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ABSTRACT
This work focuses on an active topic in the HCI community, namely
tutorial creation by demonstration. We present a novel tool named
SmartRecorder that facilitates people, without video editing skills,
creating video tutorials for smartphone interaction tasks. As auto-
matic interaction trace extraction is a key component to tutorial gen-
eration, we seek to tackle the challenges of automatically extracting
user interaction traces on smartphones from screencasts. Uniquely,
with respect to prior research in this field, we combine computer
vision techniques with IMU-based sensing algorithms, and the tech-
nical evaluation results show the importance of smartphone IMU
data in improving system performance. With the extracted key
information of each step, SmartRecorder generates instructional
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content initially and provides tutorial creators with a tutorial refine-
ment editor designed based on a high recall (99.38%) of key steps to
revise the initial instructional content. Finally, SmartRecorder gen-
erates video tutorials based on refined instructional content. The
results of the user study demonstrate that SmartRecorder allows
non-experts to create smartphone usage video tutorials with less
time and higher satisfaction from recipients.
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1 INTRODUCTION
Video tutorials for smartphone interaction tasks, abundant on
websites like Youtube, are essential to help users tackle the chal-
lenges that multiple smartphone functions bring. However, creat-
ing video tutorials requires video editing skills, which challenges
non-experts [7]. Furthermore, making tutorials manually is also
time-consuming because of the variety of smartphone interfaces
and interaction tasks. We seek to design an automatic system with
minimal human intervention to lower the human effort when cre-
ating video tutorials about smartphone interaction tasks so that
people without video editing skills can still make smartphone usage
video tutorials easily and efficiently.

Creating video tutorials with professional software (e.g., Adobe
Premiere, iMovie) is challenging for non-experts [6, 7, 21]. To lower
the efforts for tutorial creation, some related works (e.g., MixT [10])
focus on extracting user steps from screencasts and generating
instructional content automatically to liberate tutorial creators
from editing instructional content. However, existing methods for
extracting interaction traces have limitations that restrict their prac-
tical use on smartphones. For example, some works obtain touch
events from touchscreen capacity signal [41] or AccesssibilityNodes
of Android Application Framework [39] on a smartphone so that
the explicit interaction events obtained from the operating system
can assist screencast analysis and tutorial generation. However,
obtaining capacity signals is impossible for off-the-shelf devices.
Granting the rights for Accessibility API can take a few steps and
brings extra trouble to tutorial creators. Additionally, Accessibility
API allows the third party to inject actions to execute auto-clicks or
other simulated gestures to control the users’ device, which brings
high privacy risks to users. We argue that using detailed data from
the operating system framework is not the only way to accomplish
automatic user step extraction. For vision-based methods towards
extracting user actions from video recordings, existing approaches
rely on tracking or detecting salient features in the video like mouse
cursor [1, 10, 27], touch indicator [4, 5], and users’ hands or fin-
gers [11]. However, these features are not standard in smartphone
screencasts. Using pure vision-based methods to deal with screen-
casts without salient features is challenging because it is hard to
distinguish which screen animation is caused by users and which
is caused by the operating system (e.g., pop-up advertisements and
notifications).

To overcome the above challenges, we leverage smartphone IMU
sensors, which are pervasive and accessible on off-the-shelf smart-
phones. This idea is enlightened by TapNet [18], which shows the
potential of using smartphone IMU to accomplish off-screen taping
input. In addition, obtaining signals from IMU sensors is a low-
risk activity and requires no extra permission, which is safer and
more convenient for users. We extend the method and scenario
of TapNet [18]. In this work, we collect new dataset of IMU sig-
nals and build CNN models to recognize the touch position and
multiple gesture types. Moreover, we combine the screencast of an
interaction task with the data from the smartphone IMU sensors to
improve the system performance of extracting interaction trace on
the smartphone, which facilitates instructional content generation.

Based on this technique, we propose SmartRecorder, a novel tool
that generates video tutorials of smartphone tasks with machine

intelligence and minimal human involvement. It consists of two
modules in the front end: Screencast Module and Tutorial Refine-
ment Editor, and two in the back end: Input Step Analyzer and Tu-
torial Generator. The Screencast Module collects the screencast and
the IMU data in the demonstration process. With computer vision
and sensing algorithms, Input Step Analyzer analyzes the collected
data to extract user actions automatically and calculates the tutorial
metadata (keyframe, gesture, touch position, and instructional text)
of each user input step. SmartRecorder also offers tutorial creators a
simple editor on smartphones to refine the automatically generated
tutorial metadata easily and efficiently. The tutorial Generator of
SmartRecorder can generate the video tutorial of the target task
according to the tutorial metadata. SmartRecorder reduces human
work (by involving machine automation) and ensures the correct-
ness of the tutorial content with the Tutorial Refinement Editor.

We evaluated the efficiency and effectiveness of SmartRecorder
through a 2-phase user study. In phase 1, we compared the efficiency
of creating video tutorials with and without using SmartRecorder.
The results show that SmartRecorder facilitates tutorial creators to
make a video tutorial efficiently. The time cost of human editing
is reduced by 75.62%. Subjective feedback shows tutorial creators’
satisfaction and willingness to use SmartRecorder. In phase 2, we
recruited 18 participants to evaluate the guiding effectiveness of
the tutorial generated by SmartRecorder. The quantitative results
show that with the video tutorials created by SmartRecorder, par-
ticipants had significantly higher task completion rates and shorter
completion time when completing the tasks. Tutorials created by
SmartRecorder also received higher user satisfaction than manually
produced tutorials.

We make the following three contributions in the work. 1) We
propose the IMU-based technique to extract user interaction traces
from the screencast of smartphone interaction tasks, which ad-
dresses the challenges of existing methods. 2) We apply the above
technique to real use and develop SmartRecorder, an IMU-based tu-
torial creation by demonstration system, to help non-experts create
smartphone usage video tutorials with minimum human effort. 3)
Our user studies show that SmartRecorder facilitates non-experts
to create video tutorials easily and efficiently; moreover, these tuto-
rials were able to help users complete tasks more effectively with
higher user satisfaction compared to traditional methods.

2 RELATEDWORKS
We discuss prior research from two aspects: extracting interaction
traces from pre-recorded demonstrations and editing instructional
content in video tutorials.

2.1 Extracting Interaction Traces from
Pre-recorded Demonstrations

Manually extracting the step-by-step operating information from
the demonstration and making a video tutorial requires high labor
cost and time cost [22]. Therefore, technical assistance is needed
to reduce the workforce. Extracting step-by-step information from
pre-recorded demonstrations is the key to generating instructional
content automatically and semi-automatically. In the domain of
computer software, capturing demonstration workflow from soft-
ware API is a classic method to extract step-by-step information
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for tutorial generation [3, 10, 13, 15, 17, 25] and lead the interac-
tion between learners and tutorial content [12, 16, 25, 31, 33, 36].
As obtaining the interaction log-data from multiple third-party
mobile applications is impossible, such a method is not applica-
ble on smartphones. There are also some computer vision (CV)
techniques aiming at extracting user actions from demonstrative
screencast [1, 4, 5, 10, 27, 42] or video recording of operation be-
haviors [11]. However, these techniques rely on tracking and de-
tecting specific features in the recorded videos, such as mouse cur-
sor [1, 10, 27, 42], touch indicator [4, 5] and users’ fingers [11], while
such features are not common in smartphone screencasts. Using
pure vision-based methods to extract each step of user input from
a smartphone screencast is quite challenging because it is difficult
to identify which screen animation is caused by users and which
is caused by the operating system. To tackle this challenge, some
related works track the metadata of user input from touchscreen
capacity signal [41], and Android debugging bridge (ADB) [40].
However, such methods require developer permissions and extra
devices, which is impractical for regular users with off-the-shelf
smartphones. Another approach is to leverage the Accessibility API
provided by the smartphone OS [28, 39, 44]. However, Granting
the rights for Accessibility API can take a few steps and brings
extra trouble to tutorial creators. Even if the permissions are set,
some user inputs still cannot be captured, such as interactions with
unlabeled UI elements [40]. Additionally, Accessibility API allows
the third party to inject actions to execute auto-clicks or other
simulated gestures to control users’ devices [5, 14], which brings
high privacy risks to users. Because of this, the Accessibility API of
iOS can only be used by built-in smartphone apps, and third-party
apps have no rights to obtain user interaction traces from the Ac-
cessibility API. TapNet [18], which presents the potential of using
smartphone IMU to detect different types of "Tap", inspires us to
leverage smartphone IMU to detect the characteristics of user input.
As built-in IMU is ubiquitous among off-the-shelf smartphones and
only offers low-level signals with low privacy risk (no need for
extra authentication in system settings), end-users and third parties
can benefit from it for safety and convenience. In this work, we
use the IMU channel to improve the performance of the CV chan-
nel for extracting user input steps from pre-recorded smartphone
screencasts and generating instructional content accordingly. Our
approach differs from TapNet [18] in two ways. First, TapNet [18]
only focuses on tap gesture while ours recognizes six gestures. This
is non-trivial as distinguishing two categories (tap, no tap) and six
categories require training different AI models. Second, we quan-
tified the detection performance of different gestures and present
how IMU signals help to recognize different gestures.

2.2 Editing instructional content in video
tutorials

Without artificial check and refinement, fully automated approaches
for generating tutorials may often cause errors that are difficult
to avoid [2, 10, 44]. Some related works involve authors’ checking
and labeling during the demonstration process to ensure the cor-
rectness of the generated instructional content in the interactive
tutoring system [24, 41, 43]. However, such methods interrupt the
demonstration, so they are less suitable for creating video tutorials

that show an integral process of interaction task completion. In
the domain of video editing, related works illustrate that informa-
tional video editing is time-consuming and challenging for non-
experts [19]. Professional software (such as iMovie [20] or Adobe
Premiere [37]) offers enough functions for producing various types
of videos. At the same time, it brings barriers to non-experts due to
complex work in timeline control, motion arrangement, and frame
sequencing [19, 32]. Although simplified video editing tools have
been designed for authoring certain types of videos (such as motion
graphics [19] and marketing videos [9]), they are mainly used for
style creation instead of instructional content editing. Some works
propose advanced methods for generating video tutorials from a
well-edited markdown-formatted tutorial [8]. Still, there is a lack of
work on simplifying the editing of instructional content in tutorial
videos. However, prior works also enlighten us to leverage mark-
down scripts for instructional content editing [8] and reduce the
editing complexity by replacing timeline control with automatic
key shot selection [19]. In this work, we lower the effort of tutorial
creators by combining automatic instructional content generation
with minimum post-refinement. By improving the recall of auto-
matic user step extraction, the metadata of each step can be fully
checked by creators. Creators only need to delete the redundant
steps in candidate steps extracted automatically and refine the static
instructional content (e.g., instructional text), which liberates the
creators from complicated timeline operation and tool usage for
video editing.

3 THE IMU-BASED INPUT STEP ANALYZER
We introduce our methods for extracting user input steps from a
smartphone screencast of an interaction task and calculating the key
elements of tutorial metadata. As this is a key contribution of this
work, we present it in this separate section. This technique could
generally be used in other integrative systems not only restrict
to SmartRecorder. Fig 1 shows the pipeline of this technique. In
this section, We firstly define the key elements of a user input
step that constitute the metadata of a tutorial. Next, we present
the sub-modules of the Input Step Analyzer. Then we show the
system organization of combining video processing and IMU data
processing to extract user input steps and calculate the tutorial
metadata. Finally, we evaluate the performance of the proposed
method by comparing the system performance with and without
the assistance of IMU data. In the next section, we present how we
construct the SmartRecorder based on this IMU-based Input Step
Analyzer.

3.1 Metadata of Tutorial Content
By analyzing some existing step-by-step smartphone usage tutori-
als, we propose that each tutorial step should include four metadata
to present instructional content. (1) The keyframe in the screencast
when the user starts touching. The keyframe shows the recipient
what the key interface looks like. (2) The screen-based gesture (Tap,
Long tap, Scroll up, Scroll down, Scroll left, Scroll right, Typing). We
take "Typing" as a gesture because "Typing" is a unit of a step, and
there is no need to divide "Typing" into several Taps. Presenting
gesture information helps tutorial recipient understand what to
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Figure 1: Pipeline of Input Step Analyzer. In the initial processing, the Video Processing Module and IMU Data Processing
Module firstly process the screencast and smartphone IMU data respectively. The Video Processing Module outputs a set of
keyframes where a user input could happen, as well as inter-frame salient regions and optical flow of each keyframe. The IMU
Data Processing Module extracts the timestamp, gesture, and touch position of each user input from the IMU signals. Then the
keyframes are processed by two assistive models: Soft Keyboard Recognition Model and UI Element Detection Model to filter
the keyframes, recognize the typing gesture, and generate candidates of target UI element. These data are combined with other
outputs of Video Processing Module and IMU Data Processing Module to finally generate the metadata of the tutorial steps.

do with the target UI element in each step. (3) The target UI ele-
ment’s position shows where to perform the corresponding gesture.
We treat the entire soft keyboard area as the target UI element of
"Typing." We also take arbitrary position in the interface where per-
forming "Scrolls" can lead to screen scrolling as the target position
of "Scrolls." (4) The instructional text which describes what to do
in each step is a summary of the other metadata. The metadata is
the source of the tutorial instructional content. Regardless of the
visual design, the instructional content of each step should include
these four elements of tutorial metadata.

3.2 Sub-modules of the Input Step Analyzer
The Input StepAnalyzer’s function is to calculate each step’s tutorial
metadata from the task completion screencast and its corresponding
IMU data. It consists of two primary sub-modules: Video Processing
Module (Extracting the keyframes from the screencast when the
user starts to touch the screen for input, detecting the regions that
display salient animationwithin frames, and calculating inter-frame
optical flow to indicate the screen movement pattern), and IMU
Data Processing Module (Extracting the timestamp of each user
input, recognizing the gesture of each user input and predicting
the finger touch position of each user input, from the IMU Data).
The Input Step Analyzer also contains two assistive models for
further extracting the gesture and target UI element of each step: the
Soft Keyboard Recognition Model (Recognizing the typing gesture

Figure 2: Examples of salient regions within inter-frames

according to the existence of a soft keyboard) and the UI Element
Detection Model (Detecting the positions of all UI elements from a
keyframe for predicting a possible UI element that the user tap).

3.2.1 Video Processing Module.

Video Splitter. To extract user input steps from a screencast video,
we segment the screencast into several short pieces according to
inter-frame difference since a user input can cause a screen ani-
mation. We calculate the inter-frame difference of the screencast
thoroughly, filter out tiny and disconnected components and ex-
tract the video pieces during which the salient regions exist within
inter-frames. Fig 2 shows the salient regions within inter-frames,
which often contain the target UI elements because the user input
often causes the visual animation of UI elements. However, the
salient regions and target UI elements are usually not one-to-one
mappings, so we stored all salient regions of a keyframe for fur-
ther target UI element prediction. Such segmentation recalls all of
the user input steps but includes some non-user-caused animation
which is usually caused by message pop-up, advertisements, and
page loading.
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Figure 3: Structure of IMU Processing Module. It includes
three models: contact detection model, position prediction
model and gesture recognition model. They share the same
model structure but have different shape of each layer. Five
types of sensor signals concatenate together as the input.

Inter-frame Optical Flow Calculator. By calculating the inter-
frame optical flow, we extract the movement pattern of feature
points in the extracted short video pieces to predict the direction
of the scroll gesture from the displacement vector of feature points.
We use the Lucas-Kanade algorithm [29] to calculate the movement
of feature points and compute the sum of the displacement vector,
which contributes to gesture labeling.

Keyframe Filter. As the Video Splitter segments the screencast
into several short video pieces, we take the start frame of each
video pieces as a keyframe candidate for a user input. Therefore,
we need to filter out redundant frames from this candidate set.
We use optical character recognition (OCR) to extract the text of
keyframe candidates and filter out the loading page by detecting
keywords like “loading” and the pages with no words. We also
detect the word variation among frames for further filtration to
improve the precision of keyframe extraction. For example, if the
words extracted from the start frame were the same as that of the
end frame in a short video piece, we also filter out such frames
because there is no semantic change in this video piece. However,
there are still some redundant frames that we need to filter out,
which is one reason for using the IMU channel.

Output of Video Processing Module. The Video ProcessingModule
outputs a set of keyframes which shows the status of the interface
when a screen animation begins. The Video Processing Module’s
proposals of keyframes include all keyframes when the user start a
touch input, but also include some keyframes where the animation
is not caused by user input as we have stated before. Together
with each keyframe, the the Video Processing Module also outputs
inter-frame salient regions and optical flow.

3.2.2 IMUData Processing Module. The IMUData ProcessingMod-
ule consists of three separate convolutional neural networks (CNN),
one for contact detection, one for touch position prediction, and an-
other for gesture recognition. We leverage 5 types of sensor signals
on the smartphone (signals from 3-axis accelerometer, 3-axis gyro-
scope, 3-axis gravity, 3-axis linear acceleration, and 3-axis rotation
vector) as the input of these models. Each data point is recorded

with a unique timestamp. We use the contact detection model to
extract the timestamp of each input step. For each step, the other
two models will be applied to predict the position of contact and
recognize the type of gesture. We present our work on dataset
building and model development.

Dataset. We developed a mobile application to collect data for
model training and recruited 11 participants (5 females, 6 females;
aged from 20 to 24, M = 22.1, SD = 1.50) from the campus. The
participants were asked to use their own smartphones to participate
in this data collection experiment. The experiment consists of seven
tasks: Tap, Long tap, Scroll up, Scroll down, Scroll left, Scroll right,
and motions without touching the screen. Participants were asked
to hold the smartphone in the left hand and perform screen-based
gestures with the right hand in a sitting position. Considering the
diversity in real use, we reminded participants to perform gestures
with different properties by changing the description on the screen.
For Tap and Long Tap, we collected gentle, normal, and strong ones.
For Scroll gestures, we collected normal, short, long, fast, and slow
ones. Since Tap occurs more frequently than other gestures in daily
use, we collected more Tap data (about three times compared to
others). For position prediction, we divided the screen into 3x2 grids
and asked participants to tap the same number of times in each
grid. Motions without touching the screen were also collected as
negative samples, including holding the phone, touching the back
and sides of the phone, shaking and flipping the phone, and so on.
To avoid fatigue, participants could take a break every ten minutes.
The whole experiment lasted for half an hour.

We collected 5 types of sensor signals on the mobile phone
(signals from 3-axis accelerometer, 3-axis gyroscope, 3-axis gravity,
3-axis linear acceleration, and 3-axis rotation vector). Since the
shortest sampling period for some of the signals mentioned above
is 10ms, we unified the sampling rate to 100Hz. Besides, the start
timestamp, the end timestamp, and the contact position of each
gesture were also read from the capacitive screen for labeling. The
final dataset contains 9702 positive samples of the six gestures.

Models. The structure of different models is similar, which is
inspired by TapNet[18]. We use a convolutional neural network
withmultiple one-channel convolutional layers. The shapes of input
and output tensors differ between models. Fig 3 shows the structure
of our models and the parameters of each layer.

Contact Detection Model. Regarding model development, it is
important to decide the length of the time window. Data collected
in previous user experiments show that signal variation caused by
contact can be covered by a time window of 10 frames (100ms),
which is chosen for the contact detection model. We define the
frame when the gesture starts as 𝑡0, and use IMU data in [𝑡0 - 5, 𝑡0
+ 5) as positive samples. Data collected from the motions without
touching the screen is randomly split into negative samples. In
order to avoid early reports, we also use data in the time window
[𝑡0 - 10, 𝑡0) as negative samples.

Position Prediction Model. The contact position should be
available as soon as the user touches the screen, similar to the
contact detection task. So we also use the time window of 10 frames
for position prediction and split positive and negative samples in
the same way.
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Gesture Recognition Model. For gesture recognition, there
remains a trade-off. The longer the time window is, the more com-
plex the model is and the longer it takes to run the algorithm. On
the other hand, if the time window is too short, it won’t be easy to
distinguish between different gestures. By analyzing the samples
collected, we summarize the duration for each screen-based gesture:
40ms to 120ms for Tap, 400ms to 500ms for Long Tap, and 50ms to
500ms for the Scroll gestures. Based on such discovery, we use a
time window of 50 frames (500ms) for gesture recognition. Specifi-
cally, [𝑡0 - 10, 𝑡0 + 40) is chosen for positive samples and [𝑡0 - 15, 𝑡0
+ 35) for negative ones. Considering that 500ms is a relatively long
time, but some gestures only last for a short time, we apply various
padding operations to them, including zero padding (append zero
to the end of the original gesture data sequence), random noise
padding (append values which can be calculated by adding random
noise to a fixed value such as the value when the original gesture
ends) and no padding.

3.2.3 Assistive Models.

Soft Keyboard Recognition Model. Since we take multiple Taps
during a Typing as one user input step, we trained a convolutional
neural network (CNN) with the similar structure of AlexNet [26] to
recognize if there is a soft keyboard in the keyframes and condense
the multiple keyframes which correspond to Typing (with a soft
keyboard) to one user input step. The gesture of such an input step
is relabeled to Typing. Our CNNwas trained on a dataset containing
1080 smartphone screenshots (480 with soft keyboard, 600 without
soft keyboard) and achieved an accuracy of 94.82% on the test set
(containing 139 smartphone screenshots with soft keyboard and
170 without soft keyboard). We adjusted the hyperparameters of
each layer according to the requirement of our work.

UI Element Detection Model. With prior knowledge of UI ele-
ments’ position, the prediction of the target UI element will be more
accurate. Based on such a motivation to train a UI Element Detec-
tion Model for detecting the UI elements of a given smartphone
interface, we collected a dataset of smartphone UI elements and
trained a UI Element Detection Model. We built custom software
to collect UI data for training this model. Our dataset contains 1006
GUI screens from the top 28 most popular WeChat Mini Programs.
The creation of our dataset consists of two sessions: collection and
annotation. During the collection session, our software collected the
screenshot of each traversed screen and corresponding accessibility
data about UI elements. Since the collected data is not completely
correct, we recruited 4 label workers to annotate it. For each UI
element, the label worker labeled its bounding box and assigned
one of 23 UI types (Text, Image, Icon, ImageButton, TextButton,
ToggleButton, CloseButton, EditText, RadioButton, Checkbox, Tab-
Bar, TabBar Item, UnderLine, Container, Split bar, Rating bar, Scroll
bar, Data Picker, Spinner, Dialog, Map) based on its visual features.
With such a dataset, we used the EasyDL Object Detection API
1 to train our UI detection model. This model finally achieved a
precision of 81.18% and a recall of 82.78%.

1https://ai.baidu.com/easydl/app/model/objdct/models

3.3 System Organization of the Input Step
Analyzer

This part deliver how the sub-modules work together, and how
their outputs are combined to generate the tutorial metadata of
each step, as Fig 1 shows. We first present how the primary sub-
modules process the screencast and IMU data separately in the
initial processing. Then we illustrate the process of multi-modal
fusion with the help of assistive models. Finally, we display the
output of the Input Step Analyzer.

3.3.1 Initial Processing. In this phase, the Video ProcessingModule
process the screencast video, and the IMU Data Processing Module
extracts the user input characteristics from smartphone IMU sinals.
They work independently.

Processing Screencast Video. The Video Processing Module firstly
segment the screencast video into several short video pieces which
contain the keyframes of operation steps. The inter-frame salient
regions and optical flow are recorded along with each video piece.
Then, the Video Processing Module filter out some redundant video
pieces and keyframe candidates according to the word information
of the frames, and output a set of keyframes along with inter-frame
salient regions and optical flow.

Processing IMU Data. The IMU data is firstly processed by the
contact detection model. For the data points that are reported as
positive examples by the contact detection model, they will be
transmitted to position prediction model and gesture recognition
model respectively. Finally, the IMU Data Processing Module out-
puts a timestamp, a 6-category gesture classification result, and a
6-category position prediction result of each positive sensor data
point. The Video Processing Module and IMU Data Processing Mod-
ule work independently in this initial processing phase. Such an
organization can be implemented in an asynchronized and synchro-
nized workflow.

3.3.2 Multi-modal Fusion. In this phase, we leverage two pre-
trained assistive models to process the keyframes that we extract
from the screencast and combine the output of the video channel
with the IMU channel. Finally, we get the keyframe, gesture, target
UI element, and instructional text for each step.

Keyframe Filtration. With the keyframes we segmented from the
screencast, we firstly use the Soft Keyboard Recognition Model to
condense the keyframes corresponding to "Typing" as one frame.
After that, with the timeline of the user input step that we extract
from IMU data, we filter out the redundant frames that cannot
be aligned to the timeline. Considering that there may be some
time difference between the IMU channel and the video channel,
to ensure the recall of user input steps, we set a relatively wide
time window of 1000ms [𝑡0 - 300, 𝑡0 + 700) for each timestamp 𝑡0,
and filter out the keyframes that don’t fall into the time window.
In this process, the redundant frames containing the animation
from non-user input (e.g., system notification, popup windows) are
filtered out, further improving the precision of user input steps.

Gesture Relabeling. We used the soft keyboard recognition model
to recognize Typing as Typing is highly relevant with soft keyboard,
and relabeled the multiple Taps as one Typing. For Tap and Long
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Figure 4: Pipeline to predict the target UI element. The sys-
tem firstly extract the candidate regions by combining video
channel with IMU channel. Then, it selects the position that
has the highest IoU with the UI elements that the UI Element
Detection Model outputs.

tap, we directly use the result of the IMU Data Processing Module
because it is difficult to distinguish these two gestures from the
video channel. For the scroll-based gestures (Scroll up, Scroll down,
Scroll left, Scroll right), only when the inter-frame optical flow
shows the feature points’ horizontal or vertical movement and the
IMU data shows the corresponding scroll-based pattern, we label
the gesture as scroll-based gestures. The direction depends on the
direction of feature points movement that optical flow displayed.

With such a multi-modal fusion strategy, we can correct some
errors caused by the individual channel. For example, tapping a
specific UI element may sometimes cause screen content’s right-
ward/leftward movement animation. In this case, using the optical
flow pattern only may result in the failure of recognizing the correct
gesture, which requires the IMU channel for gesture recognition.
Sometimes the IMU Data Processing Module may fail to recognize
the direction of finger movement in such a short time window. In
this case, the inter-frame optical flow can help to calculate the cor-
rect direction of a scroll-based gesture. However, recognizing Long
Tap is difficult for both channels, and we discuss this limitation in
the discussion section.

Target UI Element Prediction. With keyframes and gestures for
each step, we tend to predict the target UI element on which the
gesture is performed. Our target is to narrow the range of visual
searching when the tutorial creator is trying to find and highlight
the position of the target UI element in the tutorial creation process.
With such information, we can highlight the position of the target UI
element in the semi-finished tutorial so that the tutorial creator can
check the target UI element of each step quickly without searching
on the interface for several seconds. We define a correct prediction
result as a bounding box that contains the target UI elements. We
limit the size of this bounding box to no larger than 1/3 size of the
whole screen.

We leverage the position prediction result of the IMU channel,
salient regions calculated from the Video Processing Module, and
the result of the UI Element Detection Model to predict the position
of the target UI element. As Fig 4 shows, each channel calculates
several candidate bounding boxes. We select the bounding boxes

from the salient regions inside the top 2 results of the IMU channel.
Then we further calculate the IoU between the selected bounding
boxes and the output of the UI Element Detection Model, and select
the bounding box with the highest IoU. Sometimes, no bounding
box of inter-frame difference is inside the top 2 results of the IMU
channel (e.g., some UI elements have no visual feedback when
users touch on it). In this case, we select the top 2 results of the IMU
channel in the case they are adjacent and select the top 1 result
with its horizontal adjacent in case the top 2 results are bidiagonal.

Generation of Instructional Text. We generate initial instructional
text to present what to do with the target UI element in the interface.
The template of the initial instructional text is defined as “gesture +
text label” of the target object. With the position of the target UI
element where tutorial creators contact, we use the OCR technique
to get the text label of the target object. Then we simply combine
the gesture and text label to generate the initial instructional text
(e.g., we combine the gesture “Tap” and text label “wallet” together
to generate a simple instructional text “Tap the wallet”). If there
is no text label, the initial instructional text will only contain the
gesture type. The initial instructional text provides a template and
entrance, which allows the user to refine the instructional text. We
believe it is more convenient for tutorial creators to directly refine
the instructional text than to create an instructional text all by
themselves.

3.3.3 Output of Input Step Analyzer. As shown in Fig 1, the output
of the Input Step Analyzer is the metadata of tutorial steps. For
each step, the metadata includes the keyframe, the gesture of the
user input, the position of the target UI element, and the initial
instructional text. With such metadata, the Tutorial Generator of
SmartRecorder generates a semi-finished tutorial that contains a
visual guide of the target object and initial instructional text. The
semi-finished tutorial with metadata will be sent to the Tutorial
Refinement Editor. Fig 9 shows the semi-finished tutorial of a certain
step and its display in the Tutorial Refinement Editor.

3.4 Technical Evaluation
In this section, we present the evaluation of the IMU-based Input
Step Analyzer. We first report the performance of the IMU Data
Processing Module. Then we present the system performance with
and without the IMU channel. The result shows although there are
some challenges in the IMU Data Processing Module, the IMU chan-
nel significantly improves the system performance. Video channel
and IMU channel have the potential to make up for each other’s
defects.

3.4.1 Evaluation of the IMU Data Processing Module. We split the
whole IMU dataset that we collected into train set, validation set,
and test set (8:1:1). The validation set helps to deal with the overfit-
ting problem, and we stop training when the results on the valida-
tion set converge. We report the performance of each model on the
test set as follows.

Contact Detection Model. We first took an overview of the sen-
sor data in the IMU dataset that we collected and filtered some
abnormal data. In data collection, we collected the sensor data from
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(a) Normal linear acceleration
signal offered by a participant
in data collection process

(b) Abnormal linear accelera-
tion signal offered by a partici-
pant in data collection process

Figure 5: Comparison between normal (a) and abnormal (b)
linear acceleration signal collected in IMU dataset

Table 1: Technical evaluation of contact detection model

Model Accuracy Precision Recall F1

Contact detection 0.982 0.977 0.975 0.976

participants’ own devices, while some devices failed to offer nor-
mal sensing signals. For example, Fig 5a shows the normal linear
acceleration signals in a data collection process. Since we asked the
participants to tap the screen with normal pressure, gentle pressure,
and heavy pressure each for about 30s when collecting tap signals,
the figure shows normal variation feature and signal range (even
the signals of gentle taps are higher than 0.5). However, Fig 5b
shows the abnormal linear acceleration signal that all signal points
of taps are lower than 0.5. As a result, we filtered out such samples
before evaluation, which account for 24.4% of the original positive
dataset. Then we evaluated our contact detection model on the test
set. As Table 1 shows, the 2-class contact detection model achieves
an accuracy of 98.2% with high precision (97.7%) and recall (97.5%),
which can be further improved by combining the video channel
with the IMU channel.

Position Prediction Model. The accuracy of this 6-class position
prediction model seems to be limited (72.8%), so we perform further
analysis to check whether the model could be applied in practice.
As the normalized confusion matrix in Fig 6 shows, most mispre-
dictions occur in two adjacent grids. For example, some gestures
in grid 1 are predicted to grid 0, which is on the left side of the
target, or to grid 3, which is below the target. Considering that the
contact on the border of two adjacent grids could be difficult to
distinguish, we also calculate the top 2 accuracy, which appears
much better (90.3%). This indicates that this model could still be
useful for predicting the touch position, especially when combined
with the video channel.

Gesture Recognition Model. The gesture recognition model distin-
guishes six different gestures (Tap, Long tap, Scroll up, Scroll down,
Scroll left, Scroll right). The model accuracy is 84.9%. As is shown
in Table 2, the biggest challenge for the model is the recognition of
Long Tap, which can be easily confused with Tap. The recall of all
other gestures is above 82.1%, and Tap achieves the highest (94.8%).
The misrecognized scroll gestures are most likely confused with

Figure 6: Normalized confusionmatrix of position prediction
model

Tap since some scroll gestures may be too fast or too gentle for
the IMU to capture the scroll features. To tackle such a challenge,
we leverage optical flow features from the video channel in our
multi-modal fusion stage.

3.4.2 Performance of SmartRecorder with and without IMU Data
Processing Module for Calculating the Tutorial metadata Automati-
cally . To evaluate the performance of our approach for calculating
the tutorial metadata from the screencast and IMU data, we made
20 recordings of smartphone interaction tasks with two different
devices (Honor 20 and Huawei Mate 30 pro) and labeled 104 user in-
put steps as our test set. We first removed the IMU Data Processing
Module out and let SmartRecorder generate semi-finished tutorials
with the video channel only. Without IMU Channel, it is hard to
recognize the gesture of each step from the video channel solely,
so it only segments the user input steps and predicts the target UI
element of each step. Then we evaluated the whole system (with
IMU channel) on the same dataset.

As Table 3 shows, without the IMU channel, the average re-
call of user input steps achieved 99.38%, and the average precision
is 93.90%. The mean accuracy of target UI element prediction is
69.77%. With the IMU Data Processing Module, the average re-
call of user input steps remains 99.38%, and the average precision
achieved 97.50%. The mean accuracy of target UI element predic-
tion is 86.68% and the mean accuracy of gesture prediction for each
step is 96.04%. Wilcoxon signed-rand test revealed that the IMU
channel significantly improves the precision of the SmartRecorder
for automatically segmenting user input steps (p < 0.05) and the
accuracy for predicting target UI elements (p < 0.01).

4 DESIGN OF SMARTRECORDER
Based on the IMU-based Input StepAnalyzer, we propose SmartRecorder
to generate video tutorials of smartphone interaction tasks with ma-
chine automation and minimal human involvement. It consists of
two front-end modules: Screencast Module (collects the screencast
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Table 2: Technical evaluation of gesture recognition model

Gesture Precision Recall Confusion Matrix
Tap Long tap Scroll up Scroll down Scroll left Scroll right

Tap 0.856 0.948 0.948 0.013 0.01 0.008 0.013 0.008
Long tap 0.649 0.387 0.371 0.387 0.097 0.016 0.081 0.048
Scroll up 0.834 0.846 0.067 0.007 0.846 0.02 0.04 0.02

Scroll down 0.877 0.821 0.064 0.019 0.026 0.821 0.026 0.045
Scroll left 0.85 0.828 0.073 0.013 0.033 0.033 0.828 0.02

Scroll right 0.869 0.84 0.053 0.013 0.04 0.04 0.013 0.84

Table 3: Performance of SmartRecorder with and without IMU channel

Devices Tasks Steps precision of steps recall of steps target UI prediction accuracy gesture accuracy
without IMU with IMU without IMU with IMU without IMU with IMU with IMU

device 1

T1 5 100%(5/5) 100%(5/5) 100%(5/5) 100%(5/5) 80%(4/5) 100%(5/5) 100%(5/5)
T2 3 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 66.67%(2/3) 100%(3/3) 100%(3/3)
T3 8 100%(7/7) 100%(7/7) 87.50%(7/8) 87.50%(7/8) 42.86%(3/7) 100%(7/7) 100%(7/7)
T4 3 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 66.67%(2/3) 66.67%(2/3) 100%(3/3)
T5 8 100%(8/8) 100%(8/8) 100%(8/8) 100%(8/8) 75%(6/8) 75%(6/8) 87.50%(7/8)
T6 7 87.50%(7/8) 100%(7/7) 100%(7/7) 100%(7/7) 57.14%(4/7) 71.43%(5/7) 100%(7/7)
T7 5 83.33%(5/6) 100%(5/5) 100%(5/5) 100%(5/5) 80%(4/5) 60%(3/5) 100%(5/5)
T8 4 100%(4/4) 100%(4/4) 100%(4/4) 100%(4/4) 75%(3/4) 100%(4/4) 75%(3/4)
T9 3 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3)
T10 5 100%(5/5) 100%(5/5) 100%(5/5) 100%(5/5) 60%(3/5) 80%(4/5) 100%(5/5)

device 2

T1 5 100%(5/5) 100%(5/5) 100%(5/5) 100%(5/5) 80%(4/5) 100%(5/5) 100%(5/5)
T2 3 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 66.67%(2/3) 100%(3/3) 100%(3/3)
T3 8 100%(8/8) 100%(8/8) 100%(8/8) 100%(8/8) 50%(4/8) 75%(6/8) 100%(8/8)
T4 3 100%(3/3) 100%(3/3) 100%(3/3) 100%(3/3) 66.67%(2/3) 66.67%(2/3) 100%(3/3)
T5 8 88.89%(8/9) 100%(8/8) 100%(8/8) 100%(8/8) 75%(6/8) 87.50%(7/8) 100%(8/8)
T6 7 70%(7/10) 87.50%(7/8) 100%(7/7) 100%(7/7) 57.14%(4/7) 71.43%(5/7) 100%(7/7)
T7 5 62.50%(5/8) 62.50%(5/8) 100%(5/5) 100%(5/5) 80%(4/5) 80%(4/5) 100%(5/5)
T8 4 100%(4/4) 100%(4/4) 100%(4/4) 100%(4/4) 75%(3/4) 100%(4/4) 75%(3/4)
T9 4 100%(4/4) 100%(4/4) 100%(4/4) 100%(4/4) 75%(3/4) 100%(4/4) 100%(4/4)
T10 6 85.71%(6/7) 100%(6/6) 100%(6/6) 100%(6/6) 66.67%(4/6) 100%(6/6) 83.33%(5/6)

Mean value 5.20 93.90% 97.50% 99.38% 99.38% 69.77% 86.68% 96.04%

Figure 7: Technique pipeline of SmartRecorder

and IMU data during the process of an interaction task demonstra-
tion) and Tutorial Refinement Editor (enables tutorial creators to
refine the tutorial metadata) and two back-end modules: Input Step
Analyzer (calculates the initial metadata of the tutorial from the
screencast and IMU data of demonstration) and Tutorial Generator

(generates semi-finished tutorial for refinement and final video tu-
torials). We present the technique pipeline of SmartRecorder (see
Fig 7) in this section.

4.1 Front end: Screencast Module
Users can use Screencast Module to record the process of complet-
ing a smartphone interaction task. It not only records the screen
animation but also records the smartphone IMU data. When users
stop recording, the screencast, as well as the corresponding IMU
data, will be sent to Input Step Analyzer for user input analysis.
We designed the interface of this module based on an open-source
project2.

2https://play.google.com/store/apps/details?id=com.app.kk.screenrecorder
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Figure 8: Interaction flow to check and refine the metadata of semi-finished tutorial

4.2 Back end: Input Step Analyzer
We use the technique we introduce in Section 3 to process the
screencast and IMU data that Screencast Module collects. Input
Step Analyzer calculates the initial tutorial metadata for generating
a semi-finished tutorial.

4.3 Front end: Tutorial Refinement Editor
Considering that the tutorial metadata that Input Step Analyzer
automatically extracts from a screencast cannot achieve 100% cor-
rectness, we designed an easy-to-use editor to help non-experts
check and refine the metadata of the semi-finished tutorial quickly.
This editor was designed based on the performance of the Input Step
Analyzer. We summarize its characteristics as follows. (1) There
is no need for users to add the keyframe of each step. Users just
need to check the semi-finished tutorial and delete the redundant
steps. Based on our analysis of professional software [37], the most
difficult to learn and time-consuming features are those tools that
users should leverage to add content actively. However, checking
and deleting content is relatively easy. We ensure the high recall
(99.38%) of key steps so that users do not need to insert keyframes
actively. They just need to check the steps and delete redundant
steps. (2) For each step, users do not need to draw instructional
content; they only need to move the bounding box to highlight the
target UI element more accurately and refine the instructional text.
Users can do this in a templated interface and refine the instruc-
tional text directly instead of using some tools (like the rectangle
tool and text box tool in Premiere) to draw the instructional content.
3) There is no need for users to consider what the instructional
content looks like; they only need to ensure its correctness.

Fig 8 shows the interaction flow to check and refine the meta-
data of the semi-finished tutorial. The refinement editor presents an
overview of tutorial steps, and the creator can check whether the
tutorial content is correct. If there is a redundant step, the creator
can delete it. Users can also get into the refinement interface to
refine the position of the visual guide and the instructional text (e.g.,

in Fig 8, the second image shows a highlight box containing two UI
elements, and the instructional text only indicates the gesture. The
creator can click the "refine" button, narrow the range of the visual
guide, and write the instructional text in detail). We require users to
use the words which describe the gesture, such as tap" and "typing"
when editing the instructional text so that SmartRecorder can cor-
rect the corresponding gesture in the metadata accordingly. During
this refinement process, the SmartRecorder automatically corrects
the metadata from Input Step Analyzer. For example, besides remov-
ing the redundant step, SmartRecorder extracts the keywords of the
refined instructional text to get the gesture information and update
the gesture label in tutorial metadata. The record of the target UI
element position will be updated, and the instructional text stored
in metadata will also be changed to what the creator finally writes.
When the user clicks the button "Generate," the refined metadata
will be sent to the Tutorial Generator, which generates the final
video tutorial.

4.4 Back end: Tutorial Generator
4.4.1 Generating Semi-finished Tutorial. With the keyframe image
of each step, we first highlight the position of the target UI element
recorded in the metadata file and show the instructional text near
the highlight region. These two elements are the basic content of a
tutorial, with which the recipient can get what to do in each step.
The generated tutorial is in a static format to display the tutorial
metadata (see Fig 9), and it can be sent to the Tutorial Refinement
Editor for further refinement.

4.4.2 Video Tutorial Generator. As video tutorials have the advan-
tage of showing input gestures [38], we pre-designed short cartoon
animations of every gesture and stored them in the back end for
inserting them to the final video tutorial. According to the require-
ments for the video length [30], each gesture animation lasts about
3 seconds to show the corresponding gesture, not too long or too
short. After adding instructional text and highlight region to the
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Table 4: Interaction tasks and operation steps

No. Name Operation steps

T1 Check the bill in "WeChat" Tap the "WeChat" icon -> Tap the "Me" tab -> Tap the "Pay" button ->
Tap the "wallet" button -> Tap the "bill" button

T2 Start the simple mode of smartphone

Scroll the screen and find the setting -> Tap the "Setting" icon ->
scroll the menu list and find the item "system and update" ->
Tap the item "system and update" -> scroll the menu list and find the item "simple mode" ->
Tap the item "simple mode"

T3 Search the "Baidu" app in minus 1 screen Keep swiping the screen rightward into the minus 1 screen -> Tap the searching box ->
Input the word "Baidu" -> Tap the appeared "Baidu" icon

T4 Mobile service payment with Alipay
Tap the "Alipay" icon -> Tap the "mobile service payment center" button ->
Tap the phone number input box -> Input the phone number -> Tap an amount button ->
Tap the "pay right now" button

T5 Delete a message Tap the "Message" icon -> Long press on the message that need to be deleted ->
Tap the "delete" button -> Tap the "confirm" button

T6 Create a memo Tap the "Memo" icon -> Tap the "create" icon ->
Input the memo content -> Tap the "save" icon

Figure 9: A step of a semi-finished tutorial, which contains
the tutorial metadata, and its display in the Tutorial Refine-
ment Editor

keyframe of each step, we merge every keyframe with every frame
of its corresponding gesture animation according to the position of
the target UI element and generate a short video piece of every step.
Then we insert the generated instructional video piece into the
original screencast according to the timestamp of each keyframe so
that the video tutorial displays the instructional content step-by-
step. We also refer to some prior works to improve accessibility in
terms of interface font size, object size, and element position [35].

5 USER STUDY: EVALUATING VIDEO
TUTORIAL CREATION EFFICIENCY AND
GUIDING EFFECT OF SMARTRECORDER

We conducted a two phase user study to evaluate the performance
of SmartRecorder from the end-user perspective. At the beginning
of this two-phase user study, we designed 6 interaction tasks (see
Table 4). Then in phase 1, we evaluate creators’ efficiency of using
SmartRecorder to create video tutorials. We recruited expert par-
ticipants (EP) who have expertise in video editing and non-expert
participants (NP) who have no expertise in video editing to create
video tutorials of the interaction tasks shown in Table 4 in this
phase. In phase 2, we evaluate the guiding effectiveness of the video
tutorials generated by SmartRecorder in terms of guiding tutorial
recipients to complete interaction tasks. We recruited another 18

participants to evaluate the guiding effectiveness of the video tuto-
rials that are created during phase 1 in this phase.

5.1 Phase 1: Video Tutorial Creation Efficiency
Evaluation

5.1.1 Participants. Through online contact, we recruited 12 par-
ticipants who are college students or researchers to play the role
of tutorial creator in this phase. 6 (3 female and 3 male; aged from
22 to 30, M = 26.33, SD = 2.74) of them were expert users of video
editing with more than 1 year of video editing experience and all
majored in design (abbreviated as EP). The other 6 participants (3
female and 3 male; aged from 20 to 24, M = 21.83, SD = 1.57) had no
prior video editing experience (abbreviated as NP). Demographic
information of the participants is listed in Table 5, Appendix. We
provided the each EP with 100 yuan and each NP with 200 yuan as
the compensation.

5.1.2 Apparatus. We conducted this experiment in a meeting room
and provided each participant with a smartphone (Huawei Mate30
Pro), which had the SmartRecorder and video editing tools that
expert participants usually use installed. For P4, who usually uses
Adobe Premier, we allowed him to use his own desktop with Adobe
Premier to participate in our experiment. We also prepared a video
tutorial that was created artificially to show participants what ele-
ments should be included in the video tutorial.

5.1.3 Procedure. Although most of the EPs major in information
design, we still showed all of them the video tutorial example and
introduced the elements that they should display in their created
video tutorials before the creation process. For the NPs, we did not
do this because SmartRecorder can generate the tutorial automati-
cally.

For each EP, we conducted the experiment through the following
steps.

Step I: We taught each participant how to use SmartRecorder
first and let them get familiar with it for about 3 minutes.
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Step II: We showed the path to complete an interaction task
before the participant started to create the tutorial of it.

Step III: The participant leveraged their daily used video editing
tools (baseline) to make the video tutorial of the given interaction
task. We ignored the time they spent on screen recording and
recorded the time they spent on video editing.

Step IV: The participant leveraged SmartRecorder to make the
video tutorial of the given interaction task and we recorded the time
they spent on refining the semi-finished tutorial in this process.

Step V: Repeated Step II, III, and IV on the next interaction task
and exchanged the sequence of Step III and Step IV for counterbal-
ance.

Step VI: We asked the participants to fill out a questionnaire
about the user preference (1 = the lowest user preference, 5 = the
highest user preference), fatigue (1 = the most fatiguing, 5 = the
least fatiguing), ease-of-use (1 = the most difficult to use, 5 = the
easiest to use) and learnability (1 = the most difficult to learn, 5 = the
easiest to learn) regarding baseline and SmartRecorder. Participants
were required to rate the above four indicators on 5-point Likert
scales for each tutorial creation process. The scale direction is the
higher the better.

For each NP, we conducted the above steps without III, and they
only rated the score for SmartRecorder in Step VI. The study lasted
about 1 hour with each NP and about 2 hours with each EP.

5.1.4 Results and Discussion. Data Collection. Through the ex-
periment, we got 36 completion time records (6 participants x 6 in-
teraction tasks) from EPs with baseline, 36 completion time records
from EPs with SmartRecorder, and 36 completion time records from
NPs with SmartRecorder. We also collected 36 (6 participants x 6
interaction tasks) scores on each indicator from EPs for baseline,
36 scores from EPs for SmartRecorder, and 36 scores from NPs for
SmartRecorder.

Time for Creating the Tutorials. The average time that EPs
spent on video editing with the baseline tool is 349.67s (SD = 253.24)
and is 132.64s (SD = 69.38) with SmartRecorder. The average time
that NPs consumed is 85.25s (SD = 43.68), with SmartRecorder. The
completion time distribution suggested non-normality, confirmed
by a Shapiro-Wilk test. Wilcoxon signed-rank test revealed that
compared with baseline, EPs spent significantly less time (p<0.001)
when using SmartRecorder to create video tutorials. The time cost
is reduced by 62.07%. Mann-Whitney’s U test revealed that NPs also
spent significantly less time (p<0.001) when using SmartRecorder
than EPs spent when they used baseline, and time cost is reduced
by 75.62%.

Subjective Experiences for Creating the Tutorials. Fig 10,
shows the box plot of subjective scores that the baseline and
SmartRecorder got in terms of ease-of-use, fatigue, learnability, and
user preference. The distribution of the ratings is non-normal, con-
firmed by a Shapiro-Wilk test. Among EPs, Wilcoxon signed-rank
test revealed that SmartRecorder got significantly higher ratings on
each indicator (ease-of-use: Median = 4, IQR = 1; fatigue: Median =
4, IQR = 0.25; learnability: Median = 4, IQR = 1; user preference: Me-
dian = 4, IQR = 0.25) than baseline (ease-of-use: Median = 2.5, IQR
= 1; fatigue: Median = 3, IQR = 1.25; learnability: Median = 3, IQR =
1.25; user preference: Median = 3, IQR = 3) with following p values
(ease-of-use: p<0.001; fatigue: p<0.001; learnability: p=0.004<0.01;

Figure 10: Results of subjective evaluation on baseline and
SmartRecorder

user preference: p<0.001). Mann-Whitney’s U test showed that NPs
also rated significantly higher scores (p<0.001) on each indicator
(ease-of-use: Median = 4, IQR = 1; fatigue: Median = 4, IQR = 2;
learnability: Median = 5, IQR = 1; user preference: Median = 4, IQR
= 1) for SmartRecorder when compared with the scores that EPs
assigned to baseline. There is no significant difference between EPs’
scores and NPs’ scores for SmartRecorder in terms of ease-of-use,
fatigue, and user preference. For the indicator "learnability", NPs
assigned significantly higher scores than EPs (p = 0.019 <0.05). It
possibly resulted from that SmartRecorder facilitated NPs to con-
veniently achieve what they were unable to do in the past while it
didn’t have such an impact on EPs.

The result of this study shows that with SmartRecorder, people
without video editing skills can create video tutorials with even
less time than those with video editing skills and use familiar video
editing tools. From the subjective feedback, SmartRecorder can
significantly reduce the fatigue and the learning cost of creating
video tutorials and is much easier to use than EPs daily used tools.

5.2 Phase 2: Guiding Effectiveness Evaluation
5.2.1 Participants. In this phase, we recruited 18 participants (10
females, 8 males; aged from 26 to 73, M = 53.39, SD = 17.52) through
online contact based on the criteria that participants should be
unfamiliar with the interaction tasks that we listed in Table 4. All
of the participants have middle school degrees or above, and all
of them have 3 years or above smartphone-using experience. De-
mographic information of our participants in this phase is listed
in Table 6, Appendix. We provided each of them with 100 yuan for
their participation.

5.2.2 Apparatus. This experiment was conducted in a meeting
room, and two smartphones were used during the experiment. One
smartphone was used (Honor V20) to play the video tutorials made
in phase 1, and the other one (Huawei Mate30 Pro) was used to com-
plete the interaction tasks listed in Table 4. The tutorials created in
the prior phase were re-organized into 6 groups of baseline tutorials
(created with baseline tools by EPs) and 6 groups of SmartRecorder
tutorials (created with SmartRecorder by NPs). For each group, each
tutorial was from different authors and aimed at different interac-
tion tasks with latin square to counterbalance the author’s impact.
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We assigned each group to three participants, and the assignment
was counterbalanced on gender. Each participant got two groups
of tutorials. One group is the baseline tutorial, and the other group
is the SmartRecorder tutorial.

5.2.3 Procedure. We allowed each participant about 1 minute to
get familiar with the smartphone that we provided before they
started to complete the interaction tasks. During the experiment,
participants were asked to complete the interaction tasks listed in
Table 4 with the guidance of two groups of video tutorials. For each
interaction task, we played the corresponding video tutorials on
one smartphone, and the participant completed the interaction task
on the other smartphone. We looped the video until the participant
finished the task. The participant could revisit the video at any time
in this process. We recorded the time from the start of watching
the video tutorial to the completion of the interaction task. If the
participant could not understand the tutorial content or was unable
to complete the task, we allowed them to give up that task. After
they completed all of the interaction tasks once, we asked the
participants to rate their satisfaction (1 = the lowest satisfaction,
5 = the highest satisfaction) to each video tutorial that they just
learned from on 5-point Likert scales and allowed them to have a
rest for about 5 minutes. Then, we changed to the other group of
video tutorials. The participant needed to complete the interaction
tasks again with the guidance of a new group of tutorials. The
sequence to play two groups of tutorials was counterbalanced. We
took brief interviews with the participants about their comments
on the two types of tutorials after they finished all interaction tasks.
Each participant took about 1 hour to finish the whole process.

5.2.4 Results and Discussion. There are 108 (6 interaction tasks
x 18 participants) interaction tasks required to be completed in
total with the guidance of baseline tutorials and SmartRecorder
tutorials. The result shows that the video tutorials created with
SmartRecorder could facilitate participants to complete the interac-
tion tasks with higher completion rate, less completion time and
higher satisfaction.

Completion Rate. The completion rate of the baseline group
is 96.27%(104/108). P2 failed in T3 for being unable to understand
the goal of this task and T5 for their inability to understand the
meaning of “long press” in instructional text. P10 failed in T1 for
being unable to catch up with the instructional content and finally
gave up. P12 also failed in T5 for unbale to understand the meaning
of “long press”. The completion rate of the SmartRecorder group is
99.07%(107/108). P2 failed in T3 for still being unable to understand
the task goal.

Completion Time. For the tasks that were completed success-
fully, we got 104 completion time records of the baseline group
and 107 completion time records of the SmartRecorder group. The
average completion time of the baseline group is 68.88s (SD = 48.46),
and the average completion time of the SmartRecorder group is
53.47s (SD = 39.16). Shapiro-Wilk test confirmed the non-normality
of completion time. Mann-Whitney’s U test showed that with the
tutorial generated from SmartRecorder, the average completion
time of an interaction task was significantly less (p = 0.005 < 0.01)
than that with baseline tutorials.

Subjective Satisfaction. We collected 108 (6 interaction tasks x
18 participants) satisfaction scores on baseline tutorials and tuto-
rials generated from SmartRecorder. Shapiro-Wilk test suggested
the non-normality of ratings and Wilcoxon signed-rank test re-
vealed that tutorials generated from SmartRecorder got significantly
higher user satisfaction (Median = 5, IQR = 1) than baseline tutorials
(Median = 4, IQR = 2) with p<0.001.

Cause of Higher Satisfaction. Compared with the baseline
group, the main cause of higher user satisfaction and less comple-
tion time for the SmartRecorder group was the smooth pace of the
video tutorial. In the baseline group, some tutorials only lasted for
less than 1 second, which led to participants’ failure to keep up with.
Take P4 as an example “I like the tutorial that the machine generated,
I feel it has a buffer time for me to watch. The other version plays
too fast and ends before I can’t make sense of it.” P7 also indicated
that “The prior version (baseline group) is sometimes too fast, and it’s
no doubt that the second type (SmartRecorder group) is better. But it
will be much better if it can be more slowly and pause longer time in
the instructional piece to allow us more time to make sense of it.”. We
also observed that the participants needed to revisit and replay the
tutorial videos in the baseline group much more times which led
to a longer completion time. Since we add the gesture animation
to each instructional video piece, the length of the instructional
piece is extended, which results in a more friendly instruction pace.
Additionally, compared with manually created video tutorial, auto-
generated video tutorials make it easier to keep the pace of the
video steady by uniformly setting the length of the instructional
video clips. However, some participants like P7 proposed that the
pace of the generated tutorial video remained to be optimized. We
believe this is an interesting point that deserves further exploration.

6 DISCUSSION
We firstly discuss the novelty of our work. Then we indicate the
limitation and future work of this study.

6.1 The Novelty of Our Work
We discuss the novelty of our work from two aspects. From the
perspective of technique, we leverage smartphone IMU to analyze
user input characteristics, which presents a new method to process
the media information on smartphones and generate tutorials about
smartphone usage. From the perspective of the human-computer
collaboration, we improve the recall of tutorial steps to let creators
delete the redundant steps and refine the tutorial content directly
with an easy-to-use editor, which lowers the time cost and skill
requirement. We also propose that facilitating end-users to be a
checker and refiner of machine automation can be a promising way
of human-computer collaboration.

6.1.1 Leveraging smartphone IMU to Analyze User Input Charac-
teristic. TapNet [18] explored the potential of smartphone IMU to
recognize multiple tap properties, including tap direction and lo-
cation, in the context of off-screen interaction. We further explore
the feasibility of recognizing the screen-based gestures (Tap, Long
tap, Scroll up, Scroll down, Scroll left, Scroll right) and apply this
technique to tutorial generation. To tackle the challenge of extract-
ing user interaction trace from screencast, smartphone IMU is a
channel that has great potential to use with low privacy risk and
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without complicated user settings (compared with using Accessibil-
ity API [28, 39, 44]). Considering the popularity of IMU sensors on
smartphones regardless of the operating system, using IMU to assist
screencast processing will be more pervasive and accessible than
some existing methods. The technique evaluation also shows that
combining the video channel with the IMU channel will compen-
sate for each other’s defects and improve the system performance
when extracting tutorial metadata from the demonstration.

6.1.2 Human-Computer Collaborative Tutorial Creation. Since it is
hard to ensure the correctness of the tutorial content with fully au-
tomated approaches, we involve the creators as a role of a checker
and refiner of the machine automation. In SmartRecorder, the edit-
ing complexity is reduced from video editing to image refinement,
which reduces the skill requirement, decreases the time cost, and
facilitates the creation of non-experts. The back-end Input Step
Analyzer supports the design of Tutorial Refinement Editor. It auto-
matically extracts the key information of each tutorial step, which
reduces the human work on information retrieval. With a high
recall of key steps, the tutorial creator only needs to delete the
redundant steps and refine the tutorial metadata in several images,
which liberates them from timeline operation and information re-
organization. We believe that facilitating end-users to be a checker
and refiner of machine automation can be a promising way to im-
prove human-computer collaborative work. It not only reduces
the human workload and skill requirements but also keeps the
correctness of the result.

6.2 Limitation and Future Work
We discuss this study’s limitations and future work from the per-
spective of IMU data processing, the target group of tutorial recipi-
ents.

6.2.1 IMU Data Processing. For the contact detection model, we
filter out some gentle touches that cause the fluctuation of linear
acceleration below 0.5. If the user touches the screen too gently, it
will be hard for the contact detection model to detect the contact.
However, as the mean value of a positive sample is 2.1, the accuracy
will be high when the user touches the screen with normal pressure.
For the gesture recognition model, since the similar tap properties
between Long Tap and Tap, we find that distinguishing these two
gestures is difficult, which affects our gesture classification accuracy.
As for the position prediction model, since the contact on the border
of two adjacent grids is difficult to distinguish, our 6-class position
prediction is not good yet. As a result, we leverage the top 2 results
of position in the following UI element position prediction. In the
future, we will collect more data for model training and optimize
the model for IMU data processing. We believe the improvement of
the IMU data processing model can reduce the complexity of the
following technique pipeline and further improve the performance
of the Input Step Analyzer.

6.2.2 Specific Study on Recipient Groups. As this work mainly
focuses on the creation process of the video tutorial, we focus
less on the different requirements of different recipient groups. As
general video tutorials can not always satisfy all persons, there
remains much research space for exploring the specific needs of
varying recipient groups. For example, when creating a tutorial

for children or people with visual impairments, there should be
some special requirements for the tutorial content design [23, 34].
Also, the user studies lack qualitative research, which leads to our
weak contribution to the recipients’ personalized feedback and
design opportunities for different recipient groups. In the future,
we will conduct more user studies to divide recipients into different
groups and explore the specific needs of different recipient groups
so that we can optimize the tutorial generated by SmartRecorder
for different people.

7 CONCLUSION
This paper presents SmartRecorder, a novel tool that generates
video tutorials of smartphone tasks with machine intelligence and
minimal human effort. With the screencast and IMU data (vibra-
tion characteristics generated by user touch) collected in the task
completion process, SmartRecorder leverages computer vision and
sensing algorithms to extract key information (keyframes, target UI
element position, gesture) of each input step in the screencast and
generate the tutorial video. Through a two-phase user study, we
evaluated the efficiency and effectiveness of SmartRecorder. The
results show that SmartRecorder facilitates non-experts to create
video tutorials with significantly less time (reduced by 75.62%) and
higher satisfaction from tutorial recipients. Using IMU data to im-
prove the performance of automatic interaction trace extraction is
novel among existing methods. Additionally, SmartRecorder pro-
vides tutorial creators with an easy-to-use tutorial refinement editor
designed based on the high recall for key steps to revise the tutorial
content, which minimizes human effort and ensures the correctness
of tutorial content. We also discuss that involving human creators
as a checker and refiner for the result that machine intelligence
creates can be a promising way for human-computer collaboration.
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A PARTICIPANT DEMOGRAPHICS IN THE
USER STUDY

Table 5: Expert and Non-expert participants in the first phase of user study

Label No Age Gender Profession Video editing tool

EP P1 29 F Researcher working in human factor Viamaker
EP P2 22 F Student majoring in information design Viamaker
EP P3 26 F Student majoring in information design VUE
EP P4 30 M Student majoring in architecture design Adobe Premier
EP P5 24 M Student majoring in information design Viamaker
EP P6 27 M Student majoring in information design Viamaker
NP P7 24 M Student majoring in computer science None
NP P8 23 M Student majoring in computer science None
NP P9 20 M Student majoring in computer science None
NP P10 20 F Student majoring in social science None
NP P11 23 F Student majoring in social science None
NP P12 21 F Student majoring in management None

Table 6: Demographic information of participants in the second phase of user study

No Age Gender Education level Years of smartphone usage

P1 70 F Junior middle school 5
P2 67 M Senior middle school 4
P3 63 F Senior middle school 8
P4 73 F college 6
P5 68 F college 10
P6 61 F Senior middle school 7
P7 64 M college 6
P8 61 F Senior middle school 6
P9 65 M Senior middle school 7
p10 65 F Senior middle school 3
P11 70 M Junior college 9
P12 61 M Senior middle school 4
P13 29 M Post graduate. above 10
P14 28 M Post graduate above 10
P15 33 F Post graduate above 10
P16 26 F Post graduate above 10
P17 26 F Post graduate above 10
P18 33 M Post graduate above 10
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