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ABSTRACT
In this paper, we proposed Squeez’In, a technique on smartphones
that enabled private authentication by holding and squeezing the
phone with a unique pattern. We first explored the design space of
practical squeezing gestures for authentication by analyzing the
participants’ self-designed gestures and squeezing behavior. Re-
sults showed that varying-length gestures with two levels of touch
pressure and duration were the most natural and unambiguous. We
then implemented Squeez’In on an off-the-shelf capacitive sensing
smartphone, and employed an SVM-GBDT model for recognizing
gestures and user-specific behavioral patterns, achieving 99.3% ac-
curacy and 0.93 F1-score when tested on 21 users. A following
14-day study validated the memorability and long-term stability
of Squeez’In. During usability evaluation, compared with gesture
and pin code, Squeez’In achieved significantly faster authentication
speed and higher user preference in terms of privacy and security.

CCS CONCEPTS
• Security and privacy→Authentication; •Human-centered
computing → Touch screens; Interaction techniques.
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1 INTRODUCTION
Nowadays, smartphones have become the most pervasive personal
device in our daily lives. To protect security in various scenarios
(e.g., online payment, APP log-in, and personal information access),
authentication has become one of the most frequent interactions
on smartphones. Currently, smartphones are also widely used for
cross-authentication on websites and IoT devices (e.g., Amazon
Web Services IoT1 and Xiaomi IoT2). As a result, efficient, secure,
and natural smartphone authentication has become a key demand
in the era of mobile computing.

Authentication methods on today’s mainstream smartphones
can be categorized into two kinds: code-based (e.g., pin code and
graphical gesture) and biometric features (e.g., face ID and finger-
print). Being widely commercialized, these methods are simple to
use and can achieve a high authentication speed. However, pin code
and graphical gestures are prone to shoulder-surfing when used
in public, and their code space is limited (usually 6-digit codes or
9-dot gestures). Moreover, users usually feel it difficult to remem-
ber abstract passwords 3. Biometric authentication relies on the
unique physical characteristics of the users, which guarantees high
security. However, the unchangeable biometric information also
1https://aws.amazon.com/cn/iot/solutions/connected-home/
2https://iot.mi.com/new/doc/guidelines-for-access/cloud-access/overview.html
3https://www.forbes.com/sites/daveywinder/2019/12/14/ranked-the-worlds-100-
worst-passwords/
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poses significant risks when copied, and users may hesitate to use
such techniques due to privacy concerns 4.

Aiming at these challenges, researchers have proposed motion-
based authentication techniques [2, 42], which improved the mem-
orability of the codes using gestures, and also leveraged dynamic
behavioral features in addition to static biometric features. How-
ever, the designed motions were usually obvious to be spotted,
limiting their usability in real life. To overcome this problem, re-
searchers have also proposed implicit authentication techniques
[25, 49], which tracked the biometric features continuously to avoid
explicit authentication behavior. However, the demand for continu-
ous tracking also limits the applicable scenarios of these techniques
and may lead to privacy issues.

In this paper, we proposed Squeez’In, a private motion-based
authentication technique for smartphones: users hold and squeeze
the phone with a unique pattern, and both the squeezing gesture
and the user-specific behavioral features are considered during
authentication. The advantages include: 1) squeezing gestures with
multiple dimensions are more expressive compared with codes,
allowing for a bigger code space; 2) the behavioral features during
squeezing are dynamic and specific to users, making it not easy to
copy; 3) squeezing gestures are subtle and hard to be snooped.

To explore the feasibility of Squeez’In, we first conducted a user
study to explore the design space of squeezing gestures. We asked
the participants to design squeezing gestures for authentication in
three scenarios and analyzed the features they leveraged. Results
showed that code length, touch pressure, and touch duration were
the most preferred features. A following user study further exam-
ined the users’ ability to perform gestures with different feature
levels and found that they were capable of controlling two distin-
guishable levels of touch pressure and touch duration, respectively.

We implemented Squeez’In on an off-the-shelf smartphone. Touch
pressure and touch duration were inferred based on the capacitive
sensing data from the touchscreen. Furthermore, we incorporated
SVM and GBDT with data augmentation to achieve robust authen-
tication based on only 3 samples from the user. In a simulation
with the data from 21 users, Squeez’In achieved 99.6% accuracy
of accepting the correct user, with 93.6% probability of rejecting
the attack from other users. A 14-day user study was conducted
to verify the long-term stability of Squeez’In. Results showed that
the users could accurately memorize the squeezing codes, and the
recognition accuracy did not tend to drop over time.

We conducted a final user study to test the usability of Squeez’In
and mainstream authentication techniques. The participants were
asked to pick up and unlock the phones placed at different locations.
Results showed that Squeez’In achieved competitive authentication
accuracy compared with pin code and gesture authentication, but
were significantly faster. Moreover, Squeez’In was highly preferred
in terms of privacy, security, generalizability, and social acceptance.

The contributions of this paper are three-folded:

• For the first time, we systematically explored the features
of user-defined squeezing gestures for authentication. We
proposed applicable features and corresponding values for
designing natural and robust squeezing gestures.

4https://www.bbc.com/news/technology-49343774

• We proposed and implemented Squeez’In on off-the-shelf ca-
pacitive sensing smartphones. Squeez’In incorporated SVM
and GBDT with data augmentation to achieve robust authen-
tication based on only 3 samples from the user.

• Through simulation and user studies, we validated the au-
thentication performance, long-term stability, and usability
of Squeez’In in comparison with mainstream techniques.

2 RELATEDWORK
Currently, commercial products adopt two major kinds of authenti-
cation techniques: code-based (e.g., pin code and graphical track)
and biometric features (e.g., fingerprint and face ID). To facilitate
the usability of authentication techniques, researchers have also
proposed to leverage a wider range of auxiliary features (e.g., be-
havioral feature [2, 42] and contextual information [25]). In this
paper, we mainly reviewed authentication techniques leveraging
capacitive sensing and touch pressure.

2.1 Authentication Techniques on Capacitive
Touchscreens

The capacitive touchscreen is the most common interaction inter-
face on today’s mobile devices. Due to its sensitivity to the human
body, many researchers have tried to leverage it for authentication.
Bodyprint [13] applied the capacitive screen on smartphones as an
image scanner and authenticated the users based on the contact
feature of different body parts (e.g., ear, palm, and finger). Similarly,
Rilvan et al. [41] captured the capacitance image when touching
the phone with the ear or fingers, and used SVM and random forest
for authentication. CapAuth [12] also used SVM to authenticate
the users based on the contact area when they put their fingers to-
gether on the screen. These techniques all relied on static biometric
features for authentication, ensuring high security and potentially
high authentication speed. However, similar to fingerprint authen-
tication, they also posed privacy issues and may be insecure if these
features were copied.

Aiming at this problem, some researchers paid attention to be-
havioral features, as these were dynamic and more expressive. Feng
et al. [10] extracted features from gesture strokes on a touchscreen
and incorporated it with the data sequence from IMU for authenti-
cation. Rilvan et al. [40] monitored the frames of capacitance data
during swiping and performed authentication using SVM. Meng et
al. [28] surveyed different biometric authentication techniques (e.g.,
fingerprint, face ID, palm, and gait) and constructed a multi-phase
authentication system, which significantly reduced the false rate
of single biometric systems. These techniques demonstrated the
possibility of authentication during touch interaction. However,
none of them have explored using squeezing gestures, which were
subtle, private, and potentially efficient as they could be performed
during grasping.

2.2 Authentication Techniques Leveraging
Touch Pressure

Beyond capacitive sensing, touch pressure was also widely used
for authentication [22, 23, 30], as it was inherent during touching
and was easy to control. Force-pin [22] explicitly combined touch
pressure with a 4-digit pin code, significantly expanding the code
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space and achieving higher security. Also, researchers have lever-
aged the implicit touch pressure during pin code [45] and gesture
authentication [9]. These techniques improved the accuracy and ex-
pressiveness of traditional authentication techniques by leveraging
touch pressure, but at the cost of limited generalizability.

There were also works that only used touch pressure for authen-
tication. Murao et al. [30] placed pressure sensors on the lateral
and back of a phone to sense the pressure during gripping for au-
thentication. However, they only focused on grip gestures with
different orders of fingers, and did not fully explore the features
of user-defined gestures. As a result, the authentication error rate
was not low (4% on 5 participants). Meng et al. [29] proposed to
use a touch sequence with two levels of touch pressure on a fixed
keyboard for authentication. Iso et al. [17] extracted the personal
pressure features during key strokes and used a statistic proba-
bilistic model for authentication. However, the accuracy was still
unsatisfying (∼ 90%). Kim et al. [20] evaluated a number of authen-
tication schemes during multi-touch interaction on the tabletop and
found that pressure-based authentication significantly enhanced
shoulder-surfing resistance.

These works have demonstrated the potential of pressure-based
authentication. However, none have systematically explored the
design space of squeezing gestures for authentication. As we will
show in this paper, with carefully designed gestures and algorithms,
satisfying authentication accuracy and usability can be achieved at
the same time.

2.3 Interaction Techniques Leveraging Touch
Pressure

Due to its rich expressiveness, touch pressure has been leveraged
in different kinds of interaction tasks. ForceBoard [56] allowed
the users to adjust the touch pressure to control a cursor on a
keyboard for text entry, demonstrating the users’ ability to con-
tinuously control the touch pressure. PalmBoard [55] proposed a
Markov-Bayesian model that leveraged implicit touch pressure dur-
ing one-handed touch typing for input decoding, which achieved
an input speed of 32.8 WPM. Presstures [39] extended multi-finger
gestures by using the initially applied pressure level for implicit
mode switching. Evaluation results showed that two levels of touch
pressure would yield satisfying interaction performance.

Some researchers have tried to use squeezing for interaction.
Wilson et al. [53] proposed to intentionally control the touch pres-
sure of different fingers while squeezing the phone for various
interaction tasks (e.g., rotation and zooming), which proved the
feasibility of controlling touch pressure during squeezing. Quinn
et al. [37] evaluated the usability of using squeezing gestures on a
Google Pixel 2 smartphone for different activation tasks. However,
the design was limited to one time of squeezing and has not focused
on typical authentication tasks on which users may have different
preferences of features.

The above works inspired us to use squeezing gestures for au-
thentication. However, whether the complexity of squeezing ges-
tures could satisfy the need for authentication and how users would
perform and perceive squeezing-based authentication has never
been explored. In this regard, this work provided the first empirical

results on the design and evaluation of squeezing-based authenti-
cation.

3 STUDY 1: EXPLORING THE DESIGN SPACE
OF SQUEEZING GESTURES

In this section, we asked the participants to design squeezing ges-
tures for authentication purposes in different scenarios, with the
aim to explore the design space of practical squeezing gestures for
Squeez’In.

3.1 Participants and Apparatus
We recruited 15 participants (7 male, 8 female, age = 21.5, SD=1.1)
from the campus. A Huawei Mate 30 Pro smartphone was used as
the apparatus. The phone was 158 × 73𝑚𝑚 in size, with a screen
resolution of 2400×1176. The left and right edges of the touchscreen
were curved and touchable (see Figure 1). The operating system
was EMUI 11.0.0.165 (Android version 10.0). Each participant was
compensated $10.

(a) (b)

Figure 1: Experiment apparatus. (a) Front view. (b) Bottom
view, showed the curved screen.

3.2 Experiment Design
As with pin code and graphical gesture, the squeezing gestures of
Squeez’In would be designed by individual users for themselves
during usage. Therefore, similar to existing works [50], we asked
the participants to design their preferred squeezing gestures for
authentication freely and analyzed the features they leveraged.
Specifically, we tested three scenarios: Payment, APP Login and
Phone Unlock. These were all typical smartphone authentication
scenarios but were usually perceivedwith different levels of security
risk.

3.3 Procedure
We first introduced the idea of Squeez’In to the participants. They
were then asked to design one squeezing gesture for each of the
three scenarios respectively and describe the designed gesture to
the experimenter. The instruction was, “Please design a squeezing
gesture for authentication in this scenario that you would like to
use in your real life.”

To inspire the participants during designing, at the beginning
of the study, we introduced seven features to them that were fre-
quently used in other gesture and pressure-based interaction tech-
niques [9, 30, 37]: code length (number of presses), touch pressure,
touch duration, gripping hand (e.g., both hands vs right hand), num-
ber of fingers (that performed the squeeze), finger identity and touch
location. During designing, we also encouraged the participants
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to include any other features they liked, and they were allowed to
freely try the gestures on the apparatus until determined.

3.4 Results
3.4.1 Usage of Features. In total, we collected 15 participants × 3
scenarios = 45 squeezing gestures. Table 1 showed some examples
of the proposed gestures. Although the participants were allowed
to involve any features they liked, most of the gestures (40/45)
only leveraged the seven features we introduced. In the remaining
5 gestures, three mentioned “finger angle” (e.g., "use the thumb
to press on the bezel with an angle of 45◦”) and two mentioned
“slide/squeeze” (e.g., "use the thumb and the index finger to slide
on both bezels upwards, from lightly to heavily”). Concerning the
low frequency of these two features, we did not include them in
the following analysis.

Table 1: Examples of the gestures proposed by the partici-
pants.

Scenario Squeezing Gesture

Payment

• Hold the phone with four fingers, squeeze in
‘heavy, light, light, heavy’ pattern, with the
same duration.
• Squeeze the phone with increasing pressure
for three times.
• Hold the phone in one hand, use the thumb
and middle finger to squeeze lightly for three
times, followed by three heavy squeezes.

APP Login
• Single hand, double tap with medium pressure.
• Hold the phone with two hands, squeeze shortly
in ‘heavy, light’ pattern.

Phone
Unlock

• Use two fingers to squeeze both sides of the
phone heavily for two times.
• Use four fingers of one hand to squeeze
shortly in ‘light, heavy’ pattern.

The average number of features within one gesture was 2.98
(SD = 0.54). This number implied that participants tended not to
involve too many features simultaneously for authentication pur-
poses, whichmay cause an unnecessarymental and physical burden.
Figure 2a showed the number of gestures that leveraged each fea-
ture in each scenario. In total, code length was the most frequently
used feature (40/45). Meanwhile, about half of the gestures lever-
aged touch pressure (25/45), touch duration (16/45), and number
of fingers (19/45). In comparison, finger identity (13/45), gripping
hand (11/45) and touch location (10/45) were only used in a few
gestures. Repeated Measures Analysis of Variance (RM-ANOVA)
found that the frequency of different features varied significantly
(𝐹6,84 = 15.7, 𝑝 < .05). Meanwhile, no significant difference was
found between different scenarios (𝐹2,28 = 1.08, 𝑝 = .58), indicating
that the participants did not tend to leveragemore features to design
complex squeezing gestures for scenarios with a higher security
risk. This result suggested the potentially high generalizability of
squeezing gestures.

(a) Number of gestures with dif-
ferent features in each scenario.

(b) Distribution of the feature values.

Figure 2: Analysis of the features used in the designed ges-
tures.

3.4.2 Feature Value Distribution. We further analyzed the distri-
bution of the feature values in the gestures. As finger identity and
touch locationwere always dependent on other factors (e.g., number
of fingers) and were complex to aggregate, we did not analyze these
two features.

As shown in Figure 2b, the distribution of code length was rather
scattered, ranging from 1 to over 6. 42% of the gestures’ length
was only two, implying that the participants favored short gestures
but would also accept longer ones. Meanwhile, most gestures (88%)
were designed to contain two levels of touch pressure, which were
usually described in a temporal sequence (e.g. "light, heavy, heavy,
medium, heavy”). Similarly, 88% of the gestures only contained
two levels of touch duration (long vs. short). Regarding number of
fingers, 42% gestures only leveraged two fingers (usually the thumb
and index finger), while 33% leveraged all five fingers to hold and
squeeze the phone stably. 54% of gestures were performed with only
one hand, which suggested the potential advantage of one-handed
interaction.

It could be noticed that code length, touch pressure and touch
duration described the procedure of the squeezing behavior, while
number of fingers, finger identity and gripping hand described the
gripping posture. Considering that the former three factors were
generallymore preferred by the participants (see Figure 2a), and that
detecting the gripping posture (e.g. finger identity) was not feasible
on off-the-shelf smartphones, we concluded that code length, touch
pressure and touch duration was the most recommended features
when designing squeezing gestures for authentication.

3.4.3 Theoretical Code Space. The above results shaped the the-
oretical code space of Squeez’In. According to Figure 2b, in most
cases (excluding the values < 10%), code length 𝐿 ∈ {2, 3, 4, 5},
touch pressure 𝑁𝑝 ∈ {2, 3}, number of fingers 𝑁𝑓 ∈ {2, 4, 5}, and
touch duration 𝑁𝑑 ∈ {2}. We did not take the gripping hand into
calculation as it was highlymixedwith the number of fingers. There-
fore, the theoretical code space of Squeez’In could be calculated as∑
𝐿,𝑁𝑝 ,𝑁𝑓 ,𝑁𝑑

(𝑁𝑝 × 𝑁𝑓 × 𝑁𝑑 )𝐿 ≈ 3.82 × 107, which is 38 times big-
ger than that of 6-digit pin code (1 × 106), and 100 times bigger
than that of 9-dot gesture (no bigger than 3.62 × 105 [51]). When
considering only features of the squeezing behavior, the code space
would be

∑
𝐿,𝑁𝑝 ,𝑁𝑑

(𝑁𝑝 × 𝑁𝑑 )𝐿 ≈ 1.07 × 104, which is achievable
on off-the-shelf smartphones. As the procedure of the squeezing
behavior was generally more subtle and difficult to be observed
than the posture, therefore the corresponding features are expected
to be more robust to shoulder surfing. In real use, the combination
of features could be selected to suit the security demand of different
target scenarios.
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4 STUDY 2: EXAMINING THE
DISTINGUISHABILITY OF THE USERS’
SQUEEZING BEHAVIOR

To explore whether the users could accurately perform squeezing
gestures with different levels of features, we conducted another
user study to examine the distinguishability of the users’ squeezing
behavior.

4.1 Participants and Apparatus
We recruited 14 right-handed participants (6 male, 8 female, age
= 20.2, SD = 0.9) from the campus, none of whom participated in
Study 1. We used the same apparatus as with Study 1. We developed
an Android application to sense and visualize the users’ touch
pressure based on the capacitance data of the touchscreen. The
algorithm details will be described in Section 5.1. Each participant
was compensated $10.

4.2 Experiment Design
This study aimed to explore whether the users could perform
squeezing gestures with different feature values that could be dis-
tinguished. As code length was easy to control (by squeezing and
releasing) and detect, we focused on touch pressure and touch dura-
tion in this study, resulting in two kinds of tasks:

Touch Pressure: we tested gestures with 2 levels (heavy-light-
heavy-light) and 3 levels (light-heavy-medium) of pressure, which
covered all the levels in Figure 2b. According to the pilot study,
providing visual feedback could help the users to control touch
pressure more accurately. Therefore, we tested both in eye-engaged
and eyes-free conditions. The visual feedback was designed as a
bar displayed on the phone, with its length indicating the current
touch pressure.

Touch Duration: we tested gestures with 2 levels (long-short-
long-short) and 3 levels (long-short-medium) of touch duration,
covering 94% of the cases in Figure 2b. As the pilot study found that
providing visual feedback was not so helpful in this task, we did
not provide visual feedback. Instead, we asked the participants to
perform the gestures both with heavy and light pressure in order
to examine the interaction between touch pressure and duration.

4.3 Procedure
The participants were first allowed 5 minutes for warm-up. Then
they completed two sessions of touch pressure tasks in random or-
der, with and without visual feedback, respectively. In each session,
they performed the 2-level and 3-level gestures twice, in random
order, resulting in a total of 4 gestures. We did not specify the touch
duration in this task. After that, the participants completed two
sessions of touch duration tasks in random order, with light and
heavy pressure, respectively. In each session, they were asked to
perform the 2-level and 3-level gestures twice, in random order,
resulting in a total of 4 gestures. During the entire experiment, the
participants held the phone and performed the squeezing code only
with their dominant hand. A short break was enforced between the
two kinds of tasks.

4.4 Results
4.4.1 Touch Pressure. Figure 3 showed the average touch pres-
sure in different conditions. As expected, the exhibited touch pres-
sure increased monotonically with the increase of intended touch
pressure. For two-level gestures, RM-ANOVA found that both in-
tended touch pressure (𝐹1,13 = 672, 𝑝 < .001) and visual feedback
(𝐹1,13 = 109, 𝑝 < .001) yielded significant effect on the exhibited
touch pressure, but with no significant interaction between these
two factors (𝐹1,13 = 1.66, 𝑝 = .22). This implied that the users could
stably perform distinguishable heavy vs. light touches, regardless
of visual feedback. However, providing visual feedback would cause
the participants to press slightly lighter (heavy: 2592g(SD = 85g)vs.
2733g(SD = 103g), light: 2042g(SD = 134g) vs. 2236g(SD = 90g)).

(a) Two levels. (b) Three levels.

Figure 3: Average touch pressure in different conditions.

For three-level gestures, RM-ANOVA found a main effect of in-
tended touch pressure on the exhibited value both in eye-engaged
(𝐹2,26 = 139, 𝑝 < .001) and eyes-free condition (𝐹2,26 = 23.3, 𝑝 <

.001). However, post hoc analysis found that medium (2413g) and
light (2404g) touches in the eyes-free condition were not signifi-
cantly different (𝑝 = .84). This implied that distinguishing three
pressure levels was only applicable with the help of visual feedback.
Again, providing visual feedback was found to lower the touch pres-
sure significantly (𝐹2,26 = 21.9, 𝑝 < .001, heavy: 2690g(SD = 111g)
vs. 2717g(SD = 107g), medium: 2348g(SD = 79g) vs. 2413g(SD =
156g), light: 1999g(SD = 126g) vs. 2404g(SD = 157g)). Therefore, we
recommended 2 levels of touch pressure, which supported eyes-free
interaction that facilitated interaction speed and generalizability.

4.4.2 Touch Duration. Figure 4 showed the average touch duration
in different conditions. Generally, the exhibited touch duration
increased with the increase of the intended touch duration. For two-
level gestures, RM-ANOVA found that both touch pressure (𝐹1,13 =
21.5, 𝑝 < .001) and intended touch duration (𝐹1,13 = 1685, 𝑝 < .001)
yielded a significant effect on the exhibited touch duration, with
no significant interaction between them (𝐹1,13 = 0.205, 𝑝 = .66).
This implied that the users could stably perform long vs. short
touches that were distinguishable, regardless of touch pressure.
When pressing more heavily, users also tended to press longer (long:
1490ms(SD = 71ms) vs. 1364ms(SD = 112ms), short: 792ms(SD =
111ms) vs. 681ms(SD = 56ms)).

For three-level gestures, RM-ANOVA found a main effect of in-
tended touch duration on the measured value both with heavy
(𝐹2,26 = 300, 𝑝 < .001) and light pressure (𝐹2,26 = 721, 𝑝 < .001)
(heavy vs. light for long: 1492ms(SD = 30ms) vs. 1368ms(SD =
64ms), medium: 1207ms(SD = 126ms) vs. 1398ms(SD = 63ms), short:
787ms(SD = 46ms) vs. 680ms(SD = 19ms)). However, post hoc analy-
sis found that the medium (1398ms) and long (1368ms) touches with
light pressure were not significantly different (𝑝 = .28). This implied
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(a) Two levels. (b) Three levels.

Figure 4: Average touch duration in different conditions.

that distinguishing three duration levels was difficult when touched
lightly. RM-ANOVA found that touch pressure significantly affects
touch duration (𝐹2,26 = 56.1, 𝑝 < .001). However, no consistent
trend was found. Considering that in real use, different levels of
touch pressure and touch duration were often mixed together, we
concluded that the 2-level of touch duration was more robust.

5 IMPLEMENTATION OF SQUEEZ’IN
Aswith any other authenticationmethods, the interaction of Squeez’In
contained two parts: Registration and Authentication. During reg-
istration, the user designed his/her unique squeezing gesture and
performed it on the phone several times as samples. During authen-
tication, the user could perform the squeezing gesture on the phone.
A recognizer would analyze the similarity between the registered
samples and the input and judge whether the authentication could
be accepted. In this section, we described the implementation details
of Squeez’In on an off-the-shelf capacitive sensing smartphone.

5.1 Touch Pressure Sensing based on
Capacitance Data

As shown in previous studies, touch pressure was one of the main
features when designing squeezing gestures. However, commer-
cial smartphones were mostly equipped with capacitive-sensing
touchscreens. Although existing works [7, 16, 31] have explored
the possibility of inferring touch pressure based on capacitance
data, none of them can be directly implemented in our case, due to
different contact shape and different hardware module. Therefore,
we derived our own algorithm for touch pressure sensing based on
the collected user data on our apparatus.

5.1.1 Data Collection. We recruited 14 participants (8 male, 6 fe-
male) with a mean age of 20.2 (SD = 0.9) from the campus. Each
participant was compensated $10. The same apparatus as in pre-
vious studies was used. We requested the operating system with
developer-level permission for the raw capacitance data from the
touchscreen, which formed an 18×36matrixwith values in [−1000, 3000]
at 30Hz (see Figure 5a). To capture the ground truth of the touch
pressure, we also attached an RP-C18.3-ST piezo-resistive pressure
sensor on the user’s left thumb, which could sense pressure be-
tween 20–6000g at 10𝐻𝑧 with drift error < 5%. The pressure sensor
sent analog signals to the computer through Arduino-Uno (see
Figure 5b). As the pressure sensor would significantly affect the ca-
pacitance value around the contact area, we asked the participants
to squeeze the phone simultaneously with both thumbs in opposite
directions. According to Newton’s third law, the touch pressure on
the left and right edges would be identical as long as the phone is

kept stable. Therefore, we could sense the touch pressure on the
left edge and the aligned capacitance data on the right edge.

(a) (b)

Figure 5: The apparatus and the squeezing posture during
data collection. The capacitance data was not displayed dur-
ing the study.

Participants were asked to hold the smartphone with both hands
and remain still. They then performed two rounds of squeezing
gestures, each containing five discrete fast squeezes for a warm-up
and one long crescendo squeeze from the lightest to the heaviest
pressure they were able to perform. We used the data during the
crescendo squeeze for further analysis.

5.1.2 Inferring Touch Pressure from Capacitance Data. Inferring
touch pressure from capacitance data was a fundamental problem
for capacitive pressure sensors, which some researchers have also
explored [7, 19]. According to physics equations, touch pressure
and capacitance should be linearly correlated [34, 47], when assum-
ing the contact area to be constant. However, due to the change
of contact area during pressing, and the difference in hardware
modules, existing works have also found other correlations (e.g.,
exponential correlation [44]).

In total, we collected 14 participants× 2 repetitions = 28 crescendo
squeezes. A significant variance was found in the range of touch
pressure across different participants, with the minimum and max-
imum pressure being 10g and 3684g, respectively. We performed
linear fitting between capacitance value and touch pressure for
individual participants. However, the correlation was not strong,
with an average 𝑅2 of only 0.72 (SD = 0.06) (see Figure 6a).

(a) Linear fitting. (b) Exponential fitting.

Figure 6: Fitting between capacitance value and touch pres-
sure across all 14 participants. Capacitance data was aligned
by subtracting the initial value in the first frame (𝑐0).

Although not linearly correlated, the data exhibited an exponen-
tial correlation trend. A linear fitting between capacitance value
and logged pressure for individual participants yielded an average
𝑅2 of 0.91 (SD = 0.04) (see Figure 6b). We speculated that this corre-
lation was due to different sensor structures. Furthermore, it could
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be observed that the fitted lines in Figure 6b formed two clusters
with different slopes, depending on different initial capacitance
(ranging from 1109 to 1914, which may be due to the design of the
sensor). Therefore, we proposed a general model for inferring touch
pressure based on the exponential of capacitance data:

𝑝 =

{
(7.6 × 10−4𝑐0 − 6.5 × 10−1)𝑒0.00375𝑐 , 𝑖 𝑓 𝑐0 < 1500
(4.8 × 10−7𝑐0 − 9.5 × 10−3)𝑒0.0006𝑐 , 𝑖 𝑓 𝑐0 ≥ 1500

(1)

where 𝑝 and 𝑐 denoted pressure and capacitance, respectively. And
𝑐0 denoted the first frame of capacitance data when the finger
touched the screen. The general model achieved an 𝑅2 of 0.91 on
the collective data from all participants.

5.2 Authentication Algorithm
5.2.1 Algorithm Design. As shown in Figure 7, the task of the au-
thentication algorithm contains two parts: 1) during the registration
phase, derives the personalized model automatically based on the
samples provided by the user; 2) during the authentication phase,
tests the input gesture on the model to determine whether to accept
or reject the authentication. To achieve that, we first performed hy-
perparameter pre-training based on collected user data to optimize
the performance (details in Section 6.2).

Figure 7: Algorithm design of Squeez’In.

5.2.2 Personal Model Derivation. To derive a robust personalized
model based on a very limited number of gesture samples (< 5 in
real use), we designed the personal model derivation process that
contained three steps:

Step 1: Data Processing. We continuously formed the raw ca-
pacitance data (18 × 36, 30fps) into a temporal tensor consisting
of different frames. We sequentially adopted spatial and temporal
clustering algorithms for different frames to aggregate connected
touch areas into gesture events. Sliding window smoothing (size =
5, rolling mean filter adopted) was then applied to reduce the input
noise and eliminate accidental touches.

Step 2: Data Augmentation.We used data augmentation to syn-
thesize additional training samples based on the limited samples
provided by the user, which has been proven effective in improving
the recognition performance [24, 33, 54]. Specifically, we added
Gaussian noise sampled from a distribution with mean 0 to the raw
data to create augmented data [52]. The baseline standard deviation
and augmentation ratio were determined according to the collected
user data (see Section 6.2). We treated synthesized samples with
noise ≤ and > 3 standard deviations away from the mean value as
positive and negative samples, respectively. In addition, we also
added pure noise samples as negative samples.

Step 3: Feature Extracting and Model Training. We used Principle
Component Analysis (PCA) to extract features from the processed

data. Following existing works [5, 15, 45], we trialed different mod-
els and finally ensembled non-linear Support Vector Machine (SVM)
and Gradient Boost Decision Tree (GBDT) for recognition. A non-
linear decision gate with 3 branches (“based on SVM to accept”,
“based on GBDT to accept” and “combining SVM and GBDT to
accept”) would judge whether the authentication could be accepted.
Based on the augmented data, we used Scikit-learn for training. We
chose RBF kernel for SVM [35], regularization (𝐶 in scikit-learn)
was set to 3, and tol was fixed as 5 × 10−3 to balance the train-
ing speed (against lengthy iterating) and accuracy (against over-
fitting). For GBDT, we set 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 100, 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 = 1.0
and 𝑎𝑙𝑝ℎ𝑎 = 0.9 as default.

5.2.3 Gesture Recognition. During authentication, Squeez’In first
performed the same data processing and PCA procedure as de-
scribed above on the user’s input gesture. Then, the trained SVM-
GBDT model would perform the recognition and judge whether
the authentication could be accepted.

6 STUDY 3: AUTHENTICATION
PERFORMANCE EVALUATION

In this section, we evaluated the authentication performance of
Squeez’In on the collected data from real users. We also conducted
a 14-day study to validate the memorability and long-term stability
of Squeez’In.

6.1 Data Collection
We recruited 21 right-hand participants (6 male, 15 female, age =
20.0, SD=1.4) from the campus. None of them participated in the
previous studies. The same smartphone was used to collect the data
as in previous studies. Each participant was compensated $15.

In order to control the variety due to participants freely designing
squeezing gestures, we allocated one gesture for each participant
from a pre-defined gesture set with 21 gestures (see Table 2) as
his/her designed code. According to the results from Study 1 and
2, we leveraged three features when designing the gestures: code
length (5-7), touch pressure (heavy vs. light), and touch duration
(short vs. long). Moreover, we defined Gesture Distance as the sum
of the edit distance between two gestures on all three dimensions.
Generally, gestures with closer distances were harder to be distin-
guished. We carefully designed the gestures to ensure that different
levels of gesture distance were covered (from 1 to 12). Therefore,
the results indicated the authentication performance of Squeez’In
in real life.

During the experiment, the 21 gestures were randomly assigned
to the 21 participants. The participants first familiarized themselves
with the apparatus and the gesture. Then they performed the ges-
ture on the apparatus repetitively for 8 times using their dominant
hand, during which the experiment platform recorded the capac-
itance data. After each repetition, the participants were asked to
drop and pick up the phone again after a short break (30-60 seconds),
which ensures the variety in gripping postures and data indepen-
dence. The study lasted about 10-15 minutes for each participant.
In total, we collected 21 participants × 8 repetitions = 168 gestures.
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Table 2: Gesture set used in Study 3. For touch pressure, 𝐻
and 𝐿 denoted heavy and light, respectively. For touch dura-
tion, 𝑆 and 𝐿 denoted short and long, respectively.

Length = 5 Length = 6 Length = 7
Pressure Duration Pressure Duration Pressure Duration
HLLLL LSSLL HLLHLH LSSLSL HLLHLHL SSLSSSL
HLLHH LSSLL LHHLLL LSSLSL HLHLLLH SSLSSSL
LHHLL LSSLL LLLHLH LSSLSL LHHLLLH SSLSSSL
HLLLH LSSLL HLHHLL LSSLSL HLLLLHL SSLSSSL
LHHLL SLSLL LHHLLL LSLLSL HLLHLHL SLLSSSL
LHHLL SLLSS LHHLLL SLSLSL HLLHLHL LSLSSLS
LHHLL LSSLS LHHLLL SLSSLL HLLHLHL SLSLLLS

6.2 Algorithm Parameter Optimization
Based on the collected user data in Study 3, we optimized the
remaining algorithm parameters of Squeez’In for data augmentation
and model derivation (see Section 5.2.2) using a grid search and line
search [11, 21]. Thresholds for non-linear gates were first optimized
using line search and other parameters were then optimized using
grid search respectively to minimize searching cost while obtaining
optimized results. For each parameter’s setting, we took 3 repeated
tests (with different random seeds). For each test, we randomly
chose 7 samples from each participant as registration samples and
used the remaining 1 sample as test data. Then we applied the data
processing, data augmentation and model derivation procedure
to the data and got the final authentication accuracy. Finally, the
parameter value with the highest average accuracy over 3 repeated
tests would be chosen and used in Squeez’In.

According to the simulation, we set the standard deviation of
Gaussian noise during data augmentation to 1/3 of the standard
deviation in the users’ data and augmentation ratio to 20. The
dimension of the PCA layer was compressed from 23 (the dimension
of the input vector after paddingwas 23) to 20. And the thresholds of
the non-linear gate were set to 0.45, 0.65, 0.75 and 0.85, respectively.

6.3 Simulation Design
This study aimed to evaluate Squeez’In’s ability to accept the input
from the correct user, while rejecting the input from other users.
We used the algorithm design and parameters described above
(also see Figure 7), and used 8-fold cross-validation. In each round
of the simulation, we used 7 samples from each participant as
registration samples to derive his/her personalizedmodel and tested
the authentication accuracy of all the models using the remaining
samples from all the participants (21 samples × 21 models = 441
tests). We calculated the metrics by averaging the performance of
all the 21 personalized models in 8 rounds.

6.4 Results
6.4.1 Authentication Accuracy. We calculated authentication accu-
racy as the total number of accepted positive samples and rejected
negative samples, divided by the number of all test samples [8].
Across all participants, the average authentication accuracy was
99.3% (SD = 1.1%), proving the robustness of Squeez’In. On average,
the recall, precision and F1-score were 93.6%, 91.6% and 0.93, re-
spectively. The False Acceptance Rate (FAR) and False Rejection Rate

(FRR) [6] were 0.4% (SD = 0.1%) and 6.4% (SD = 0.8%) respectively.
This suggested that Squeez’In could accurately accept the correct
input, while rejecting the input from other users.

6.4.2 Model Combination Strategy. To test the contribution of PCA
and the model components (SVM and GBDT), we performed an
ablation study [36] with the same simulation design and parameter
values. Compare

d with the accuracy of 99.3% on the original algorithm, omitting
PCA slightly dropped the accuracy to 95.0% (SD = 4.1%). More
significantly, the algorithm only achieved 73.3% (SD = 18.8%) and
63.3% (SD = 20.1%) accuracy without SVM and GBDT, respectively.
We observed that SVM performed better for longer gestures and
explicit features (e.g., touch pressure and duration), and GBDT
performed better for shorter gestures and implicit features (e.g.
user-specific behavioral features). Therefore, we concluded that
the components were all necessary for the effectiveness of our
algorithm.

6.4.3 Effect of Sample Size. The effort for registration was impor-
tant for any authentication techniques. Therefore, we also tested
the influence of Squeez’In ’s effectiveness when reducing the num-
ber of registration samples. Following the 8-fold cross-validation
experiment design, we varied the number of chosen samples (𝑁 )
from each participant, with 1 ≤ 𝑁 ≤ 7. Figure 8 showed the aver-
age accuracy with different sample sizes. As expected, a significant
effect of sample size was found on accuracy using RM-ANOVA (
𝐹6,120 = 806, 𝑝 < .001). With more samples, the accuracy increased
monotonically. However, reducing the sample size was still possible.
Post hoc analysis found no significant difference between adjacent
pairs when 𝑁 ≥ 3 (all 𝑝 value > .14). And for ≥ 3 samples, the
accuracy was all above 91.0%.

Meanwhile, we found that data augmentation played an impor-
tant role in avoiding over-fitting. Reducing the augmentation ratio
by half would cause the accuracy to drop to below 50%. Therefore,
we concluded that a minimum number of three samples were re-
quired during registration and proper data augmentation should
be added to ensure accuracy in real use. This was close to the repe-
titions of graphical gesture and pin code (one for entering and one
for confirmation).

Figure 8: Authentication accuracy with different sample
sizes. Error bar showed one standard deviation.

6.4.4 Robustness to Gesture Collision. Code collision was a se-
vere challenge for any code-based authentication technique, which
happened when two users accidentally designed the same code.
Considering the user-specific behavioral features during squeezing,
Squeez’In was expected to distinguish different users even when



Squeez’In: Private Authentication on Smartphones based on Squeezing Gestures CHI ’23, April 23–28, 2023, Hamburg, Germany

they performed the same gestures. To verify this, we collected more
data to run another simulation.

We recruited another 8 participants (6 male, 2 female, age = 19.2,
SD=0.5, no overlap with the 21 users), and asked them to perform
the same gestures. We chose three gestures with different lengths
from Table 2 (shown in red), and each participant was asked to
perform all three gestures eight times, similar to in Section 6.1. We
tested the three gestures separately to simulate gesture collision.
During simulation, we used the same algorithm parameters and
8-fold cross-validation design (see Section 6.3).

(a) (b)

Figure 9: (a) Acceptance rate and (b) FAR for different ges-
tures. Error bar showed one standard deviation.

Figure 9 showed the acceptance rate and FAR for different ges-
tures. Across the three gestures, the average acceptance rate for
positive samples was 94.8%, and the FAR was 2.4%. Interestingly,
with the increase in code length, the acceptance rate also increased
monotonically (93.1%(SD=0.2%), 95.0%(SD=0.2%), 96.3%(SD=0.7%)),
while FAR dropped monotonically (4.1%(SD=0.2%), 2.1%(SD=0.3%)
and 1.0%(SD=0.2%)). We speculated this was due to more infor-
mation on the user-specific behavioral features when performing
longer gestures. For gestures with length ≥ 7, the FAR was only 1%.
Considering the very low frequency of gesture collision in actual
use, we concluded that Squeez’In could achieve high robustness
and accuracy during authentication, and has significant advantages
over conventional code-based authentication techniques (e.g., pin
code and graphical gestures) when handling code collision.

6.5 Long-term Stability
Similar to existing works [22, 29], we conducted another 14-day
user study with 24 participants to validate the long-term stability
of Squeez’In, which was important for evaluating its memorability
and robustness in real world.

6.5.1 Participants and Apparatus. We recruited 24 participants (15
male, 9 female, age = 20.9, SD=1.4) from the campus. None of them
have participated in previous studies and three of them were left-
handed. The same smartphone as in previous studies was used as
the apparatus. Each participant was compensated $15∼$20.

6.5.2 Design and Procedure. In this study, we adopted a within-
subjects design with one factor: technique (Squeez’In, 4-digit pin
code, 6-digit pin code and gesture). We designed the complete user
study to last for 14 days. On the first day (day-0), we asked all
the participants to design a unique code or pattern for each of the
techniques “that would be used for a long period of time in the
future, and had not been used before”. They then performed the
registration and authentication process once for all the techniques

in random order. Similar to existing works [22, 29], we asked them
to come back and authenticate again with increasing time intervals
(i.e., on day 1, 2, 3, 5, 7, 9, 11 and 13).

Each day, the participants completed the authentication task for
all four techniques in random order. For each technique, to reflect
memorability, we first asked them to write down the code. If they
failed to correctly recall the code, we would present the correct code
as feedback. After that, the participants were asked to perform the
authentication on the apparatus once. As the accuracy of pin code
and gesture were very high given the correct code, we only tested
Squeez’In, which may be affected by different body conditions (e.g.,
humidity and muscle strength).

6.5.3 Results. Because of COVID-19, 9 participants dropped out
after day-9, the rest 15 participants finished the 14-day study. We
analyzed the error rate of memorization and recognition separately.

Designed Code for Squeez’In We analyzed the length of the
participants’ designed code for Squeez’In. The average code length
was 5.6 (SD = 1.3). 4/24 participants designed code with length ≥ 7,
while 5/24 participants designed code with length of 4. This implied
that most participants preferred codes with length between 5 and
6. We noticed that to facilitate the memorability of the code, over
half of the participants (16/24) correlated their code with phrases
of a song (e.g., by mapping the touch pressure and duration to the
rhythm of a song, similar with the finding in existing works [14]),
poetry or rhythms, resulting in longer codes compared with Study
1.

(a) Error rate for all 24 participants
across 9 days.

(b) Error rate for 15 participants
across 14 days.

Figure 10: Memorization error rate of different techniques.

Memorability Figure 10a and 10b showed the memorization
error rate of different techniques across different days. We per-
formed two-way ANOVA on the 9-day data from 24 participants,
no significant difference was found among different techniques
(𝐹3,24 = 1.95, 𝑝 = .15). All the memorization errors occurred within
day-5, with the most errors occurring on day-2. Generally, Squeez’In
achieved a higher memorization accuracy than 6-digit pin code and
gesture. Meanwhile, Time yielded a significant effect on the error
rate (𝐹8,24 = 4.41, 𝑝 < .01). However, post hoc analysis found no
significant difference among the error rate on different days.

Recognition Error Rate Figure 11a and 11b showed the recog-
nition error rate of Squeez’In across different days. Noticeably, no
error was observed on day-0, confirming that the participants could
successfully learn to use Squeez’In at the first trial. By analyzing the
data from all 24 participants, we found that the error rate increased
to 8.3% on day-1, and kept between 4.1% and 16.6% in the following
week, with an average value of 7.1%. This was close to the recall
rate (93.6%) in the previous study. One-way ANOVA did not find
a significant effect of time on error rate (𝐹6,161 = 0.981, 𝑝 = .44) ,
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implying that Squeez’In could stably recognize the squeezing ges-
tures from users across time. One-way ANOVA on the 14-day data
from 15 participants did not find different results (𝐹8,126 = 0.378,
𝑝 = .93).

(a) Recognition error rate for all 24
participants across 9 days.

(b) Recognition error rate for 15 par-
ticipants across 14 days.

Figure 11: Recognition error rate of Squeez’In across differ-
ent days.

7 STUDY 4: USABILITY EVALUATION IN
REAL SCENARIOS

In Study 3, we have demonstrated the authentication performance
of Squeez’In through simulation. In this section, we further evalu-
ated the usability of Squeez’In in real scenarios.

7.1 Participants and Apparatus
We recruited 18 participants (9 male, 9 female, age = 20.0, SD=1.2)
from the campus. Four of them have participated in previous stud-
ies. Each participant was compensated $15. The same smartphone
as in previous studies was used as the apparatus with the same
operating system. We developed the experiment platform using An-
droid Studio. The capacitance data on the touchscreen was collected
by the platform, and was sent to a MacBook Pro laptop for online
recognition (developed using Python 3.8) via wireless network. The
computing and network delay was less than 500ms.

7.2 Experiment Design
In this study, we used a two-factor, within-subjects design with
technique and scenario as the factors. We tested Squeez’In as well as
four common authentication techniques as baselines: gesture, pin
code, fingerprint, and face ID. For each technique, the participants
first registered the gesture, code or bio-information. We then asked
them to unlock the phone using it. The detailed interaction for each
technique was:

Squeez’In: According to previous results (see Figure 8), we de-
signed the number of required samples during registration to be
three. During entering, the platform showed the current touch
pressure as the visual feedback (see Figure 12a). Participants were
free to design their own gestures with lengths between 4 and 6
(consistent with Study 3), and with 2 levels of pressure and dura-
tion respectively. During authentication, the screen was black with
no visual feedback until successfully unlocked. The algorithm for
authentication was the same as described in Study 3.

Gesture: Participants designed their own gesture that covered at
least 6 out of the 9 dots and repeated it twice during registration (to
ensure an acceptable security [3, 48]). During authentication, the
dots and the drawn gesture would be displayed as visual feedback
(see Figure 12b).

Pin Code: Participants designed their own pin code with 6 digits
and repeated it twice during registration (consistent with the built-
in pin code of iPhone 13 and Huawei Mate30 smartphones). During
authentication, the keyboard and the input code would be displayed
as visual feedback (see Figure 12c).

Fingerprint and Face ID: We used the built-in fingerprint and
face ID authentication of the operating system. Participants were
asked to register their right thumb’s fingerprint or their face ID
following the system’s guidance (see Figure 12d and Figure 12e).
During authentication, no visual feedback was provided.

(a) Squeez’In (b) Gesture (c) Pin code (d) Finger-
print

(e) face ID

Figure 12: User interface of the five authentication tech-
niques.

To simulate the authentication experience in real life, we de-
signed three scenarios with different phone locations: At Hand
(hold the phone on the dominant hand with the screen off), On
Table (sit at a table with the phone placed on it) and In Pocket (walk
with the phone in the trouser pocket) [18]. In all the scenarios, we
distracted the participants by chatting, and a ring sound would be
played at a random time. Upon hearing it, the participants were
asked to unlock the phone as quickly as possible, simulating the
scenario of answering phone calls and notifications.

7.3 Procedure
Participants were first allowed 5 minutes for warm up. They then
completed five sessions of tasks, each corresponding to one authen-
tication technique, in random order (according to the output of a
shuffle algorithm). For each technique, the participants first com-
pleted the registration procedure, and then completed three blocks
of authentication tasks, one for each scenario, in random order. In
each block, we first started chatting with them to distract their at-
tention. After a random time between 30–60 seconds, a ring sound
would be played on the phone, and the participants were required
to pick up and unlock the phone using the specified technique as
quickly as possible. They were asked to keep trying until comple-
tion, and the platform recorded all the attempts for analysis. After
the experiment, questionnaires and interviews were conducted to
gather their subjective ratings and feedback. The whole study took
about 45 minutes.

7.4 Results
In total, We collected data from 18 participants × 5 techniques = 90
registration tasks and 18 participants × 3 scenarios × 5 techniques
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= 270 authentication tasks. We used RM-ANOVA for statistical tests,
and Friedman test for non-parametric tests.

7.4.1 Registration Time. We measured the registration time as the
time spent on entering the code samples, not including the time for
designing codes. As showed in Figure 13, the average registration
time for Squeez’In, gesture, pin code, fingerprint and face ID was
14.5s (SD = 4.7s), 4.1s (SD = 2.6s), 3.6s (SD = 1.9s), 75.6s (SD =
11.9s), and 20.5s (SD = 7.4s) respectively. Significant difference
was found between different techniques (𝐹4,68 = 324, 𝑝 < .001).
Post hoc analysis found that Squeez’In was significantly faster than
fingerprint (𝑝 < .001) and face ID (𝑝 < .05), but significantly slower
than gesture (𝑝 < .001) and pin code (𝑝 < .001).

Figure 13: Average registration time for different techniques.
Error bar showed one standard deviation.

Comparedwith gesture and pin code, the registration of Squeez’In
required more repetitions (3 vs. 2), and performing gestures were
generally slower than taps [4, 32], therefore this result was ex-
pectable. However, Squeez’In was 29% faster than face ID, and even
81% faster than fingerprint, which was inspiring as they all collected
user-specific features (behavioral feature or bio-information). Note
that in real usage, registration was only performed once for each
code, therefore the difference was not crucial to the usability.

7.4.2 Authentication Time. We calculated the authentication time
as the elapse between the moment the ring sounded and authenti-
cation was accepted (including reaction time, picking up the phone
and authenticating). As shown in Figure 14a, the average authenti-
cation time for Squeez’In, gesture, pin code, fingerprint and face ID
across all scenarios was 6.7s (SD = 0.5s), 7.8s (SD = 0.3s), 7.6s (SD =
0.3s), 5.7s (SD = 0.2s) and 4.0s (SD = 0.2s), respectively, which was
significantly different (𝐹4,68 = 26.8, 𝑝 < .001). In all three scenarios,
Squeez’In achieved significantly faster authentication speed than
gesture and pin code (post-hoc test 𝑝 < .05). While fingerprint and
face ID achieved the fastest authentication speed, as they did not
require code entering. Meanwhile, scenario was found to yield a
significant effect on authentication time (𝐹2,34 = 42.6, 𝑝 < .001). As
expected, at hand yielded the shortest authentication time, while
in pocket was generally the slowest.

(a) Authentication time. (b) Preparation time and input time.

Figure 14: Authentication time, preparation time and input
time for different techniques.

We then split the authentication time of the three code-based
techniques into preparation time and input time, which denoted
the time before and after the first touch event, respectively. As
showed in Figure 14b, both scenario (𝐹2,34 = 17.8, 𝑝 < .001) and
technique (𝐹2,34 = 11.2, 𝑝 < .001) was found to significantly affect
the preparation time. Post hoc analysis found that the preparation
time of Squeez’In was significantly shorter than gesture (𝑝 < .01)
and pin code (𝑝 < .001). We observed that when using Squeez’In,
participants could learn to start performing the gesture during
picking up the phone, which helped shorten the preparation time,
especially when in pocket.

The input time of Squeez’Inwas significantly longer than gesture
and pin code (𝐹2,34 = 22.0, 𝑝 < .001), but the difference was not
big (< 0.7 s). We speculated this was due to a slower speed of
performing squeezing gestures compared with taps, and the usage
of long duration in the squeezing gestures. However, the difference
in input time was much smaller than that in preparation time.
Therefore, Squeez’In still showed advantages in terms of the total
authentication time in all cases (see Figure 14a).

The average input time of Squeez’In across the three scenar-
ios was 2.91s (SD = 0.71s), which was comparable with existing
pressure-based pin code authentication techniques (e.g., 3.66s using
4-digit pin code [22] and 2.30s after 10 days of usage [29]). Consid-
ering the longer code length in our study (average length = 5.4),
Squeez’In achieved a faster input speed per digit (0.54s vs 0.92s vs.
0.82s). Moreover, Squeez’In allowed the users to perform the input
while picking up the phone, therefore further shortening the total
authentication time compared with the techniques that required
tapping on the touchscreen.

7.4.3 Authentication Accuracy. Consistent with existing works [9,
57], we calculated authentication accuracy as the ratio between
the number of successful trials and the total number of detected
attempts. We did not analyze the authentication accuracy for face
ID, as the total number of attempts was undetermined. When at
hand and in pocket, all the techniques achieved a 100% accuracy
except for gesture when at hand (94.7%, failed once) and Squeez’In
when in pocket (94.7%, one unintentional squeeze to avoid the phone
from slipping away).

When on table, the accuracy of the techniques all dropped, with
only fingerprint remaining a 100% accuracy. Squeez’In achieved
90.0% accuracy with two failed cases. Gesture achieved 94.7% accu-
racywith one failed case. Among all the failed cases, the participants
were able to authenticate successfully in the second trial, confirm-
ing the reliability of the techniques. In comparison, the pin code
only achieved 78.2% accuracy as one participant forgot the code
and retried it five times. No significant different was found between
Squeez’In, gesture and pin code (𝐹2,34 = 0.551, 𝑝 = .58).

7.4.4 Subjective Ratings. We collected the participants’ subjective
ratings towards the techniques using a 7-point Likert-scale ques-
tionnaire (7: most positive, 1: most negative). Dimensions include:
Security (how hard to be guessed out), Privacy, Social Acceptance
(willingness to use in public), Generalizability and Memorability.
Figure 15 showed the average rating of different techniques.

A Significant difference was found between the five techniques
in terms of Privacy (𝜒2 (4) = 17.8, 𝑝 < .001), Social Acceptance
(𝜒2 (4) = 18.7, 𝑝 < .001), Generalizability (𝜒2 (4) = 19.8, 𝑝 < .001),
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Figure 15: Subjective ratings of different techniques (7: most
positive, 1: most negative). Error bar showed one standard
deviation.

and Security (𝜒2 (4) = 17.0, 𝑝 = .002). Among the five techniques,
Squeez’In received the highest rating on all the five dimensions
except for Memorability and Social Acceptance. However, no sig-
nificant difference was found between Squeez’In and fingerprint
on Social Acceptance (𝜒2 (2) = 0.40, 𝑝 = .53), or between the three
code-based techniques on Memorability (𝜒2 (2) = 1.75, 𝑝 = .42).

8 DISCUSSION
8.1 Feasibility of Squeez’In
8.1.1 Theoretical Code Space. In Study 1, we have analyzed the the-
oretical code space of Squeez’In based on users’ preferred features,
which is greater than pin code and gesture authentication. Accord-
ing to the results in Study 2, we recommended that 𝑁𝑝 = 𝑁𝑑 = 2
was optimal for practical use, resulting in 𝑁 = 4𝐿 . This may seem
smaller than pin code (10𝐿), but Squeez’In also leveraged the be-
havioral biometrics of the user, and could leverage more auxiliary
features (see Figure 2a) to significantly improve the distinguishabil-
ity between gestures. In Study 3, we demonstrated that Squeez’In
could achieve a FAR of only 2.4% even for the same gestures from
different users. Therefore, we believed that the “effective” code
space of Squeez’In was sufficient for real use.

8.1.2 Security. The design of Squeez’In combined code-based and
behavioral biometric authentication techniques, achieving a high-
security level by combining respective advantages: 1) When design-
ing squeezing codes, a number of features could be leveraged by
the users, which formed a vast code space. Compared with gesture
and pin code, the user-specific behavioral features make attacking
difficult even if the code were known by others (see Section 6.4.4); 2)
Compared with fingerprint and face ID, squeezing codes are hidden
when not in use. Therefore, they cannot be stolen during sleeping,
and users are able to change the codes once the data was attacked. 3)
Squeezing gestures are subtle (especially the squeezing procedure
features), and could be performed during picking up the phone
eyes-freely. Therefore, Squeez’In was robust to shoulder-surfing,
and was more socially acceptable (see Figure 15).

Regarding the potential drawback of robustness, our SVM-GBDT
model was proved effective to recognize the user-specific behavioral
features, and tolerate input noise (see the results of the long-term
stability study).

8.1.3 Usability. In Study 4, Squeez’In achieved faster registration
speed than fingerprint and face ID and faster authentication speed
than gesture and pin code, which were all mainstream authentica-
tion techniques. Besides, Squeez’In was more preferred in terms of
security, privacy, generalizability and social acceptance, confirming
its usability in real scenarios. We deferred this to five reasons: 1)

the design of squeezing gestures was intuitive, which were based
on the preferred features proposed by the participants (see Study
1); 2) the performing of squeezing gestures fitted humans’ motion
control ability, thus minimizing the mental and physical effort (see
Study 2); 3) the required number of samples during registration was
optimized to balance the authentication accuracy and effort (see
Figure 8); 4) the authentication accuracy of Squeez’Inwas satisfying;
therefore users could successfully authenticate within one trial in
most of the time, even during grasping the phone (see Study 4); 5)
Squeez’In could be used with a single hand and eyes-freely, allowing
a wider range of application scenarios (e.g. when the other hand or
the eyes were occupied).

In the long-term stability study, some participants mentioned
that they became more familiar with the technique over time, and
could perform squeezing gestures faster and more comfortably,
which suggested a learning trend. Also, providing more samples
during registration could help further increase the authentication
accuracy (see Figure 8). Therefore, we believed that with more
practice and more samples (e.g., using online learning), the usability
of Squeez’In could be further improved in scenarios with higher
demand.

As we used intentional squeezing behavior for authentication,
natural squeezing behavior during grasping may lead to uninten-
tional triggering. During the interview in Study 4, participants
mentioned that they would design the squeezing gestures such that
the combination of touch duration and pressure was different from
that in natural squeezing behaviors. And in result, no unintentional
authentication was triggered during picking up and holding the
phone, only one happened when the phone slipped away.

8.1.4 Memorability. In Figure 15, Squeez’In was rated higher than
gesture authentication in terms of memorability. According to the
interview, this was due to the richer expressiveness of squeezing
gestures compared with a simple gesture on only 9 dots. This made
the squeezing gestures less abstract, and thus easier to memorize.
When designing pin codes, most participants usedmeaningful digits
(e.g. birthday) to help memorize the code. Similarly, this strategy
was also observed when designing squeezing gestures in the long-
term stability study (see Section 6.5) and Study 4, which they felt
was very helpful and interesting. Of course, unlike fingerprint and
face ID, squeezing gestures still need to bememorized, which we see
as a trade-off between flexibility and usability. And we concluded
that memorizing squeezing gestures was achievable and applicable
with proper design.

8.2 Design Implications
In Study 1 and Study 2, we found that touch pressure and dura-
tion were the most preferred features when designing squeezing
gestures, and the users could stably distinguish two levels for each
feature. This result not only supported the design of Squeez’In,
but could also direct other squeezing-based interaction techniques.
Moreover, recognizing gripping posture and finger identity would
be valuable for further improving the expressiveness of squeezing-
based interaction (see Figure 2a). Finally, we found that providing
visual feedback enabled the users to distinguishmore levels of touch
pressure (see Figure 3), which may help techniques that required
more precise control (e.g., pointing).
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The user studies in this paper demonstrated the usability of the
squeezing gesture in authentication. The results and interview in
Study 4 also pointed out other application possibilities. For exam-
ple, the eyes-free interaction ability of Squeez’In made it helpful
for visually impaired users [1]. And squeezing could be incorpo-
rated with other subtle interaction techniques (e.g., [26, 38, 46])
to complete more complex tasks on smartphones, and for more
privacy-sensitive scenarios [11, 43].

9 LIMITATION AND FUTUREWORKS
First, in this paper, we emphasized code length, touch pressure and
duration as the features when designing squeezing gestures, as
these were the most preferred and expressive features. However, as
proposed by the participants, other features (e.g., finger identity)
could also be leveraged to enrich Squeez’In. We planned to improve
the algorithm for sensing more features during squeezing, and
explore the feasibility of leveraging these features in real use.

Second, we implemented Squeez’In on a curved-screen smart-
phone, as it could provide more information on the bezel during
squeezing. Although curved-screen smartphone was popular, this
may limit the generalizability of the algorithm to conventional
smartphones. During the studies, we observed that squeezing could
also affect the capacitive sensors on the edge of the front screen
(see Figure 5a). Therefore, sensing squeezing gestures on the front
screen (e.g. using CNN to estimate finger orientation [27]) was
worth exploring. We deferred this to future work.

Third, we evaluated the authentication performance and usabil-
ity of Squeez’In through simulation and controlled studies, and
demonstrated its feasibility in unlocking tasks. Moreover, our par-
ticipants were highly homogeneous in terms of age. Although this
was helpful for ensuring the internal validity of the results, vali-
dating the performance in the wild with more participants, more
diverse user demographics and more scenarios (including payment
and APP login) was also worthwhile. We planned this in future
work.
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10 CONCLUSION
In this paper, we proposed Squeez’In, a technique that leveraged
squeezing gestures to support subtle authentication on smartphones.
In the first user study, we analyzed the user-defined squeezing ges-
tures to elicit the common features, and selected code length, touch
pressure and duration as the most recommended features. We fur-
ther tested the users’ motion control ability during squeezing in
terms of touch pressure and duration, and found that two-level
was the most applicable density. We implemented Squeez’In on a
capacitive sensing smartphone, and tested its authentication per-
formance on the data from 21 real users. Results showed that an
SVM-GBDT model with 7 samples could reach an accuracy of 99.3%
and an F1-score of 0.93. A following 14-day user study verified
the memoribility and long-term stability of Squeez’In. We finally

evaluated the usability of Squeez’In with four mainstream authenti-
cation techniques in three scenarios. Results showed that Squeez’In
achieved competitive accuracy with gesture and pin code, while re-
ceiving significantly faster authentication speed and higher ratings
on privacy and generalizability. This paper demonstrated the feasi-
bility of squeezing gestures for interaction, and proposed Squeez’In
as an efficient, accurate and private authentication technique on
smartphones.
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