12) were confused about the priority of the simulated
trigger and the actual states. P10 said although she tested successfully with the simulated trigger, she was still
worried when the simulated trigger conflicted with the current situation.
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Another simulation method is an interrogative simulation, in which participants query how the system
would react if a certain trigger occurs. For example, “XiaoCheng, what will you do ten minutes later?”

Level of configuration confidence and test costs are two main factors that affect participants’ test
preferences. All said that they would prefer to test all the rules to make sure that the rule is set correctly and
will execute properly, except for the very simple rules. P2 and P12 mentioned the test cost. P2 said if the test
process requires too many operations or interrupts the current activities, he would not test. A majority (N=13)
reported they preferred a rapid test and considered time as a critical cost.

6 DESIGN SPACES OF IN-SITU PROGRAMMING PARADIGM
By examining users’ intuitive behavior models and mental models, we highlighted three design spaces for in-situ
programming (ISP) systems: dynamic programming, in-situ interface, and state and scene management. In this
section, we discussed how these design spaces echo, extend, and distinguish from the design implications of the
state-of-art in situ solutions. Further, we propose design recommendations under a trade-off between technical
feasibility and our design goals with regard to the programming mechanism, interface, and automation system.

6.1 In-Situ Dynamic Programming
The most dramatic finding of the ISP paradigm is the dynamic programming style. Compared with traditional
TAP paradigms, ISP is more flexible and malleable strongly depending on the in-situ context and tasks, reflected
in more fine-grained aspects, eg., flexible intention switch, dynamic rules with contextual parameters, ambiguous
and flexible expression style [32, 116, 125] and mental models (e.g., fuzzy parameters [76], flexible expression
structure [32, 57], free demonstration), multi-model interaction patterns, and mixed approaches to configure and
confirm the rules. It is indicated that the dynamic characteristic primarily derives from users’ natural behavior
patterns in intelligent ambiance and conversational agent [76] with positive expectations [18]. The ambiguity
also increases, since people tend to omit information that can be easily inferred in the situated context [63]. The
significance, challenges, and mechanisms to support dynamic programming are widely explored in domains
like living programming, and voiced-based EUP. Notably, in ISP scenarios, it is more challenging because the
highlighted flexibility and ambiguity are closed related to the dynamic time-spatial context (e.g., “whenever
I go, turn on the lights above me.”). In our ISP prototype, dynamic programming is well supported via the
wizard techniques and encouragingly effectively enhances intuitive interaction and adaptability in different
tasks, especially complex ones. For one thing, the in-situ context and multi-model input channel provide
reference and confidence for fuzzy expression so that users can express themselves more easily. For
example, users are allowed fuzzy parameters without knowing exact values, handle the distributed devices more
easily with spatial reference, and express human-related parameters with multi-model information (position,
gesture acting) as a programming language. For another, the voice-based and ambiance-based paradigms set
fewer time-spatial limits when configuring, and testing.

1) Plastic Programming Mechanism. The programming mechanism should be plastic and scalable, easy to
be attached, modified, and dynamically adapt to users’ incremental operations [119]. The structure of automation
should be a more flexible extension based on TAP and allow for void and dynamic parameters (e.g., void rule
names or triggers, current time, real-time user position) and flexible configuration order. The default names can
be extracted from the rules triggers [49] and the default triggers can be filled as “triggering via smart speakers”
[94]. The system should support users’ dynamic commands such as, such as rolling back programming flow (eg.,
“withdraw the previous commands”, “recover the scene”), and trial-and-error commands (eg., rephrase, correct,
supplement), agile iteration based on programming flow [76] (eg., appending, replacing, modification after test).

2) Reduce the ambiguity of programming input. Given the ambiguous inputs resulting from the omitted
[63], iterative, and spatial expression, the system should improve dynamic time-spatial context awareness to
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infer the in-situ parameters and interaction intents. Literature [12, 39, 76] proposed ambiguity strategies to infer
omitted or high-semantic parameters and commands (eg., room, time, value) based on the multi-turn dialogue,
contextual information, and user-predefined profiles. Furthermore, our findings indicated that users’ situated
location, orientation, and spatial keywords [77, 120] are important. The ambiguity strategies should also avoid
additional conversation turns [76]. The strategy conducted in our ISP prototype can be drawn on. Specifically, the
system only proposes a follow-up question [12] if the ambiguity can not be addressed successively after system
inference and user correction [35].

6.2 In-Situ Interface with Coherency and Clarity
While we provided multi-model interfaces during the study, the findings revealed that the synthesis of the
ambient interface and voice interface would be sufficient andworkable for the design goals of in-the-fly
and in-the-space. The limited use of other interfaces (gesture, tangible button, visual display) suggests that
users intuitively minimize interaction load to convey their intentions. It is surprising that the tangible-based
programming style seems less intuitive as the previous works claimed [36, 51] due to high physical load. There
seems to be behavioral inertia since users preferred not to conflict with their activity coherency. Moreover, an
intriguing gap is that, despite the flexibility of behavior patterns and ambiguity of mental models (discussed
in Section 5.1), users are highly focused on whether they are accurately expressing their intent and whether
the rules are aligned with that intent. One concern is that users generally capture a vague understanding of the
context, so it is hard to build an accurate mental model of the rules, like accurate parameters, distinguishing
action states or events [66], etc. The vague understanding will produce confusion and insecurity about what they
had created. In the ISP paradigm, the gap is greatly ameliorated by incorporating straightforward and real-time
[46] in-situ ambient feedback to reduce users’ demands for accuracy. For one thing, ambient feedback simplifies
the configuration by helping users build up the rules grounding the actual context, reducing configure costs by
straightforward reference. For another, it facilitates rapid conformation, in which users can preview how the
rules execute and the final effects through real-time responses. This is evident in the use case of snapshot and
simulation, in which users gain a clear understanding of the programming process and outcomes. Taken together,
we highlighted the design space as clarity instead of accuracy in ISP design. Below in this section, we propose
multi-modality interface design recommendations for building coherency and clarity.
1) Facilitate coherent user thinking and expression. The system should react consistently to users’

preferences under different interaction intentions. For example, the voice input “turn on the TV” can be a control
command or a part of rule-setting. In a free demonstration, users prefer coherently expressing their configure
needs without device responses, then previewing the holistic effects by ambiance response. Usually, there may be
a long speech input. This is different from the proposals of previous works, in which they suggested a fragmented
[79] or step-by-step [46, 54] multi-turn interaction. Thus, the dialogue system should avoid interrupting the user
at this time and can ask users whether to end the input during long pauses. While in “snapshot”, users prefer to
get in-situ responses as they tend to step by step set and tune individual devices. Hence the dialogue system
should react to the control command and inform the rule creation after “save”. The difference requires different
waiting times for the two approaches.

2) Clarify key information, transition, and process. Through the findings, we identified the limitations of
ambient feedback. One important aspect is, ambient feedback greatly relies on users’ perceptions. Sometimes
it can be hard to perceive when the state transition is not obvious. Another issue is its limitation to exhibit complex
logic in the rules like time delay, conditions branches, etc. Ambient response with voice demonstration
is an applicable solution. In the configuration process, the voice agent should give timely feedback on the key
configuration points and improve the transparency [76] of the configuration process, including the creation,
modification, testing, and the reason for failure configuration. In the confirmation phase, the voice agent should
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concisely clarify the key logic or simulated triggers of the rules, rather than simply exhibiting static and lengthy
rule contents and increasing cognitive load [115]. Besides, voice is necessary to inform the imperceivable ambient
responses. A vivid example is, some users require a rule test after “snapshot”. Whereas, as they are already in the
specific mode, the system appears not to be responding even though the rules are executed. Hence, this time,
the agent should prompt the user that the rule is already triggered and inform the user to change the scene for
testing.

6.3 In-Situ Approaches with State and Scene Management
Confirming the previous works, the mental model of the state/event of the individual trigger and action is
ambiguous for users and affects the accuracy of configuration and debugging [26, 66, 104, 129]. Our findings also
reinforce the point that users are facing the scene [82] during situated programming and a set of state actions
[26] simplifies programming among distributed devices, indicating the importance of STATES in IoT-related
automation. For one thing, users intuitively interpret the action of TAP rules with the states of holistic context,
distinguished from the traditional paradigms which individually manage the events or behaviors of the context
[16, 50] or process-oriented paradigms [24, 29]. For another, in-situ approaches take the holistic scene both as
the interactive programming environment [126] and execution environment [81], which requires balancing
the isolation and resource distribution among parallel tasks and programs. Hence, the context states should be
recorded, maintained, and blocked/activated dynamically based on the programming process to support in-situ
approaches.

1) Scene management for “snapshot”. The key to “snapshot” is to exhibit the scene to the users consistent
with their mental model as well as reduce the cognitive load from unrelated states. First, the system should
record all the device states in the scene (the situated room), rather than the operations to achieve the
scene. Given that some of the recorded states are context-dependent (e.g, the light from the next room may affect
the current light adjustment), the system should also record important implicit environment states (temperature,
brightness) as a reference for further scene iteration. Second, the snapshot rule displayed to users through voice
or visual feedback should only contain related states, including the activated devices and the manipulated devices,
the on/off status, and specific setting values.

2) State priority management for “simulation”. In ISP, the situated environment undertakes automation
editing, testing, and execution, so programming tasks should be prioritized and free of interference. The system
should ensure the programming process will not trigger other rules by mistake or be interrupted the rules under
execution. Especially, in “simulation”, users usually test the automation rules by specifying the simulated trigger.
State priority management should create a virtual state in the system, with higher priority than the real state.
The start of testing mode and the priority strategies should be explicitly informed to users in case of confusion.

7 DISCUSSION, LIMITATIONS AND FUTURE WORKS

7.1 Issues for Real-World Deployment
In this work, we investigated the potentials of in-situ programming (ISP) under an ideal Wizard-Of-Oz setting
mainly to eliminate the effect of system implementation on users’ behavior. Here we further discuss how such
a system to sense human behavior and give intelligent responses can be implemented, as well as the technical
limitations and further research directions. For the sensing system, sensing information frequently used for
interaction includes 1) positions and orientations of humans, devices, and objects [111]; 2) voice commands [108];
3) body and hand gestures [85–87]. Although the latest signal processing (e.g., indoor positioning [28, 111], 6DoF
tracking [34], and speech recognition [108]) and computer vision (e.g., pose tracking [22] and facial landmark
tracking [73]) techniques provided potential sensing solutions to in-situ programming, their performances are to
be evaluated and optimized. Further research on sensor form and tracking algorithms for in-situ programming
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should be conducted. For example, heterogeneous home layout and device deployment bring the challenge to
the tracking and unified representation of human behaviors, where the system should determine the optimal
gestural input channels for reliable performance. The system should also allow certain degrees of customization
for different needs among different user groups (e.g., privacy preservation).
The inference system is expected to resolve user input into system commands and give intelligent responses

to the user. The recent development of large language models (LLMs, e.g., GPT-3 [30]) and corresponding AI-
empowered techniques (e.g., text-to-SQL [127], text generation [30] and dialog [8]) could be potential solutions to
implement a smart and high-fidelity voice agent. For example, when the user says "when I do this gesture (hand
waving upward) and the TV is on, turn up the voice", the inference system first resolves it into IFTTT commands,
checking the validity and giving feedback to the user. Another critical question is how the system deals with
errors in tracking and ambiguity in semantics. As validated in our study, confirmation is an essential mechanism
for ensuring the validity of user-defined rules. Moreover, voice agents with multi-round and context-preserving
dialog capabilities could drive a more intelligent interaction process. For example, the user could interrupt the
agent and append new descriptions to improve semantic clarity while the agent could actively ask for clarification
regarding certain dialog sessions.

7.2 Threats to Validity
This section discussed potential threats to the research validity, and how we alleviated the threats.

7.2.1 Internal Threats. The internal validity in this research refers to the extent to which natural behaviors can
be confidently observed and analyzed.

1) Experimental Effects: Since we explored users’ behavior through user-enactment techniques in a mocked-up
environment, the behavior of participants may be affected by the experiment, slightly different from that in their
homes. Besides, to cover the task features we focused on, we provided users mostly with preset scenarios. The
process of users’ understanding of the scene may affect their configuration behavior. User behavior in open tasks
will be more natural, so realistic smart home programming behaviors need to be explored in the future.

We minimize the experimental threat by providing sufficient time for users to get familiar with the environment
and the enactment scenario. Especially, the scenario is broadcast by the moderator off-site in order to make
participants imagine the scenarios instead of reading the scenario from the documents. After the study, users
rated if they behaved naturally during the study from 1-5. The result is an average of 4.8, with the lowest being 4
and the highest being 5.

2) Observation Limitation: The sensing part of the Wizard-of-Oz system is conducted by researcher observation
and the behavior is analyzed by researchers through videos. Due to technical limitations, we only focused on
direct interaction, such as gestures and voice. Other subtle but meaningful interactive inputs, such as gazing
and facial expressions are not the focus of the analysis. Future works can consider these inputs for a better
understanding of users’ intents and produce a richer set of interaction data.

7.2.2 External Threats. The external threats refer to which extent our findings can the generalized to a broader
context.

1) Participant Bias: Participant bias discussed how the selection of participants affects the generalizability of the
behavior model and the usability of the ISP paradigm. From a demographic perspective, most of the participants
are colleague students around 24 years old. While the population is fairly heterogeneous in age, the young
population (around 18–35 years) and highly-educated students are representatives of potential users of smart
home technology [21, 117]. From a residential perspective, our participants are diverse in living arrangements,
including living with co-occupants (N=9) and living alone (N=7). We do not capture evident differences in behavior
from residential differences, but we collected rules involving co-occupants and non-occupants, indicating future
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research’s attention on the social needs automation [112]. From the users’ knowledge perspective, our participants
vary in different technical backgrounds (8 with technical background and 8 with non-technical background), and
the majority (N=12) are inexperienced in IFTTT settings. Although we unified the system capacity introduction
and the system behaviors through the studies, participants reported that they had different expectations for the
system depending on different technical backgrounds and their previous experiences [93]. For example, a few
naive users (N=2) could not think of advanced system functions like the test. Research on richer user types will
improve the generalizability of the results such as IFTTT advanced users.

2) Scenario Limitations: As we focus on the in-situ behaviors, the study is arranged in a living room and with a
single participant. The limited scenarios may not cover situations of multi-user activities [58] and cross-scenario
tasks. We addressed the threats by allowing free configuration based on participants’ real-life situations. Within
the user-customized scenarios involving multiple users (n=10) and ex-situ scenarios (n=16), we identified similar
behavior patterns to that in the preset scenarios.

7.3 Future Works
We are optimistic that ISP opens up a new direction to explore IoT end-user programming paradigm, which
is ubiquitous, immersive, and seamless. Our research process, dataset, and design implications are helpful for
future research to refine the paradigm. Future works may explore capacities in other programming phases
(e.g., debugging, testing, and management) and real-life feasibility from technical and social perspectives. We
encourage other in-situ solutions to validate and apply our findings in different scenarios. Extensions of user
behavior dataset can serve as valuable materials for future smart home interaction and EUP systems in user
intent recognition, interaction approaches, and performance improvement.

8 CONCLUSION
As AI-based IoT technologies foster a new prospect of future smart homes, this study stepped forward to
understanding how to construct ubiquitous and seamless programming paradigms in AIoT. We proposed in-situ
programming (ISP) as a novel programming paradigm in the IoT environment. By exploring users’ intuitive
interaction patterns, we outlined the programming flow, configuration and confirmation approaches, and users’
behavior features of leveraging in-situ interaction and context. We discussed how in-situ features facilitate a
natural and accessible programming experience and concluded with design recommendations for ISP design.
We believe that in-situ programming (ISP) has excellent potential to improve the smart home automation
programming experience.
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A ADDITIONAL USER STUDY DETAILS
This section includes additional user study details, including device configuration list, introduction scripts, and
the interview questionnaires.

A.1 Introduction Scripts
• System and Environment Introduction
(1) Background

You have just moved into a new apartment with many smart devices in the living room and an intelligent
assistant, XiaoCheng.
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(2) Smart assistant and Interaction
XiaoCheng will always hear you. You can say hello to it, "hi, XiaoCheng" (The system responds). You
do not always have to say wake-up words or wait for a response. By communicating with it, you can
get information about the environment, like temperature and humidity, or control all the devices in
the room, like this: "XiaoCheng, turn on the living room lights" (The system responds and turns on the
ceiling light). In addition, our system can detect your position, posture, movements, gestures, etc., so
you can control it through natural body expressions, like this: "XiaoCheng, turn on this light" (Point to
the floor lamp at the same time, then the system turns on the floor lamp). XiaoCheng is brilliant, so you
can communicate with it as naturally as possible. In addition, you can also directly control the device
through the light switch and the physical button on the device. We provide remote controls for some
devices (TV, air conditioner, curtains, ceiling lights). The control buttons for some devices (fans, floor
lamps) are on the device.

(3) Smart devices
You can control all 16 smart devices in this room. On the coffee table are all the light switch buttons. This
is a floor-to-ceiling window equipped with a smart curtain. There are also eight smart lights, including
a ceiling light, two downlights above the TV, three downlights above the sofa, an ambient light strip,
and a floor lamp. With the button or voice command, you can control the switch, brightness, and color
temperature of these lights. You can also switch between different color modes of the floor lamp and the
ambient light strip. Audio and video equipment includes a TV and a speaker. As for environment-related
devices, we have an air conditioner, a fan, a humidifier, and a floor sweeper.

(4) Automation Configuration
XiaoCheng also supports the configuration of various smart home automation. In the later process, we
will give you the 8 scenarios (showing users the script’s document), you can explore your specific ways to
configure your automation rules by communicating with XiaoCheng and the whole smart environment.
You can query, create, modify, and delete the rules. You can express the rules naturally and freely to
define some automation or configure the environment. When the configuration is complete, you can use
your way to test the rules to check if the effect meets your expectations.

(5) Feedback Interface
During the experiment, you can get real-time feedback from XiaoCheng and the smart environment.
If there is a problem, you can communicate with XiaoCheng for information. To confirm the rules,
we provide you with a visual display to exhibit the configuration status and the content of the rules.
This interface is only used to confirm the information of the rules, and you cannot directly operate the
interface to edit the rules. In addition, you can also ask XiaoCheng to broadcast the rules.

A.2 InterviewQuestionnaire
– Open Questions: Ask about the overall feeling of in-situ programming and the main problems encoun-
tered during the enactment process.

– Questions on Configuration Process:
(1) What is the thinking process when configuring rules?
(2) What interaction interface do you prefer to use?
(3) Different feelings about the configuration of different rule types?
(4) Different feelings about the configuration of different parameter types (human, environment, device)?
(5) Preferences for feedback during configuration?
(6) What is the most important concern in the process of configuration?
(7) What configuration methods will be used and why?

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 66. Publication date: June 2023.



Understanding In-Situ Programming for Smart Home Automation • 66:31

– Questions on Test Process:
(1) What situation will you choose to test, what is the thinking process?
(2) What methods will be used to test the rule, and why?
(3) Preferences for feedback during testing?
(4) What is the most important concern in the process of the test?
– System Expectations:
(1) What kind of assistance do you prefer from intelligent agents?
(2) What do you like and don’t like about the system?
– User Study Optimization: Score immersion rate: 1-5 and talk about feelings and suggestions about the
overall user study process and tasks.

A.3 Device Configuration List
Table 2 illustrates the list of all the smart devices configuration and the supported interaction types.

Table 2. Smart Devices List

Smart Devices List
Category

Devicename Functions supported in the Wizard environment
Supported interaction modes

Function Product Remote
control Button Voice

Light Lamp (8)

Ceiling light Switch, Brightness (set, increase, decrease), Color temperature (set, increase, decrease) 1 1
Downlight1 (above the TV) Switch, Brightness (set, increase, decrease), Color temperature (set, increase, decrease) 1 1
Downlight2 (above the TV) Switch, Brightness (set, increase, decrease), Color temperature (set, increase, decrease) 1 1
Downlight3 (above the sofa) Switch, Brightness (set, increase, decrease), Color temperature (set, increase, decrease) 1 1
Downlight4 (above the sofa) Switch, Brightness (set, increase, decrease), Color temperature (set, increase, decrease) 1 1
Downlight5 (above the sofa Switch, Brightness (set, increase, decrease), Color temperature (set, increase, decrease) 1 1

Floor lamp Switch, Brightness (set, increase, decrease), Color temperature (set, increase, decrease),
Color

1 1

Ambient light strip Switch, Brightness (set, increase, decrease), Color temperature (set, increase, decrease),
Color, Rhythmic pattern, Eight special modes

1 1

Audio & Video
Television (1) Smart television Switch, Volume (set, increase, decrease), Main functions on the remote control (up, down,

right, left, home, choose)
Open an app directly:
1: Bilibili
2: Desktop
3: Photo album
4: Weather
5: Tencent Video
6: Settings
7: Timed Reminder
8: Video headlines
9: Wireless projection
10: Calendar
11: Mango TV
12: Keep
13: QQMusic

1 1 1

Sound (1) Smart sound Play, Pause, Volume (set, increase, decrease), Next / Previous song 1

Environmental
conditioning

Curtain (1) Curtain Open, Close, Set position, Stop at current position 1 1

Temperature &
humidity (3)

Humidifier Switch, Mode (Level1, 2, 3, Constant temperature mode), Humidity (set, increase, decrease) 1 1
Fan Switch, Fan speed, Mode (Natural wind, Normal wind), Oscillation, Rotation (clockwise

and counterclockwise)
1 1

Air conditioner Switch, Mode (heat, cool, dry, fan only), Temperature (set, increase, decrease) 1 1
Cleaning

equipment (1) Floor cleaning robot Turn on, Mode (Sweep, Mop, Sweep and Mop), Go back to base, Stop 1 1

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 66. Publication date: June 2023.


	Abstract
	1 Introduction
	2 Related Works
	2.1 In-Situ Interaction in Smart Homes
	2.2 End-User Programming Paradigms in Smart Homes
	2.3 State of Art of In-Situ Smart Home Programming

	3 Overview of In-Situ Programming Paradigm
	3.1 Concepts, Roles and Design Goals
	3.2 Designing and Prototyping Wizard-of-Oz In-Situ Programming System

	4 User Study
	4.1 Participants
	4.2 Scenario and Task Design
	4.3 Procedure
	4.4 Data Analysis

	5 Findings
	5.1 Interaction Flow
	5.2 Usage of In-Situ Context
	5.3 In-Situ Interaction Style
	5.4 In-Situ Configuration Approach
	5.5 In-Situ Confirmation Approach

	6 Design spaces of In-situ programming paradigm
	6.1 In-Situ Dynamic Programming
	6.2  In-Situ Interface with Coherency and Clarity
	6.3 In-Situ Approaches with State and Scene Management

	7 Discussion, Limitations and Future Works
	7.1 Issues for Real-World Deployment
	7.2 Threats to Validity
	7.3 Future Works

	8 Conclusion
	References
	A Additional User study details
	A.1 Introduction Scripts
	A.2 Interview Questionnaire
	A.3 Device Configuration List


