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(a) Squint eyes (b) Neutral (c) Widen eyes (d) Dwell to Select Target 

Figure 1: DEEP allows users to widen and squint their eyes to adjust the visual depth in the scene and reveal or hide occluded 
objects facilitating easier gaze pointing. This storyboard illustrates a user selecting the target marked with blue arrow using 
DEEP . The top row shows the user’s eyelid movement, the middle row shows a top-down view of the layout with a gray circle 
representing the visual depth, the bottom row shows a front view that the user sees. DEEP shows a slide bar to indicated the 
current visual depth. Initially, the target is occluded by a sphere. The user widens his/her eyes to increase the visual depth. The 
slide bar turns white and the green cursor moves upward as visual feedback. During adjustment, objects that are closer than 
the visual depth will turn semi-transparent. Once the intended target (blue) is no longer occluded, the user stops widening the 
eyes. The user then dwells on the target to select it. The target turns green as visual feedback. 

ABSTRACT 
Gaze-based target sufers from low input precision and target occlu-
sion. In this paper, we explored to leverage the continuous eyelid 
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participants’ dwelling pattern for targets with diferent sizes and lo-
cations. Based on these results, we propose DEEP , a novel technique 
that enables the users to see through occlusions by controlling the 
aperture angle of their eyelids and dwell to select the targets with 
the help of a probabilistic input prediction model. Evaluation re-
sults showed that DEEP with dynamic depth and location selection 
incorporation signifcantly outperformed its static variants, as well 
as a naive dwelling baseline technique. Even for 100% occluded 
targets, it could achieve an average selection speed of 2.5s with an 
error rate of 2.3%. 

CCS CONCEPTS 
• Human-centered computing → Pointing; Virtual reality; 
User models. 
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1 INTRODUCTION 
With the rapid development of virtual reality (VR) and augmented 
reality (AR), the pointing performance for virtual targets becomes a 
crucial feature for modern HMDs. Among various solutions, gazing 
attracts increasing attention from both the academia (e.g., [2, 18, 39, 
40, 44, 46]) and the industry (e.g., HTC Vive Pro Eye, HoloLens 2, 
and Sony PSVR 2), due to its high moving speed and the capability of 
hands-free interaction. However, practical gaze pointing faces three 
major challenges: 1) unintentional triggering due to the continuous 
gaze movement (the “Midas touch problem” [55]), especially in VR 
where gaze tracking is always on; 2) low input precision due to jitter 
[50], which is more severe for small targets; 3) target occlusion in 
3D scenes. 

So far, researchers have proposed various techniques to facilitate 
gaze pointing, including dwelling [6, 18, 26, 34, 40], gaze gestures [8, 
10, 27, 44, 46], eye vergence [2, 21, 25], and incorporating auxiliary 
modalities [26, 39, 47, 51]. These techniques have been proven 
efective in conventional pointing tasks. However, the problem of 
selecting occluded and dense targets [13] is not well-solved yet. 
These tasks are important in VR, which could appear in various 
scenarios (e.g., 3D CADs, smart room interaction and gaming). 

In this paper, we propose DEEP , a high-efcient and occlusion-
robust gaze pointing technique in VR. DEEP is inspired by the 
observation that people usually widen and squint their eyes when 
trying to focus on distant and close targets, respectively. The in-
teraction of DEEP features two designs (see Figure 1): 1) users can 
continuously control the Aperture Angle of Eyelids (AAE) to adjust 
the visual depth, which is defned as the distance from the eyes up 
to which objects become semi-transparent, enabling the selection 
of occluded targets; 2) a probabilistic decoder can compensate the 
imprecision of gaze dwelling, enabling the users to accurately select 
small targets. 

We conducted three user studies to facilitate the design of DEEP . 
Study 1 explored whether intentional eyelid movement was distin-
guishable from natural movements, and how comfortable it was to 
perform such movements. Results showed that natural eyelid move-
ment range was small, and users were comfortable to intentionally 
perform eyelid movements, which provided AAE thresholds for 
depth adjustment detection in DEEP . Study 2 further examined 
users’ ability to control eyelid movements for input. Results sug-
gested that controlling AAE in a region was easier than holding 
it at precise values, which informed the depth adjustment design 
of DEEP . Study 3 examined users’ gaze dwelling patterns. Results 
provided parameters for target disambiguation of DEEP . 

We evaluated the interaction performance of DEEP in scenes 
with diferent levels of target occlusion and densities. We also tested 
a Naive Dwell technique, and two variants of DEEP : L-DEEP (L for 
location) and D-DEEP (D for depth), which statically emphasized 
the function of location selection and depth selection, respectively. 
Results showed that L-DEEP yielded the highest selection speed 
for less occluded targets, while DEEP or H-DEEP (H for hybrid) 
with the dynamic incorporation of both location selection and 
depth selection achieved the highest overall performance and user 
satisfaction. All three techniques performed signifcantly better 
than Naive Dwell. 

The contributions of this paper are three-folded: 1) we systemat-
ically modeled the users’ eyelid movement pattern in natural con-
ditions and in diferent pointing tasks, providing empirical data on 
the users’ ability of controlling their continuous eyelid movement; 
2) we propose DEEP , the frst technique to leverage continuous 
eyelid movement for visual depth adjustment, and dynamically 
incorporated probabilistic input prediction for dwell-based gaze 
pointing in VR; 3) we evaluated the interaction performance of 
DEEP with diferent design alternatives and in diferent tasks. The 
results prove that DEEP is high-efcient and occlusion-robust for 
3D gaze pointing in VR. Also, the analysis on usage log sheds light 
on the users’ pointing strategy for diferent targets. 

2 RELATED WORKS 

2.1 Gaze-based Pointing Techniques 
Researchers have proposed a number of gaze-based techniques for 
target selection. To help resolve the false triggering problem of gaze 
input, or to increase the input speed, many techniques use gaze to 
point at the target or select a range of targets, and use auxiliary 
modalities (e.g., head [47], keyboard [26], touchscreen [51] and 
hand gesture [39]) to confrm the selection. Although efective, the 
involvement of additional input modalities increases the complexity 
of the techniques, and limits the application scenarios. 

Gaze-only inputs usually employ dwell-based, gesture-based or 
vergence-based input techniques. Dwelling is the most common 
gaze pointing technique [6, 18, 26, 34, 40]. Users fxate their gaze 
on the target for a period of time to select it, which is intuitive and 
could help resolve false triggering [34]. To reduce fatigue due to 
long-time dwelling, researchers use Fitts’ Law [18] and probabilistic 
model [40] to dynamically adjust the dwell time. However, applying 
dwell-based techniques to small-sized targets is hard due to the low 
input precision human eyes’ natural jitters [38]. 

https://doi.org/10.1145/3526113.3545673
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Gesture-based techniques seek to overcome the “Midas touch 
problem” [8, 10, 27, 44, 46]. Users move their gaze along a predefned 
path or the target to trigger selection, which helps disambiguate 
users’ input with natural gaze movements. However, this is less 
intuitive than dwell-based pointing, and frequently performing 
rapid gaze movement may cause discomfort [46]. 

Vergence-based techniques allow users to gaze in the scene, and 
then cross their eyes to trigger input [2, 21, 25]. In theory this 
achieves high input performance as the interaction behavior is 
subtle. However, divergence-based pointing is not easy to perform, 
which leads to considerable learning efort. In comparison, DEEP 
also uses subtle movement around the users’ eyes to facilitate gaze 
pointing, but the eyelid movement design is more close to the 
experience in daily lives. 

2.2 Pointing for Small and Occluded Targets in 
Virtual Reality 

Small and occluded targets post signifcant challenge in VR point-
ing [3, 13]. Existing techniques focus on enhancing the ray-casting 
selection mechanism of the controller (e.g., [3, 13, 33, 41, 49, 58]). 
These techniques demonstrate good performance in pointing par-
tially occluded objects [54]. In particular, Depth Ray [13] and Ray-
cursor [3] add a cursor on the ray to enable 3D selection, but users 
cannot visually acquire fully occluded objects for selection. Alpha 
Cursor [58] turns the objects semi-transparent when moving the 
cursor, which inspires DEEP’s visual depth adjustment design. No-
ticeably, all of these techniques require auxiliary input (e.g., touch 
pad and joy stick) that cannot be used in gaze-only scenarios. 

Some techniques explore to rearrange the objects or change the 
user’s perspective (e.g., [5, 22, 28]) to avoid occlusion. However, 
these techniques usually sufer from low pointing speed (e.g., > 5s 
for high density and occluded targets [5, 22]), and can create unnec-
essary visual clutter, making them unsuitable for gaze interaction. 
Some techniques use statistical model [37] and scoring function 
[7] to distinguish target objects without rearranging them, which 
inspires our location selection mechanism. However, these tech-
niques are not applied to dwell-based gaze input, and do not support 
selecting fully occluded targets. 

For gaze input, Outline Pursuits [46] allows the users to select 
partially occluded targets by following a moving point along the 
target’s outline with their gaze. However, it has difculty distin-
guishing multiple objects with similar outline shapes. In compari-
son, DEEP can select all viewable targets without additional visual 
clutter. VOR Depth Estimation [35, 36] also allows users to se-
lect partially occluded objects by gazing towards the target and 
shake their heads. However, the selection can be unintentionally 
triggered during natural head movements. In addition, selecting 
fully-occluded targets is still not possible. In comparison, with vi-
sual depth adjustment, DEEP enables robust selection for all targets 
while minimizing the possibility of false triggering. 

2.3 Input Techniques Leveraging Facial 
Expressions 

Facial expression is widely used for interaction due to its rich ex-
pressiveness and naturalness [9]. Applications include emotion 
recognition [1, 4, 15, 30, 31], user intent recognition [11, 57] and 

gesture input [17, 19, 53]. As DEEP leverages the eyelid movement, 
we focus on the facial expressions around the users’ eyes. 

Many works explore using facial gesture for intentional input, 
including using the eye’s closure and blink gestures. Jota et al. 
[19] explores the design space of eyelid gestures and classifes eye 
gestures into three discrete levels: open, closed and half-closed. Ku 
et al. [24] adds more levels to eye gestures: gaze, enlarge, frown, 
wink, raise eyebrow and squint, and tests them on an AR device. Li 
et al. [29] proposes gesture grammar and eyelid gesture detection 
mechanism. 

Some researchers combine eye gesture with gaze. Heikkilä et al. 
[14] uses the closure of both eyes as confrmation. Gomez et al. [12] 
explores the closure of one eye and the gaze movement of the other 
to perform drag and drop. Similar to other gesture input techniques, 
these techniques face the challenge of gesture memorability, and 
are not suitable for target selection tasks. 

The users’ eyelid control ability is mainly investigated clinically 
[23, 45]. However, to the best of our knowledge, no one has for-
mally investigate the users’ ability of controlling the continuous 
movement of the eyelid. Accordingly, DEEP is the frst to leverage 
the continuous movement of eyelid for interaction. 

3 STUDY 1: EXAMINING THE NATURALNESS 
OF EYELID MOVEMENT 

In order to design a robust and natural eyelid interaction mecha-
nism for DEEP , we frst conducted a user study to explore whether 
or not intentional eyelid movement is distinguishable from natu-
ral movements and easy to perform in order to provide the AAE 
thresholds for depth adjustment detection. We are interested in 
the range of natural eyelid movement during dwelling tasks rather 
than glancing tasks in existing work (e.g., [48]) as DEEP utilizes 
dwell detection. 

3.1 Participants and Apparatus 
We recruited 14 participants (7 male, 7 female) from the campus, 
with an average age of 21.0 (SD = 1.3). 9 of them reported occa-
sional or no VR experience, while 5 of them had daily to monthly 
experience. Each participant was compensated $10. 

We used an HTC Vive Pro Eye headset as the apparatus, which 
has a 90Hz display with a resolution of 1440 × 1600 and a feld of 
view (FOV) of 110° per eye. The gaze data was obtained through the 
SRanipal SDK at a frame rate of 120Hz and 0.5 − 1.1° gaze tracking 
precision using built-in eye tracker cameras [16]. 

We defned the Aperture Angle of Eyelids (AAE) to quantify the 
users’ eyelid movement. It is calculated based on the “eye wide” 
and “eye blink” values from the SDK (both ranged from 0 to 1). 
Both data are 0 in neutral condition. “Eye wide” reaches 1 when 
the eyes is fully opened, and “eye blink” reaches 1 when the eyes 
are fully closed. As the eyelid movement range of diferent users 
varied, some participants were not able to reach an “eye wide” of 1. 
Therefore, we designed an AAE calibration process that measures 
the range of the values for each participant, and normalizes the 
data to calculate AAE (ranges from -1 to +1). In result, an AAE of 
-1, +1 and 0 indicates fully closed, widen to the extreme, and neutral 
condition, respectively. 
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3.2 Experiment Design 
We arranged the targets on 5 concentric rings 5° apart to cover 
±25° of the participants’ FOV. The number of targets on each ring 
was 8, 8, 12, 12 and 16 respectively, resulting in 56 targets (plus 
1 target at the center). All targets had a visual angular radius of 
1° (see Figure 2a). 

(a) (b) (c) 

Figure 2: Experiment platform: (a) Target layout. (b) In the 
frst task, the current target was highlighted, and other tar-
gets were hidden. (c) In the second task, the current target 
was highlighted, while other targets were semi-transparent 
for reference. 

We designed two sub tasks in this experiment. The frst task 
aims to examine the natural movement pattern of the participants’ 
eyelid in gazing tasks. Therefore, we did not restrict the participants’ 
head movement (i.e. rotation) during the tasks. However, to avoid 
parallax, they were not allowed to walk in the room or move their 
upper body. The second task aims to examine whether intentionally 
controlling the eyelid movement was comfortable for the users. 
We want to cover the full range of gaze angles, therefore head 
movement was restricted. During the experiment, no interaction 
feedback was provided to the users, which ensured the most natural 
behavior without potential bias towards any specifc interaction 
design. 

3.3 Procedure 
Participants were seated during the experiment. They frst per-
formed eye tracker calibration of the headset, and our AAE calibra-
tion process (less than 10 seconds). In the frst task they were asked 
to gaze at each of the target twice in random order. The current 
target was highlighted in red, while other targets were hidden to 
avoid visual distractions (see Figure 2b). They were asked to gaze at 
the target naturally for 2 seconds, and not blink during gazing. After 
that, they pressed the space key to continue to the next target. They 
were allowed to rest if they felt tired. The experiment took about 20 
minutes. In the second task, the current target was also highlighted 
in red, but other targets were translucent to facilitate participants 
compare and rate (see Figure 2c). During gazing, they were asked to 
try to widen and squint their eyelids as much as possible, and rate 
the comfort level when doing this from 1 (impossible) to 5 (very 
easy). 

3.4 Results 
3.4.1 Eyelid Movement Range. We analyzed the AAE distribution 
for all targets based on the results in the frst task, as shown in 

Figure 3. AAE roughly followed a Gaussian distribution, with the 
mean being 0.04. This confrmed that in most cases, the participants 
kept a neutral AAE that was close to 0. Meanwhile, the standard 
deviation of the distribution was 0.31, suggesting that even during 
natural movements, the participants’ AAE could vary signifcantly 
when gazing at targets at diferent angles. Some AAE data were 
beyond the the maximum eyelid movement range ([-1, +1]) as users’ 
eyelids might instantaneously exceed this region during natural 
gaze movement and lead to outliers. However, they only accounted 
for 0.7% of all data points, and had minimal impact on the results. 

Figure 3: AAE distribution of all participants. 

The 90% confdence interfval of the AAE distribution was [-
0.47, 0.55], suggesting that the distribution was skewed towards 
widening the eyes. However, this was still signifcantly smaller than 
the maximum eyelid movement range, highlighting the possibility 
of leveraging intentional eyelid movement out of this region for 
input. 

3.4.2 Correlation Between Gaze and Eyelid Movement. To further 
investigate the efect of target location on eyelid movement, we 
analyzed the correlation between gaze and AAE based on the results 
in the frst task. Figure 4 shows the AAE value at diferent gaze 
locations. Compared with the distribution of the targets, the range 
of gaze point movement was small and centralized, indicating that 
the participants tended to rotate their heads to avoid gazing at 
targets with great angles. The center of the gaze point distribution 
was lower than the center of FOV. The distribution was bilaterally 
symmetrical, and was wider vertically than horizontally. 

A signifcant correlation between gaze point location and AAE 
was observed. Generally, AAE increased as the users gazed upwards 
and decreased as they gazed downwards. This result corroborated 
with existing fnding [56] that eyelid movements had strong cor-
relation with gaze. This can be explained as the muscle of human 
eyes is connected with the eyelid, causing correlated movements 
[20, 43]. 

3.4.3 Ease of Intentional Eyelid Movements. The results for the 
frst task suggested that leveraging the eyelid movement out of the 
neutral region for input was possible. While in the second task, 
we analysed participants’ ease of intentional eyelid movements. 
Figure 5 shows the subjective ratings for the comfort of squinting 
and widening the eyes. As expected, performing eyelid movement 
around the center of FOV received the highest rating. Generally, 
when gazing at targets with greater angles, both the ratings for 
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Figure 4: AAE value at diferent gaze locations. 

(a) Squinting (b) Widening 

Figure 5: Average subjective ratings on the comfort of (a) 
squinting and (b) widening the eyelid for targets at difer-
ent locations (1: impossible, 5: very easy). The color bar in-
dicates the rating scores. We plotted the isograms of scores 
from 2 to 4 after linear interpolation. The orange ellipse is 
the 90% confdence ellipse of gaze point distribution. 

squinting and widening would drop monotonically. This implied 
that moving the eyelid when gazing at extreme angels was difcult. 
This trend was especially observable for squinting. Friedman test 
found that across all targets, the ratings for squinting was signif-
cantly lower than that for widening (χ2(1) = 632,p < .001), with 
the average rating being 3.59 (SD = 1.02) and 4.15 (SD = 0.56) respec-
tively. Noticeably, within the 90% confdence ellipse of natural gaze 
point distribution, all targets (15/15) received a rating higher than 
4. This proved that during natural gaze movement, intentionally 
controlling the eyelid movement for interaction was comfortable 
for the participants. 

4 STUDY 2: EXAMINING EYELID MOVEMENT 
CONTROL ABILITY 

In Study 1, we verifed that intentional eyelid movement is dis-
tinguishable from natural eyelid movement and comfortable to 
perform. In this study, we aim to further examine users’ precise 
eyelid control abilities in order to inform the eyelid movement 
interaction design of DEEP . 

4.1 Participants and Apparatus 
We recruited 14 participants (7 male, 7 female) from the campus, 
with an average age of 21.5 (SD = 1.2). 7 of them reported occa-
sional or no VR experience, while 7 of them had daily to monthly 
experience. 3 of them have participated in study 1, but did not ex-
hibit learning efect because study 1 did not require holding eyelid 
movement. Each participant was compensated $10. We used the 
same apparatus as in previous study. 

4.2 Experiment Design 
To test the participants’ ability of controlling their AAE, we de-
signed two kinds of targets: line target and segment target. A line 
target indicated a specifc value that the participants should keep 
their AAE at. And a segment target indicated a range that the par-
ticipants should keep their AAE within. To evenly test the entire 
range of AAE ([-1, 1]), we arranged 8 line targets with an AAE of 
±0.2, ±0.4, ±0.6 and ±0.8, respectively. Meanwhile, as we aimed 
to leverage the AAE out of the central region for interaction, we 
designed the segment targets to to be [-1, -X] and [X, 1], with X 
being 0.2, 0.4, 0.6, 0.8 and 0.9, respectively, resulting in 10 segment 
targets in total. 

(a) (b) (c) (d) 

Figure 6: Experiment platform. (a) At the start of each trial, 
participants’ AAE should be within the gray neutral region. 
(b) For line targets, participants adjusted their AAE to the 
target value, kept dwelling and pressed a button to start a 
10-second recording. (c) For segment targets, participants 
adjusted their AAE into the yellow segment, (d) and auto-
matically triggered the recording. Participants were asked 
to keep within the segment for as long as possible. 

Figure 6 shows the visual feedback. A red line on a black bar 
indicates the current AAE value within the range of [-1, 1]. Each line 
target is shown as a white line (see Figure 6b), and each segment 
target is shown as a yellow segment (see Figure 6c). 

4.3 Procedure 
Participants were seated during the experiment. They frst per-
formed eye tracker calibration of the headset, and our AAE calibra-
tion process. They then completed the tasks for 8 line targets and 
10 segment targets in random order. In each trial, they frst kept 
their AAE within the neutral gray region ([-0.15, +0.15]). They then 
pressed the space key to show the target, and adjusted the AAE to 
hit the target or enter the segment as quickly as possible. For line 
targets, the participants pressed the space key again when they felt 
they had reached the target, and then they kept their AAE at the 
value for 10 seconds for recording. For segment targets, the record-
ing would automatically start when AAE entered the segment, and 
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the participants were required to keep within the segment for as 
long as possible. We restricted the maximal dwelling time to 15 
seconds to avoid fatigue. During the experiment, the participants 
were allowed to rest when they felt tired. The experiment took 
about 30 minutes. 

4.4 Results 
4.4.1 Pointing Time. Pointing time is measured as the time elapse 
between the moment the target appeared and AAE reached the 
target (pressed the key for line targets, or entered the segment for 
segment targets). Figure 7 shows the pointing time for diferent 
targets. Each segment target is represented by the AAE value of its 
inner boundary. As expected, the pointing time for line targets was 
consistently longer than that for segment targets with the same 
AAE. This result confrmed that adjusting the AAE to a specifc 
value was more difcult than keeping it within a region. 

Figure 7: Pointing time for diferent line and segment tar-
gets. Error bar indicates one standard deviation. 

For line targets with AAE < 0, the pointing time increased mono-
tonically as the targets became further from the neutral position. 
However, this trend was not observed for line targets with AAE > 0. 
According to RM-ANOVA, signifcant efect of AAE was found on 
pointing time in the former condition (F3,39 = 5.98,p < .01), but 
not in the latter condition (F3,39 = 0.64, p = .59). Interestingly, com-
pared with squinting (AAE < 0), the pointing time during widening 
(AAE > 0) appeared to be longer with greater variance. This sug-
gested that performing fne control during widening may be more 
difcult than during squinting. 

For segment targets, the pointing time increased monotonically 
as the targets became further from the neutral position. According 
to RM-ANOVA, signifcant efect of AAE was found on both sides 
(AAE < 0: F4,52 = 20.3, p < .001; AAE > 0: F4,52 = 16.5, p < .001). 
Opposite from the results of line targets, the pointing time during 
widening (AAE > 0) was shorter (F1,13 = 1.41, p < .05) with 
much smaller variance. This suggested that for all the participants, 
widening the eyes to enter a segment was easier than squinting. 

4.4.2 Holding Time within Segment Targets. The above results sug-
gested that using segment targets for eyelid interaction was more 
efcient and robust than line targets. To further investigate the 
users’ AAE holding abilities within segment targets, we analyzed 
the holding time measured as the time elpase between the moment 

when AAE entered the segment and AAE exiting the segment or 
the maximal dwelling time was reached. 

Figure 8: Holding time for diferent segment targets. Error 
bar indicates one standard deviation. 

Figure 8 shows the holding time for diferent segment targets. In 
both widening and squinting conditions, the holding time decreased 
monotonically as the segment was narrower (also further from the 
neutral position). According to RM-ANOVA, signifcant efect of 
AAE was found on the holding time (AAE < 0: F4,52 = 32.1, p < 
.001; AAE > 0: F4,52 = 43.0, p < .001). Post hoc analysis found 
that targets with |AAE | ≥ 0.8 yielded signifcant shorter holding 
time than |AAE | = 0.2. This suggested that the participants’ AAE 
holding ability was relatively stable, which only dropped at extreme 
AAE values. 

RM-ANOVA found the holding time during widening was slightly 
shorter than during squinting (F1,13 = 148.4,p < .05). However, 
for all targets with |AAE | ≤ 0.8, the average holding time was over 
7 seconds, which was sufcient for interaction in DEEP . In com-
parison, the average time elapsed between eye blinks was only 2.8 
seconds [52]. 

5 STUDY 3: MODELING THE 2D GAZE 
DWELLING BEHAVIOR 

Previous studies informed DEEP’s interaction design employing 
eyelid movement. However dwell-based selection is imprecise on 
small or dense targets due to gaze jitter [6]. In 3D pointing, this 
becomes a major challenge as partially occluded targets can be 
dense and small from the user’s point of view, and using DEEP to 
adjust the visual depth and revealing these targets is not enough for 
high precision selection. Therefore, in this study, we examine users’ 
dwelling patterns to provide parameters for DEEP’s probabilistic 
decoder. 

5.1 Participants and Apparatus 
We recruited 12 participants (5 male, 7 female) from the campus, 
with an average age of 20.4 (SD = 1.1). 6 of them reported occa-
sional or no VR experience, while 5 of them had daily to monthly 
experience. 9 of them participated in previous studies. However 
as the interaction tasks of the three studies were diferent (natural 
gaze movement vs. intentional eyelid movement vs. gaze dwelling), 
participants did not exhibit learning efects. Each participant was 
compensated $10. We used the same apparatus as in previous stud-
ies. 
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5.2 Experiment Design 
We used a single-factor within-subjects design, with Target Size as 
the only factor. We tested fve levels of target sizes (measured in 
visual radius): 1°, 1.5°, 2°, 3° and 4°. As shown in Figure 9, all targets 
were arranged within an ellipses with a major axis of 12.5° and a 
minor axis of 10°. The center of the ellipse was set at (0°, -2.5°). These 
values were determined according to the 90% confdent ellipse of 
the gaze point distribution in natural conditions in Study 1 (see 
Figure 5). The number of targets in each condition was 25, 17, 17, 9 
and 5, respectively. 

(a) 1 Degree (b) 1.5 Degree (c) 2 Degree (d) 3 Degree (e) 4 Degree 

Figure 9: Target layout of the fve target sizes in Study 3. 

The goal of this study was to model the efect of target size and 
location on the users’ 2D gaze dwelling behavior. Therefore, the 
position of all targets were fxed to the participants’ FOV, regardless 
of head rotation. Meanwhile, we provided no visual feedback, in 
order to avoid any potential efect on their behavior. We were 
interested in the upper bound of the dwelling precision that the 
participants could achieve given sufcient time. Therefore, we did 
not restrict their pointing speed. The recording began after they 
stabilized their gaze and pressed a button. 

5.3 Procedure 
Participants were seated during this experiment. They frst per-
formed eye tracker calibration of the headset, and then performed 
gazing tasks for the fve levels of target sizes in random order. In 
each condition, they pointed at each target twice, in random order. 
In each task, the target would be highlighted in red, the partici-
pants moved their gaze to the target and dwell on it. When they felt 
they had stabilized the gaze, they press a button to start a 2-second 
recording. After that, they pressed the button again to continue to 
the next target. The participants were allowed to rest if they felt 
tired. The experiment took about 30 minutes. 

5.4 Results 
5.4.1 Collective Gaze Point Distribution. We analyzed all the recorded 
gaze points. Figure 10 shows the collective gaze point distribution 
and the 90% confdence ellipses. The percentage of gaze points that 
fell within the target boundary for increasing sizes of targets was 
63.7%, 82.6%, 92.6%, 97.2% and 99.2%, respectively. This suggested 
that even for 4° targets, the gaze point could still fall out of the 
target boundary during dwelling. For smaller targets, this percent-
age dropped monotonically, and even fell below 64% for 1° targets, 
making it nearly impossible to select the corresponding targets 
using dwelling. Therefore, a robust dwelling selection algorithm 
was necessary. 

5.4.2 Dwelling Precision. We measured the participants’ dwelling 
precision by calculating the length of the semi-major and semi-
minor axes of the 90% confdence ellipses, as shown in Figure 11. 
Across all target sizes, the length of the semi-major axes varied be-
tween 0.93° and 1.01°, and the length of the semi-minor axes varied 
between 0.39° and 0.42°, which was comparable with the target sizes. 
According to RM-ANOVA, target size yielded no signifcant efect 
on the length of either axis (semi-major axis: F4,44 = 3.4, p < .05, 
semi-minor axis: F4,44 = 2.8,p < .05). This suggested that the par-
ticipants’ dwelling precision was relatively consistent, regardless 
of the target size. Even for larger sizes of targets, they still tended 
to gaze at a focused point. 

5.4.3 Systematic Ofset. We calculated the angular ofsets between 
the center of the 90% confdence ellipses and the target center, 
and reported horizontal ofsets, vertical ofsets and ofset distances. 
Horizontal and vertical ofsets are the angular distances between 
the center of the confdence ellipse and that of the target in the 
horizontal and vertical directions. A positive horizontal and vertical 
ofset for example represents the center of the confdence ellipse 
is to the right and upper side of the target respectively. As shown 
in Figure 12, the average horizontal ofset was very small (< 0.1°), 
while the average vertical ofset was relatively greater (0.19° to 0.83°). 
The ofset distance increased monotonically from 0.53° to 0.98°, but 
not as fast as target size. RM-ANOVA found that target size yielded 
a signifcant efect on vertical ofset (F4,44 = 8.30,p < .001) and 
ofset distance (F4,44 = 7.54, p < .001), but not on horizontal ofset 
(F4,44 = 0.59, p = .67). In general, the participants’ gaze points 
tended to land slightly above the target center, which corroborated 
with existing work [42]. Combining the results above, we could 
found that the users’ dwelling precision was relatively high, but the 
systematic ofset mainly led to a low dwelling accuracy for small 
targets. 

6 DEEP: DESIGN AND IMPLEMENTATION 

6.1 Interaction Design 
Traditional dwell-based gaze pointing techniques are error-prone 
when pointing occluded or dense targets [34]. To tackle these chal-
lenges, DEEP has two design goals: 1) the users can adjust the visual 
depth to select occluded targets (depth selection); 2) the users can 
dwell to discern targets close to each other (location selection). 
DEEP is designed as the frst technique to leverage continuous eye-
lid movement for visual depth adjustment, and dynamically incor-
porate probabilistic input prediction for dwell-based gaze pointing. 

Inspired by the observation that people usually widen their 
eyes when focusing on distant objects, and squint for close objects, 
DEEP leverages eyelid movement for visual depth control. When 
using DEEP , the user can intentionally widen or squint his/her eyes 
to continuously control the visual depth (see Figure 1). Objects 
whose depth is smaller than the visual depth (closer) are rendered 
semi-transparent, and are unselectable. Meanwhile, objects whose 
depth are greater than the visual depth (further) are unafected. 
Compared to techniques that re-arranged the positions of 3D tar-
gets (e.g. [5]), DEEP provides a smoother interaction experience for 
the user. 
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(a) 1 Degree (b) 1.5 Degree (c) 2 Degree (d) 3 Degree (e) 4 Degree 

Figure 10: Collective gaze point distribution across all participants in diferent conditions. Red dots and solid lines indicates 
the center and boundary of the 90% confdence ellipses, respectively. Blue dots and dashed lines show the target center and 
boundary for reference. 

Figure 11: Dwelling precision (the length of the semi-major 
and semi-minor axes of the 90% confdence ellipses) for dif-
ferent sizes of targets. Error bar indicates one standard devi-
ation. 

Figure 12: Systematic ofset for diferent sizes of targets. Er-
ror bar indicates one standard deviation. 

When the intended target is no longer occluded, the user can 
dwell on the target to select it. It is worth mention that when using 
DEEP , the user can freely choose to perform selection after all occlu-
sions are gone, or when the target is partially occluded. However, 
as we showed in Study 3, for partially occluded targets, using its 
boundary for dwelling detection could lead to input error due to 
its limited size. Therefore, instead of manipulating the dwelling 
gaze points to always fall within the target’s boundary we adopt 
a probabilistic modeling to discriminate ambiguous gaze targets. 

This design improves dwelling selection performance, and allows 
users to point with less stress. 

During the pilot study, we discovered that when adjusting the 
visual depth, the users’ gaze location usually stayed still, which 
may cause unintentional triggering. Therefore, we design all targets 
to be unselectable during visual depth adjustment. In addition, we 
found that displaying the users’ gaze ray was distracting, and would 
harm the user’s confdence due to its jitter. Therefore, we hide the 
gaze ray from users. 

6.2 Visual Depth Adjustment 
Figure 13 shows the algorithm pipeline of DEEP . Visual depth ad-
justment is achieved by controlling the AAE of the user. In Study 
1, we found that the AAE value in natural conditions mainly fell 
within a limited range around the neutral point. Therefore, we de-
sign a region with two thresholds [AAElow , AAEhiдh ]. When the 
AAE falls within this range, the visual depth adjustment is unable 
to be triggered. In Study 2, we found that adjusting the AAE to 
a specifc value was difcult. Therefore, we mimic the segment 
target condition, and design the visual depth to increase when AAE 
falls within [AAEhiдh , 1], and to decrease when AAE falls within 
[−1, AAElow ]. According to results from Study 1 and 2, we deter-
mine AAElow and AAEhiдh to be -0.5 and +0.6, respectively, which 
balances the interaction performance and false triggering. 

In practice, blinking also occasionally causes false triggering. 
Therefore, we design a time threshold of 0.5s before the visual 
depth adjustment is triggered (see Figure 13) based on the average 
human blink time of 0.1 to 0.4 seconds [52]. A visual depth speed 
too slow introduces extra fatigue and harm the performance, while 
a speed too fast would make it harder to precisely control the visual 
depth. Therefore, we pre-tested diferent speeds, and dynamically 
adjust the speed so that the adjustment time from the nearest point 
to the furthermost point in the scene is 3 seconds. 

In order to facilitate AAE control, we design visual feedback for 
DEEP . As shown in Figure 1, we display a slide bar on the right side 
of the FOV that mapped to [-1, 1], and a cursor that indicated the 
current AAE. By default, the slide bar is shown in gray to minimize 
distraction. And when the visual depth adjustment is triggered, the 
bar is highlighted in white, and the cursor changes to green. The 
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Figure 13: Algorithm Pipeline of DEEP . 

adjustment stops once the AAE returns to the central region, and 
the slide bar turns to gray. 

6.3 Dwell-Based Target Selection 
As mentioned above, to help select dense and small targets, we 
incorporate a probabilistic model into the classical dwell-based 
target selection technique, which consists two steps: 

Step 1: Dwell detection. Based on the typical dwell time for gaze 
selection of 0.6 to 1.0 seconds [34], we use a 0.8 seconds time window 
to detect dwelling. According to Study 3, we enlarge the radius of 
the “hit-test region” for each target to be at least 2° (larger targets 
are not afected) (see Figure 14a). Once 90% of the gaze point within 
the time window falls within the hit-test region, DEEP identifes 
the corresponding target as a candidate target (see Figure 14b). 
Compared with other target-expansion techniques (e.g. Expand 
[5]), this design is more conservative, and will not signifcantly 
increase the false triggering rate. 

Step 2: Target Disambiguation. It is possible that in step 1, multiple 
targets are identifed as the candidate (e.g. when they are very 
close or overlapped in depth). Therefore, we design an algorithm 
to disambiguate these candidates. Specifcally, for each candidate 
target k (1 ≤ k ≤ n), DEEP calculates the probability of it being the 
intended target Pintented (k), and selects the one with the highest 
probability. The calculation is: 

Pintended (k) = w(n) × Pdepth (k) + [1 − w(n)] × Plocation (k). (1) 

In Equation 1, Pdepth quantifes the selection probability in the 
depth dimension. Note that all targets whose depth is smaller than 
the visual depth are unselectable. Therefore we design Pdepth to 
be a linear model that yields smaller probability for further targets: 

nÕ 
Pdepth (k) = (dmax − dk )/ (dmax − di ) (2) 

i=1 

where di indicates the depth of the ith candidate. dmax is the depth 
of the furthermost candidate (see Figure 14c). 

Figure 14: Dwell Based Target Selection: (a) The hit-test re-
gions for targets smaller than 2° are enlarged to 2°. (b) Tar-
gets with 90% or more gaze points falling in their hit-test 
region within the 0.8s time window are marked as candi-
date targets. (c) Pdepth : Target in the front has higher prob-
ability of selection. Plocation : Target closer to the center of 
gaze points has higher probability of selection. (d) Pintended : 
Weighs the two probabilities and select the intended target. 

Meanwhile, Plocation quantifes the dwelling selection proba-
bility on the x-y plane. According to the results in Study 3, we 
use a univariate Gaussian distribution to model the ofset distance 
between the centroid of the dwelling gaze points and the target 
center. We then perform linear interpolation to calculate the model 
parameters for targets with arbitrary sizes. After that, we calculate 
Plocation (k) based on the ofset distance between the gaze point 
and the center of the kth candidate target using the distribution 
Figure 14d. 

Finally, w(n) serves as a weighting factor between the above two 
probabilities, where n is the number of candidate targets. A great 
n value usually appears when multiple targets are very close in 
location, but overlapped in depth. While a small n value usually 
means that users can easily distinguish between them using loca-
tion selection (e.g., by shifting the gaze location away from the 
distraction). Therefore, we design w(n) to be a piecewise function 
that increased with n. To determine the value of w(n), we conducted 
a pilot study, in which 4 participants performed 200 pointing tasks 
using diferent w(n) values ranging from 0.1 to 0.9, and diferent 
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cut points from 2 to 5. Finally, we set w(n) = 0.3 for n ≤ 2, and 
w(n) = 0.9 for n ≥ 3. 

7 STUDY 4: INTERACTION PERFORMANCE 
EVALUATION 

In this section, we introduce a user study to evaluate the interac-
tion performance of DEEP in scenes with diferent target layouts. 
We are also interested in testing the performance of the dynamic 
adjustment strategy (w(n)) compared with static strategies. 

7.1 Participants and Apparatus 
We recruited 13 participants (6 male, 7 female) from the campus, 
with an average age of 20.2 (SD = 0.2). 6 of them reported occasional 
or no VR experience, while 7 others had daily to monthly experience. 
6/13 users in Study 4 have participated in the previous studies. 
However, they were all new to DEEP’s algorithms and tasks in Study 
4, therefore did not exhibit learning efect. Each participant was 
compensated $15. Tasks were developed using the same platform 
and hardware as in previous studies. 

7.2 Experiment Design 
We designed fve scenes to mimic diferent real-life pointing sce-
narios (see Figure 15). The 50% Occluded scene, 75% Occluded scene 
and 100% Occluded scene shared the same 2-layer sparse layout 
with diferent occlusion levels, which was similar with existing 
work [46]. The Complex Depth scene used a 4-layer layout with 
up to 100% occlusion. The Complex Density scene used a 2-layer 
dense layout with an average of 50% occlusion. We used targets 
with radius from 1° to 3°. The number of targets in the scenes were 
20, 20, 20, 50 and 50 respectively. 

(a) 50% (b) 75% (c) 100% (d) Depth (e) Density 

Figure 15: The fve target layouts in Study 4, shown in top 
and front views. (a) 50% Occluded layout (b) 75% Occluded 
layout (c) 100% Occluded layout (d) Complex Depth layout 
(e) Complex Density layout. 

We tested four techniques, which shared the same layouts: 
• Naive Dwell [34]. Visual depth adjustment and probabilistic 
dwelling selection was not supported. A target would be 
selected when 100% gaze points within a 0.8 time window fell 
within the target boundary.In Naive Dwell, target boundary 
is the visual outline of a target. 

• L-DEEP (L for location). A static variant of DEEP . We set 
w(n) ≡ 0.3, and disabled the visual depth adjustment func-
tion to emphasize the location selection function. 

• D-DEEP (D for depth). A static variant of DEEP . We set w(n) ≡ 
0.9 to emphasize the depth selection function. 

• H-DEEP (H for hybrid). The complete DEEP with dynamic 
weighting factors. We renamed it for presentation clarity. 

L-DEEP and D-DEEP are DEEP variants, while Naive Dwell is the 
baseline. We did not test other techniques mentioned in Section 2 
as their interaction requirements are diferent from DEEP (e.g., not 
hands-free [3, 13, 58], requires diferent target shapes[46], modi-
fes target positions [5]). We also did not test VOR [32] as some 
participants can not perform it successfully. 

The goal of this study is to test the performance of the techniques 
in real use. Therefore the participants were free to rotate their 
heads, but they were not allowed to walk or move their upper body. 
To improve the internal validity of the results, 20 pre-determined 
targets in diferent layers in each scene were used as the tasks. 
During the experiment, the target was marked blue with an arrow 
pointing at it, so that the participants could fnd the target even if it 
was occluded (see Figure 1). Since the participants were unable to 
adjust visual depth when using Naive Dwell and L-DEEP, it would 
be impossible for them to select fully or heavily occluded targets. 
Therefore we allowed the participants to give up on a task by 
pressing a button after trying. 

7.3 Procedure 
Participants were seated during the experiment. They frst per-
formed eye tracker calibration of the headset, and our AAE calibra-
tion process. They then familiarized themselves with the techniques 
for about 2 minutes, and completed four sessions of tasks in ran-
dom order, each corresponding to one technique. Each session was 
consisted of fve blocks, corresponding to the fve scenes, in random 
order. In each block, they performed selection for the 20 targets in 
random order. For each target, they frst pressed a button to show 
the target, and then select the target “as fast as possible”. Each task 
was completed when the correct target was selected, or when the 
participant gave up on that task. A 5-minute break was enforced 
between diferent sessions. The participants were also allowed to 
rest if they felt tired. Finally, we gathered their subjective feedback 
towards the techniques through questionnaires and interviews. 

7.4 Results 
7.4.1 Selection Time. Selection time is measured as the elapse be-
tween when the target displays and is selected, excluding aborted 
trials. Figure 16 shows the selection time for diferent techniques 
and scenes. Scenes with heavier occlusion led to longer selection 
time. Complex Depth yielded the longest selection time for all the 
techniques, while Complex Density only introduced severe chal-
lenge for Naive Dwell. 

RM-ANOVA found a signifcant diference between the selec-
tion time of diferent techniques (F3,36 = 103, p < .0001). Post hoc 
analysis found that the three variants of DEEP all performed signif-
icantly better than Naive Dwell in all scenes. Comparing L-DEEP 
and D-DEEP, L-DEEP was faster in less occluded scenes (50% Oc-
cluded, 75% Occluded and Complex Density), whereas D-DEEP was 
faster in more occluded scenes (100% Occluded and Complex Depth). 
Meanwhile, H-DEEP achieved competitive performance with the 
best performing technique in all the scenes. This proved that the 

https://boundary.In
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Figure 16: Selection time for diferent techniques and scenes. 
Error bar indicates one standard deviation. 

dynamic algorithm of H-DEEP could leverage the advantages of 
both location and depth selection, making it adaptive in both dense 
and occluded scenes. 

7.4.2 Error and Abort Rate. We calculated the error rate and abort 
rate as the percentage of incorrect and aborted selections out of 
all selections. Additionally, we calculated failure rate as the sum 
of error and abort rate, as shown in Figure 17. RM-ANOVA found 
signifcant diference between the techniques (Error rate: F3,36 = 
31.9,p < .0001, Abort rate: F3,36 = 24.8, p < .0001, failure rate: 
F3,36 = 66.2, p < .0001). The abort rate of Naive Dwell in all the fve 
scenes was all signifcantly higher than the other three techniques, 
suggesting that participants found it to be unresponsive. 

Figure 17: Error rate and abort rate for diferent techniques 
and scenes. The stacked bars indicated failure rate. Error bar 
indicates one standard deviation. 

L-DEEP performed well in 50% Occluded, 75% Occluded and Com-
plex Density, but its error rate dramatically increased to over 25% 
in the other two scenes. Surprisingly, no participant aborted selec-
tion when using D-DEEP and H-DEEP. And the error rate of these 
two techniques were very low (< 6.2%) in all the scenes. This sug-
gested that compared with location selection, depth selection may 
beneft the selection success rate more efectively. Again, D-DEEP 
performed well in all the fve scenes, proving its robustness. 

7.4.3 Strategy of Visual Depth Adjustment. When selecting par-
tially occluded targets using D-DEEP and H-DEEP, it was possible 
that the user could successfully perform the selection without visual 
depth adjustment. Therefore, we performed analysis on the partici-
pants’ strategy of using visual depth depth adjustment, which could 
provide more information on the intrinsic advantage of diferent 
techniques. 

Figure 18: Ratio of selections that used visual depth adjust-
ment. Error bar indicates one standard deviation. 

Figure 18 shows the ratio of selections in each scene that used 
visual depth adjustment. Across diferent scenes, the ratio of H-
DEEP varied from 13% to 78%, while that of D-DEEP were all above 
40%. We speculated that the location selection feature of H-DEEP 
could help the users when distinguishing adjacent targets, therefore 
avoiding the need for depth selection for partially occluded targets. 
In comparison, as D-DEEP emphasized more on target depth, even 
the target was only partially occluded, the participants still needed 
to adjust the depth to hide all the closer occlusions. Even in 75% 
Occluded, the ratio of H-DEEP was still below 20%, suggesting that 
the users generally preferred location selection, and only used depth 
selection when necessary. 

7.4.4 Subjective Results. We asked the participants to rate all the 
techniques in terms of diferent dimensions from 1 to 5. Higher 
scores indicate higher preference. Dimensions included learnability 
(1: Difcult to learn, 5: Easy to learn), ease of use (1: Difcult to 
use, 5: Easy to use), performance (1: Unable to complete selection, 
5: Able to complete speedy selection), fatigue (1: Tiring, 5: Easy), 
frustration (1: Very frustrating, 5: Not frustrating) and overall satis-
faction (1: Not satisfed, 5: High satisfaction). Cronbach’s α of the 
questionnaire was 0.85, confrming the internal consistency of the 
survey. Figure 19 shows the scores. 

Figure 19: Subjective ratings for diferent techniques on a 
5-point survey. Error bar indicates one standard deviation. 

The scores of L-DEEP and H-DEEP were above 3 on all dimen-
sions, indicating that the participants were generally positive to-
wards the two techniques. Friedman test found that the scores of 
the techniques were signifcantly diferent on all dimensions: learn-
ability (χ2(3) = 13.6, p < .01), ease of use (χ2(3) = 14.5, p < .01), 
performance (χ2(3) = 31.5, p < .001), fatigue (χ2(3) = 18.8, p < 
.001), frustration (χ2(3) = 27.1,p < .001) and overall satisfaction 
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(χ2(3) = 28.4, p < .001). L-DEEP appeared to be the most learn-
able, easy to use technique, and caused the least faitigue, which 
was consistent with the above results. While H-DEEP achieved the 
best performance, caused the least frustration and had the highest 
overall satisfaction. This confrmed the efectiveness of both depth 
selection and location selection in 3D pointing. We also asked the 
participants to rank these techniques, and 12/13 participants chose 
H-DEEP to be the best. 

We interviewed participants about their experience. They re-
ported Naive Dwell to be the most strenuous and least accurate 
technique. “There was little room for error.” (P5). They reported L-
DEEP to be simple and easy to use for less-occluded targets. “I could 
achieve acceptable selection performance.” (P3).. They reported D-
DEEP with its depth control ability to be attractive and functional. 
“Controlling depth with my eyelid is super cool!” (P11). However, fre-
quently performing depth control could cause fatigue. “Controlling 
depth with my eyelid is super cool!” (P11). They reported H-DEEP to 
be well-balanced and fexible. “The best technique among the four, 
because I could choose to adjust depth to select occluded objects, and 
simply stare to select less occluded objects.” (P9) 

We also interviewed them about their strategy when using H-
DEEP which fell into three categories: 4 of them only adjusted 
depth for heavily occluded targets (95%-100% occluded), because 
they discovered that they could select other targets by gazing at 
the rim with the help of the location selection algorithm. 7 of them 
adjusted depth for objects that were partially occluded (50%-100% 
occluded), which best balance input performance and fatigue. While 
2 of them adjusted depth for nearly all the targets, which ensured 
the most accurate selection. 

8 DISCUSSION 

8.1 Feasibility of DEEP in 3D Gaze Pointing 
In Study 4, all three DEEP techniques showed signifcant advantage 
over Naive Dwell in terms of speed, accuracy, and user preference, 
demonstrating DEEP as an efective technique for 3D gaze pointing, 
especially for dense and occluded targets. As with other dwell-
based techniques, the speed improvement was mainly brought by 
the shortening of time window. Compared with existing dwell time 
reduction techniques [18, 40], DEEP’s location selection improved 
jitter tolerance without requiring prior knowledge of users’ point-
ing task (e.g., language model in text entry) or changing dwell time 
that may make users feel out of control. 

The accuracy improvement was brought by visual depth adjust-
ment that revealed occluded target and the probabilistic selection 
model for target disambiguation. We drew inspirations from exist-
ing depth adjustment implementations [3, 13, 58], and optimized 
them for gaze and fully occluded scenarios. Compared with other 
techniques that also comprehensively considered factors from difer-
ent dimensions [37], our algorithm was derived from the behavior 
model built from user studies. 

Our comparison of the three DEEP techniques in Study 4 revealed 
their unique strengths. L-DEEP performs best in lightly occluded 
scenes, and is perceived best in learnablity, ease of use and fatigue. 
However, its performance reduces signifcantly in heavily occluded 
scenes. It is useful when simplicity is required. In comparison, D-
DEEP performs well in heavily occluded scenes, and is the most 

precise technique with the lowest failure rate. This makes it suitable 
for VR scenarios that require high robustness. In general, H-DEEP 
is overall the fastest, most accurate and most preferred technique 
due to its dynamic incorporation of both depth selection and lo-
cation selection. H-DEEP incurs more fatigue than L-DEEP due to 
its additional depth adjustment actions. However, the diference 
was insignifcant (p = .28). Therefore, we recommend H-DEEP in 
most application scenarios (e.g., 3D CAD, gaming, and for users 
with limited motor functions). 

In practice DEEP can also be applied AR/MR HMDs (e.g., HoloLens 
2 and Magic Leap 1) as long as the eye tracker (or external camera) 
can capture users’ eyelids. The AAE calculation algorithm can be 
easily developed using computer vision. 

8.2 Leveraging Eyelid Movement for Input in 
VR 

DEEP demonstrated the feasibility of leveraging continuous eyelid 
movement in VR interaction. Comparing with gesture-based point-
ing techniques [46] that only tenseutilize gaze point location, eyelid 
movement serves an integral role in DEEP by providing additional 
input, allowing DEEP’s gaze interaction to be more relaxing while 
achieving better performance. 

The results in Study 2 showed that adjusting AAE to a specifc 
value took signifcantly longer time than reaching for a segment, 
and the time that users could keep their AAE within the segment 
targets could be relatively long (> 6s). Therefore, we suggested that 
continuous eyelid movement was more suitable for rough control-
ling tasks rather than fne controlling tasks. Figure 5 shows that 
intentionally controlling the AAE value was natural and comfort-
able for the users, and the interaction range of AAE was distin-
guishable with that during natural movements (see Figure 3). These 
proved the potential of eyelid interaction in terms of robustness 
and naturalness. The subjective ratings of D-DEEP and H-DEEP 
(see Figure 19) revealed that performing eyelid movement for a 
long time could lead to fatigue. Therefore we recommended that 
eyelid movement be utilized for quick (e.g., confrmation) rather 
than heavy tasks (e.g., text editing). 

Based on the robustness and ease of use of eyelid interaction, 
we expected it to be applied in various VR scenarios. In addition 
to depth adjustment in DEEP , the added input space from eyelid 
movements can be used as triggers for menu or address the “Midas 
touch problem” using eyelid movement to enable and disable dwell 
selection. 

9 LIMITATION AND FUTURE WORKS 
DEEP features both depth selection and location selection. In this 
paper, we used w(n) to dynamically combine these two components. 
Although efective, the current implementation was relatively sim-
ple and heuristic, and could be further improved. For example, 
leveraging more contextual information (e.g., task sequence) and a 
more sophisticated weighting model (e.g., machine learning) could 
potentially further increase the performance of DEEP . We planed 
this in future work. 

Personalization served as a crucial part for any gaze based inter-
action techniques. In this work, we designed a short AAE calibration 
process to resolve the diference in eyelid moving range between 
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diferent participants. Our user study results found that there were 
still a number of factors that could be considered in personalization 
(e.g., gaze-AAE correlation and 2D gaze point distribution during 
dwelling). Therefore, designing online personalization algorithms 
that learn from user’s gaze data can also improve the gaze selection 
performance. 

The current prototype of DEEP was tested under an abstract VR 
environment. We used sphere targets with no background distrac-
tions to ensure the internal validity of our results. It is worthwhile 
to test the interaction performance of DEEP and the user behavior 
in real-world scenarios with complex distractions and targets with 
diferent form factors. We also defer this to future work. 

10 CONCLUSION 
In this paper, we present DEEP , a novel gaze pointing technique 
that leverages eyelid movement for pointing dense and occluded 
targets in VR. Our design followed the results of three user studies. 
Study 1 examined the naturalness of leveraging eyelid movement 
for interaction. Study 2 explored the users’ eyelid movement control 
ability for diferent line and segment targets. Study 3 investigated 
the users’ gaze point distribution in dwell selection tasks in terms 
of systematic ofset and dwelling precision. In the evaluation study, 
we compared the interaction performance of DEEP and three base-
line techniques. Results demonstrated that H-DEEP with a dynamic 
incorporation of depth selection and location selection signifcantly 
outperformed the other techniques in terms of selection time and 
accuracy. It was also the most preferred technique by the partici-
pants in general. We conclude that DEEP is an attractive solution 
that achieves efcient and occlusion-robust gaze pointing in VR 
scenarios. 
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