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ABSTRACT
A computer vision system using low-resolution image sensors can
provide intelligent services (e.g., activity recognition) but preserve
unnecessary visual privacy information from the hardware level.
However, preserving visual privacy and enabling accurate machine
recognition have adversarial needs on image resolution. Model-
ing the trade-off of privacy preservation and machine recognition
performance can guide future privacy-preserving computer vision
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systems using low-resolution image sensors. In this paper, using
the at-home activity of daily livings (ADLs) as the scenario, we
first obtained the most important visual privacy features through a
user survey. Then we quantified and analyzed the effects of image
resolution on human andmachine recognition performance in activ-
ity recognition and privacy awareness tasks. We also investigated
how modern image super-resolution techniques influence these
effects. Based on the results, we proposed a method for modeling
the trade-off of privacy preservation and activity recognition on
low-resolution images.

CCS CONCEPTS
• Human-centered computing → User studies; • Security and
privacy→ Privacy protections; • Computing methodologies
→ Computer vision.
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1 INTRODUCTION
The advances in technological engineering have enabled cameras
to be increasingly ubiquitous. Nowadays, many cameras can be
manufactured at a low cost in a power-efficient manner, and with
small sizes. With the help of artificial intelligence, these cameras
are enabled with automatic recognition abilities, providing smart
services and applications publicly or privately [6]. However, in
realistic scenarios, this brings up a major concern — visual privacy
exposure.We expect a vision-based system that can bring intelligent
applications while preserving visual privacy.

To achieve this purpose, researchers have explored many post-
processing methods, which were often accomplished by decoupling
the personally identifiable information (e.g., face) [7, 22, 24, 33, 43,
50]. However, these solutions are not sufficient to process all visual
privacy cues [42, 43, 48, 49].

As suggested by related works [10, 47–49, 60], a fundamental so-
lution toward the construction of a privacy-preserving vision-based
system is to lower the image sensor’s resolution from the hardware
level. Thus, machines can achieve applicable performance in the
main recognition task (e.g., activity recognition), while preserving
visual privacy as much as possible. Related works have proved that
a low-resolution image (e.g., 16 × 12 pixels) possesses sufficient
visual features for the main recognition task but not for visual
privacy awareness. However, a high-resolution image can provide

enough visual features for both of these two tasks. Thus, there is a
trade-off regarding the effect of the image resolution on the main
recognition task and visual privacy awareness as Figure 1 illustrates.
Understanding and modeling such a trade-off will provide guidance
for the privacy-preserving vision-based system with low-resolution
visual sensors.

In this paper, we focus on a smart home scenario where low-
resolution image sensors automatically recognize activities of daily
living (ADLs), such as feeding, entertainment, personal hygiene,
intimacy, and functional mobility. ADLs recognition system can
summarize activities and daily routines on which the ability of a
person living independently is assessed; thus is widely used for
health monitoring, especially for elderly care [16, 35]. In realistic
home environments, the data captured by an image sensor may
be single-frame pictures [10, 47] or multi-frame videos [23, 40].
We regard both of them as images to model the trade-off between
privacy preservation and activity recognition.

We considered such a trade-off as an optimization problem over
image resolution. We conducted an online user survey with 115
participants to obtain the most important visual privacy features in-
cluding nudity, identifiable face, valuable property, and relationship.
In this paper, we regarded both the human and the machine as rec-
ognizers. Thus, we explored the effect of image resolution on both
human and machines’ ability in activity recognition and visual pri-
vacy awareness on the PA-HMDB51 dataset, which consists of over
500 videos from realistic environments [57]. Specifically, we con-
ducted a user study with 240 participants to investigate the effect of
image resolution on human recognition performance. We evaluated
the machine’s performance on ADLs and visual privacy recognition
tasks with cutting-edge machine learning approaches. Finally, we
built a modeling method for calculating the trade-off of visual pri-
vacy preserving ADLs recognition using low-resolution images. We
envision that our method can inspire other vision-based systems
that require balancing privacy awareness and machine recognition
performance. Overall, the contributions of our paper are two-fold.
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Figure 1: Demonstration of the effects of image resolution on the performance of the main vision-based recognition task and
visual privacy awareness.
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1) Using the at-home ADLs recognition as a scenario, we pro-
posed a pipeline to investigate the effect of the image resolution
on both human and machine performance on the main activity
recognition task and visual privacy awareness.

2) We presented a model for calculating the trade-off of visual pri-
vacy preserving activity recognition using low-resolution images.
Using the proposed model, we can calculate an optimal resolution
range of the image sensor for privacy-preserving activity recogni-
tion applications.

2 RELATEDWORK
We describe the related work in this section, including visual pri-
vacy features and taxonomy, privacy-preserving machine recogni-
tion, and balancing the trade-off between privacy preservation and
machine recognition.

2.1 Visual Privacy Features and Taxonomy
Privacy is described as "the right to select what personal informa-
tion about me is known to what people" [21]. Pictures or videos
convey a broad spectrum of privacy information, namely visual
privacy. While legal and government entities legislated laws and
policies on privacy protection [11, 56], their guidance leaves room
for intruding visual privacy. Recently, researchers have explored the
visual privacy exposure degree, visual privacy taxonomies/features,
visual privacy importance, and visual privacy risk assessment using
social media image databases [36, 41, 42]. Orekondy et al. summa-
rized 68 kinds of visual privacy features on social media images
and then explored the feasibility of evaluating visual privacy expo-
sure degree through machine learning approaches [41, 42]. Li et al.
summarized 7 categories, including 22 visual privacy features by
crowdsourcing users’ descriptions in their photo album [36]. These
researches provide fundamental guidelines on taxonomy and the
importance of visual privacy, which inspired us to design our user
survey to explore the perceived importance of visual privacy in a
home environment under varying image resolutions.

2.2 Privacy-Preserving Machine Recognition
A growing number of privacy preserving computation technologies
have emerged in recent years, which share the common promise
of preserving privacy while also obtaining the benefits of compu-
tational analysis [1]. To preserve visual privacy, existing solutions
mainly adopted post-processing techniques such as image blurring
and encryption techniques for images containing visual privacy
information, e.g., human faces [7, 22, 24, 30, 33, 43, 49, 50]. However,
these solutions are insufficient to protect all privacy information,
including readable addresses, phone numbers, etc. [43, 48, 49].

Recently, researchers proposed a fundamental solution for a
privacy-preserving vision-based system — to lower the image sen-
sor’s resolution from the hardware level [10, 40, 47, 49, 60, 61].
Specifically, Miyazaki et al. developed a technology that can ac-
curately detect the flow of people on low-resolution videos in
which the faces cannot be distinguished [40]. Dai et al. simulated
a privacy-protected smart room prototype and then studied the
performance impact of the image resolution from a single pixel
to 10 × 10 pixels [15]. They evaluated that five 10 × 10 resolution
cameras can achieve a fairly high accuracy of 89.6% on recognizing

9 human poses. Ryoo et al. proposed the inverse super-resolution
(ISR) method for activity recognition on ultra-low-resolution videos,
which also achieved state-of-art recognition accuracy while pre-
serving identifiable personal information [47, 49].

These solutions showed the feasibility of activity recognition
on low-resolution images. However, they only assumed an image
resolution threshold (e.g., 10 × 10 [15]) to be able to preserve visual
privacy without evidence. Obviously, the lower the resolution is,
the better the visual privacy can be preserved. However, a lower
resolution will inevitably decrease the amount of information for
activity interpretation. It remains unknown how to balance the
two adversarial demands on image resolution for recognizing the
activity and safeguarding visual privacy. Our work is to answer
this question by proposing a mathematical trade-off model and a
method to calculate the optimal resolution range.

2.3 Balancing Privacy Preservation and
Machine Recognition

Researchers have discussed the trade-off between privacy preserva-
tion and activity recognition by quantifying humans’ perceptions
of privacy features. Some existing works have explored the effect
of image resolution on human ability in facial recognition [26, 62].
Harmon and Julesz found that humans are good at facial recognition
even when the portrait’s resolution is down to 16 × 16 pixels [26].
Yip and Sinha found that humans can still recognize celebrities’
faces on portraits with a resolution of merely 7 × 10 pixels [62].
Some researchers also explored the impact of blur or pixelize filters
at various levels on visual privacy awareness and activity recogni-
tion in the context of common workplace activities [8] or crowd-
sourced behavioral video coding [34]. They concluded the feasibility
of achieving activity awareness while preserving visual privacy
when tested on human eyes.

Taking human or the machine recognition performances into ac-
count, some researchers tried to understand how to balance privacy
preservation and recognition performance. Alharbi et al. evaluated
the effect of varying degrees of obfuscation on bystander privacy
and visual confirmation utility [5]. Hasan et al. studied the rela-
tive trade-offs between privacy (revealing and concealing selective
attributes of objects) and utility (the visual aesthetics and user
satisfaction of the image) of different image transforms [27]. Wu
et al. formulated a novel adversarial training framework to learn
anonymization transform for input videos such that the trade-off
between target utility task performance and the associated privacy
budgets is explicitly optimized on the anonymized videos [57].

However, these existing works have three limitations. First, They
only tested humans’ interpretation ability. An intelligent applica-
tion relies on the machine for the main recognition task rather than
the human. A more comprehensive study is highly demanded to
explore how resolution affects both the human and the machine’s
recognition performance. Second, they mainly regarded the char-
acter’s face as a privacy feature, which is insufficient to quantify
a fine-grained model for privacy-preserving applications. Third,
Applying post-processing filters to high-resolution images differs
from lowering the image sensor’s resolution, which can preserve
the visual privacy information from the hardware level with fewer
on-device computing resources required.
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Our work fills the gap mentioned above. We targeted enabling
visual privacy-preserving machine recognition applications on low-
resolution image sensors. We modeled the effects of image resolu-
tion on both the human andmachine’s ability in activity recognition
and visual privacy awareness. Further, we proposed a quantitative
survey method to model the importance of comprehensive visual
privacy features.

3 PROBLEM DEFINITION AND
IMPLEMENTATION PIPELINE

This section offers themathematical definition of privacy-preserving
machine recognition using low-resolution images.

3.1 Problem Definition
Assume X to be the raw image set in a realistic environment that
could be captured by the image sensor, for example, single-frame
pictures or multi-frame videos. 𝑓𝑟 (X) represents the captured image
set from the image sensor at a resolution of 𝑟 × 𝑟 . Assume 𝑇 to be
the main recognition task associated with X, in this paper, ADLs
recognition. 𝑃 is the visual privacy awareness task associated with
X. There are three main components in our model.

• Recognition Function. We define the recognition function
of the main recognition task 𝑇 as 𝑓𝑇 (·) and the privacy de-
tection function designed for the privacy feature 𝑃 as 𝑓𝑃 (·).
Both 𝑓𝑇 (·) and 𝑓𝑃 (·) can generate the recognition results
given the captured image set 𝑓𝑟 (X). To give an example of
machine recognition, 𝑓𝑇 (·) and 𝑓𝑃 (·) can be computer vision
models such as artificial neural networks.

• Evaluation Function. We define the evaluation function
𝐿𝑇 (·) and 𝐿𝑃 (·) which take both the outcome of the recogni-
tion function 𝑓𝑇 (𝑓𝑟 (X)) and 𝑓𝑃 (𝑓𝑟 (X)) as input and evaluate
the performance of the recognizers according to the ground
truth labels 𝑔𝑇 (X) and 𝑔𝑃 (X).

• Importance Weights. Considering the variety of privacy
features contained in the captured image set, there may be
differences in humans’ perceived importance of different
privacy features. For a given type of privacy feature 𝑃𝑖 in
the privacy feature set P, we define a weight coefficient 𝜔𝑖

to denote humans’ perceived importance of 𝑃𝑖 .

To optimize the trade-off between privacy preservation and ac-
tivity recognition empirically, many prior works in computer vision
have focused on finding suitable measurement metrics and objec-
tive functions mathematically [25, 45, 52, 57, 58]. However, most of
these aforementioned works ignored humans’ mental evaluation
and recognition abilities of privacy features, and were thus insuf-
ficient. Based on prior works, we regard our research problem as
mathematically optimizing the objective function 𝑆 (𝑟 ) shown in
Equation 1, to reveal the trade-off between privacy preservation
and machine recognition with both machine and human factors
taken into consideration.

𝑆 (𝑟 ) = 𝐿𝑇 (𝑓𝑇 (𝑓𝑟 (X)), 𝑔𝑇 (X)) − 𝜆
𝑛∑︁
𝑖=1

𝜔𝑖𝐿𝑃𝑖
(
𝑓𝑃𝑖 (𝑓𝑟 (X)), 𝑔𝑃𝑖 (X))

(1)
Here, 𝜆 > 0 is a scaling factor representing the sensitivity ratio of
visual privacy preservation over activity recognition performance.
The goal of formulating our research problem in the form of Equa-
tion 1 is to find out optimal resolution ranges where (1) cameras
are limited from obtaining detailed visual information to preserve
as much privacy information as possible and (2) cameras are able
to capture as much detailed non-private information as possible to
improve recognition performance.

3.2 Implementation Pipeline
The implementation pipeline of solving the optimization problem in
Equation 1 has been depicted in Figure 2. In this paper, we choose
the activities of daily living (ADLs) recognition task in a home
environment as our target task 𝑇 . First of all, we conducted a user
study to obtain humans’ perceived importance of various privacy
features (𝜔 in our formulation), with the main results presented
in section 4. To evaluate our model in realistic environments, we
utilized the publicly available video dataset PA-HMDB51 which is
described in section 5.

The critical step of the whole implementation procedure is to
model the recognition abilities of humans and machines under
different resolutions. In order to preserve privacy comprehensively,
we consider the recognition performance of both the human and the
machine for each specific privacy feature 𝑃 to get an estimation of
the evaluation results (𝐿𝑃 in our formulation). The processing logic

X 𝑓𝑟 (X)

𝑓𝑇 (𝑓𝑟 (X))

𝑓𝑃𝑖 (𝑓𝑟 (X))

𝐿𝑇

𝐿𝑃𝑖

𝑆 (𝑟 ) = 𝐿𝑇 − 𝜆
∑𝑛
𝑖=1 𝜔𝑖𝐿𝑃𝑖𝜔𝑖

Human
Machine

Human
Machine

Raw Image Set

Activity Recognition

Privacy Features

Weights Modeling
Results

Figure 2: Framework for modeling the trade-off between privacy preservation and activity recognition.
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is similar for the activity recognition task to obtain the evaluation
results (𝐿𝑇 on our formulation). We conducted a user study to
model human recognition performance on those tasks in section 6.
Then, we utilized state-of-art computer vision models to finish
those recognition tasks under different resolutions in section 7.
Also, we provided additional analysis in section 8 to check whether
our modeling results are robust against currently state-of-art super-
resolution techniques. In the end, we proposed the calculating
procedure of our objective function in section 9 to model the trade-
off between privacy preservation and activity recognition.

4 QUANTIFYING THE IMPORTANCE OF
VISUAL PRIVACY FEATURES

Our first user study aims to understand what visual privacy features
users value the most and quantify the importance of those visual
privacy features, thus simplifying the to-be-built model (Equation 1).
Inspired by related works [13, 36, 42], we obtained 25 visual privacy
features that exist in a home environment. Here we divide them
into 5 categories as below.

• Biometric Identification: identifiable face, gender, skin
color, age group, weight group, hair color, eye color, and
height group.

• PersonalMarker/Information: nudity, home address, num-
ber/code, medical treatment, physical disability, handwriting,
birthday, clothing, and tattoo.

• Ethnicity: religion, race, and nationality.
• Society: relationship, employment and pet.
• Safety: valuable property and living schedule.

4.1 User Survey on Importance of Visual
Privacy Features

We recruited 125 participants (66 females, 59 males) from MTurk.
They had an average age of 32.7 (s.d. = 14.7). The whole survey
lasted around 15minutes. Each participant who passed the attention
check received a 6 USD Amazon gift card.

In the user survey hosted by Qualtrics 1, we first introduced the
smart home scenario where cameras are installed for ADLs recog-
nition. Then we asked the participants to assume that they were
living in the demonstrated house/apartment. Then we evaluated the
importance of each privacy feature with or without low-resolution
to find out what privacy features users value the most and explore
the effect of low-resolution on users’ perceived importance of pri-
vacy features. For the high resolution test, we showed participants
five high-resolution (300 × 300) images. Each image captured one
of the five basic daily activities: functional mobility, feeding, inti-
macy, entertainment, and personal hygiene. We did not control the
participants’ backgrounds regarding their culture, age, gender, and
technical knowledge. In the instruction, we explicitly stated the
scenario of visual privacy leakage as their similar pictures were
posted on the Internet and thus can be accessed by everyone. For
the low-resolution test, we just showed participants the same five
images in low-resolution (50×50). Under each resolution, the partic-
ipant was asked how he/she values the importance of the different
visual privacy information listed in the questionnaire. Then, the

1https://www.qualtrics.com/

participants were required to rate the importance of each visual
privacy feature using a 100-point slider where 0 stands for not
important at all and 100 stands for extremely important. The score
of each privacy feature shown on the slider updates along with the
participant’s choice.

We designed two attention check questions under each condition.
Each attention check question requires the participant to slide to a
certain score that was generated randomly before each survey. All
the questions were provided to the participant in random order.

4.2 Result
In total, we received 115 valid responses out of 120 total responses,
in which respondents successfully completed the survey and passed
all attention check questions. We utilized the Wilcoxon signed-rank
test (𝑝 < 0.05) and Friedman test (𝑝 < 0.05) for statistical analysis
since the rating scores are ordinal.

The analysis results are listed in Table 1. We concluded with the
following findings.

1. Lowering the image sensor’s resolution can significantly
decrease users’ concerns about visual privacy. Table 1 shows
the average and the standard deviation of the rating score of each
visual privacy feature under two different resolution conditions.
On average, people rated visual privacy features with significantly
lower importance scores (𝑍 = −4.02, 𝑝 < 0.001) under the low-
resolution condition (𝑎𝑣𝑔. = 45.1) than the high-resolution condi-
tion (𝑎𝑣𝑔. = 49.3).

2. Identifiable face, nudity, home address, number/code,
medical treatment, relationship, employment, valuable prop-
erty, and living schedule are considered to bemore important
than other visual privacy features. Statistic analysis indicates
that visual privacy features have significant effects on the human
perceived important scores under either the high-resolution con-
dition (𝜒2 (25, 𝑁 = 115) = 298.5, 𝑝 < 0.001) or low-resolution
condition (𝜒2 (25, 𝑁 = 115) = 169.9, 𝑝 < 0.001). When we ran the
pairwise statistical analysis usingWilcoxon signed-rank test among
visual privacy features, we concluded with the following major
results. On both high-resolution and low-resolution images, identi-
fiable face, nudity, home address, number/code, medical treatment,
relationship, employment, valuable property, and living schedule
were considered the most important visual privacy features, since
users rated themwith significantly higher scores than other features
(𝑝 < 0.05). Among these important privacy features, medical treat-
ment and employment were considered less important (𝑝 < 0.05).

3. Nudity, identifiable face, valuable property, and living
schedule are the most important privacy features despite
the image resolution.When compared with the high-resolution
condition, we observed significantly lower importance scores on
features including home address (𝑝 = 0.01), medical treatment
(𝑝 < 0.001), and relationship (𝑝 < 0.01) under the low-resolution
condition. This finding is reasonable since these privacy features re-
quire high-resolution details to interpret. For instance, people were
less concerned about the readable texts on low-resolution images.
However, nudity, identifiable face, valuable property, and living
schedule still lead to the most concerned visual privacy features in
the low-resolution setting, with an average score above 57.
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Table 1: The statistic of the user rated importance scores of the 25 visual privacy features in 5 categories with and without the
low-resolution conditions. 𝑝 < 0.05 indicates significant difference between high and low resolution conditions.

Category Feature High Resolution Low Resolution Significanceavg. std. avg. std.

Biometric Identification

Identifiable Face 60.2 24.3 57.5 26.0 𝑝 = 0.13
Gender 43.5 29.2 43.4 29.4 𝑝 = 0.81

Skin Color 42.0 28.6 43.1 27.3 𝑝 = 0.94
Age Group 42.9 25.1 41.2 25.8 𝑝 = 0.35

Weight Group 43.9 27.2 40.9 27.2 𝑝 = 0.16
Hair Color 36.2 27.4 40.9 28.1 𝑝 = 0.05
Eye Color 40.4 28.9 40.3 28.4 𝑝 = 0.90

Height Group 37.3 25.8 40.0 27.7 𝑝 = 0.30

Personal Marker /
Information

Nudity 61.6 30.9 62.9 29.4 𝑝 = 0.71
Home Address 62.8 23.1 55.6 26.1 𝑝 = 0.01
Number/code 57.5 25.5 55.6 26.6 𝑝 = 0.79

Medical Treatment 60.4 23.2 51.7 25.9 𝑝 < 0.001
Physical Disability 52.1 25.1 49.4 26.0 𝑝 = 0.25
Hand Writing 52.6 26.4 44.9 27.7 𝑝 < 0.01

Birthday 54.2 26.8 44.7 28.5 𝑝 < 0.01
Clothing 40.5 27.9 41.5 27.5 𝑝 = 0.94
Tattoo 42.2 28.7 39.2 28.6 𝑝 = 0.34

Ethnicity
Religion 41.8 27.7 44.6 26.6 𝑝 = 0.29
Race 40.1 26.5 42.2 27.7 𝑝 = 0.64

Nationality 42.1 28.3 41.3 27.5 𝑝 = 0.46

Society
Relationship 60.3 24.8 52.9 25.7 𝑝 < 0.001
Employment 58.2 22.8 52.1 25.8 𝑝 = 0.05

Pet 37.3 24.4 39.1 27.8 𝑝 = 0.46

Safety Valuable Property 64.0 25.0 59.6 26.1 𝑝 = 0.34
Living Schedule 59.3 24.4 59.1 26.3 𝑝 = 0.10

Instead of considering all the visual privacy features, we want to
explore the most concerned ones that have the highest importance
score and are potentially still vulnerable to low-resolution images.
Therefore, we chose the most important visual privacy features in
each category under the low-resolution condition with a minimum
importance score threshold of 50.0. As a result, four visual privacy
features including nudity, identifiable face, valuable property
and relationship were chosen for later user studies and analysis.

5 ADLS DATASET WITH VISUAL PRIVACY
FEATURES

This section describes the dataset we used to explore the effect
of image resolution on humans’ and machines’ performance on
activity recognition and visual privacy awareness tasks.

5.1 Constructing the ADLs Dataset
In order to evaluate the model in realistic environments, we used
the publicly-available PA-HMDB51 dataset for privacy-preserving
activity recognition [57]. This dataset consists of about 355 min-
utes and 51 types of human activity videos collected from realistic
environments with various visual privacy features annotated.

In this paper, we mainly focus on activities of daily living (ADLs)
in a smart home scenario. Therefore, three of our authors selected
the qualified videos from the PA-HMDB51 dataset together with the
following requirements. 1) The video represents a home environ-
ment. 2) All authors agreed that the main character conducted the
same kind of activities. 3) All authors felt comfortable to publish the

video online. For instance, due to the internet policy, we only chose
men’s or kids’ topless videos in this study. Then, we divided the
human activities in the PA-HMDB51 dataset into five basic kinds
of activities of daily living (ADLs) including functional mobility,
feeding, intimacy, entertainment, and personal hygiene. Finally, we
obtained 46, 30, 22, 37, and 16 minutes of videos for functional
mobility, feeding, intimacy, entertainment, and personal hygiene,
respectively.

We randomly split the PA-HMDB51 dataset into a training dataset,
a validation dataset, and an evaluation dataset, which accounts for
90%, 5%, and 5%, respectively. Considering the difference of the
video duration in the PA-HMDB51 dataset, we divided all the videos
into 2-second clips for later training and evaluation without affect-
ing the judgment of the video content. Therefore, there are 226
clips of the videos in the evaluation dataset, with 69, 45, 33, 55, and
24 clips for functional mobility, feeding, intimacy, entertainment,
and personal hygiene, respectively.

5.2 Labeling the Privacy Features
Based on the user study results presented in section 4, we annotated
each frame and each clip in our dataset with privacy features in-
cluding nudity, identifiable face, valuable property, and relationship.
Since privacy features may vary during the video clip, for example,
even in the same video clip, the visibility of a person’s face may be
different, we provided both frame-level and clip-level labels of for
each video in our dataset. First of all, we annotated all of the privacy
attributes on each frame of different clips. Then, we annotated each
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• Type of ADLs: feeding.
• Nudity: fully closed.
• Identifiable face: yes.
• Valuable property: yes.
• Relationship: only one
person.

• Type of ADLs: personal
hygiene.

• Nudity: semi-naked.
• Identifiable face: no.
• Valuable property: no.
• Relationship: only one
person.

• Type of ADLs: feeding.
• Nudity: fully closed.
• Identifiable face: yes.
• Valuable property: yes.
• Relationship: intimate
relationship.

• Type of ADLs: entertainment.
• Nudity: fully closed.
• Identifiable face: yes.
• Valuable property: no.
• Relationship: only one
person.

Figure 3: Examples of the annotated frames in our dataset.

clip according to the frames in the clip for later user studies and
machine experiments. The detailed description of both frame-level
and clip-level labels are listed below.

• Nudity. The nudity label of each frame included three types
that are naked or semi-naked (topless or bottomless), fully
clothed, and no person. A clip is labeled as naked or semi-naked
(topless or bottomless) if at least one frame of the clip is labeled
as naked or semi-naked (topless or bottomless). Otherwise, the
clip is labeled as fully clothed in a similar way. If every frame
is labeled as no person, we will finally label the clip as no
person.

• Identifiable face. If more than 70% of a human face is vis-
ible, we consider the frame to contain an identifiable face.
Therefore, each frame is labeled as yes, no, and no person. A
clip with more than one frame labeled as yes is labeled as yes,
otherwise no. A clip with every frame labeled as no person is
then labeled as no person.

• Valuable property. We only consider safe box, jewelry,
watch, ring, and cash as valuable properties. Each frame is
labeled as yes, no, and no person. We label clips with at least
one frame labeled yes as yes, otherwise no. Clips with no
person on any frame are labeled as no person.

• Relationship. We consider the relationship of all the people
presented in the video. There are four types of labels for
each frame: intimate relationship, non-intimate relationship,
only one person, and no person. A video clip is labeled as inti-
mate relationship if at least one frame of the clip is labeled
as intimate relationship and the frames labeled as intimate
relationship are no less than those labeled as non-intimate
relationship. Otherwise, a clip is labeled as non-intimate re-
lationship in a similar way. A clip with only one person
presented is labeled as only one person and labeled as no
person if there is no person existing in the clip.

Examples of the annotated frames in the dataset are demon-
strated in Figure 3. Each frame was annotated by at least three of
our authors and then cross-checked.

6 EFFECT OF RESOLUTION ON HUMAN’S
RECOGNITION PERFORMANCE

After identifying the most important visual privacy features in
the first study, we model the effect of image resolution on human
performance in recognizing activities of daily living and visual
privacy features. We describe the procedure and results in this
section.

6.1 User Interface
We developed a web-based user interface as shown in Figure 4. Each
problem set in the test for the participants includes one ADLs recog-
nition task and four privacy feature recognition tasks including
face, nudity, valuable property, and relationship. The user interface
also includes attention-check questions in each test. Responses with
incorrect answers to the attention check questions were treated as
invalid. A starting page, shown before the testing procedure, intro-
duces the purpose of the user study and requires the participant’s
demographic information.

We sampled the image resolutions into seven values including
15× 15, 20× 20, 30× 30, 50× 50, 100× 100, 160× 160 and 240× 240.
We utilized a randomization strategy on the back-end server so that
each participant could view 4 randomly chosen videos, with each
video in a random resolution among these seven values. The same
video did not appear twice to each participant. In addition, different
clips from the same video did not appear to the same participant.

6.2 Participant and Procedure
We recruited 240 participants (105 females, 135 males) with an aver-
age age of 22.23 (s.d. = 5.25, ranging from 18 to 30). All participants
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Please watch the video and
answer the questions on the
right.

1. What is the main character doing?
□ Functional mobility. □ Feeding. □ Intimacy.
□ Entertainment. □ Personal hygiene. □ No person.
2. Is there any identifiable faces in the video?
□ Yes. □ No.
3. Is there any valuable properties (e.g., safe box, jewelry, watch, ring, cash,
necklace)?
□ Yes. □ No.
4. Is the main character fully or semi naked?
□ Yes. □ No.
5. What’s the relationship between the characters?
□ Intimate relationship. □ Non-intimate relationship.
□ Only one person. □ No person.
6. Please choose 3.
□ 1. □ 2. □ 3. □ 4. □ 5. □ 6.

Figure 4: Example of the web-based user interface. Video clips of different resolutions is displayed on the left side. All tasks are
listed on the right side of the web page.

were required to have healthy eye conditions without any histori-
cal disease (e.g., color blindness) and use their laptop or desktop
web browser to finish the whole test. Participants were required to
fill in their demographic information, including gender, age, and
historical eye diseases. Following were two practice tests using two
240 × 240 resolution example videos excluded from the evaluation
dataset. Finally, each participant finished the 28 rounds of the test.
The user study lasted around 10 minutes. Each participant was
offered a 5 USD gift card for compensation.

6.3 Results and Findings
In total, we obtained 6, 720 answer records, with 457 (6.80%) invalid
due to the failure of the attention check questions. We utilized One-
way ANOVA for the statistic analysis (𝑝 < 0.05) with independent-
samples t-test (𝑝 < 0.05) as post-hoc analysis. We present our major
results and findings below.

Low-resolution images are effective in preserving visual
privacy but the effects are highly dependent on privacy fea-
tures. Figure 5 shows the effect of image resolution on human
recognition performance of ADLs, face, valuable property, nudity,
and relationship. We observed the significant effect of image reso-
lution on all visual privacy recognition tasks (𝑝 < 0.001). Further,
there is no significant difference between resolutions of 160 × 160
and 240 × 240, indicating that resolutions above 160 × 160 pixels
do not further contribute to visual privacy awareness statistically.
However, the effect of the image resolution is highly task-dependent.
Statistical analysis indicates that the type of privacy features has
significant effects on the perception performance (𝐹3,25048 = 427.2,
𝑝 < 0.001). Specifically, pair-wise comparisons show that human
eyes are more sensitive to nudity (𝑝 < 0.001) when the image res-
olution is below 50 × 50 pixels, followed by the relationship task.
However, tasks including face identification and valuable property
recognition require higher resolution images (≥ 100 × 100 pixels)
to achieve higher performance. For example, participants can only

identify human faces with an accuracy of 79.2% when the resolu-
tion is 100 × 100 pixels. This is because both face identification and
valuable property rely on detailed visual information. Therefore,
a low-resolution image sensor can preserve but not fully protect
visual privacy from the perspective of a human recognizer.

Lowering the image resolution has a significant negative
impact on human recognition performance on ADLs. Results
show that there is a statistically significant effect of changed reso-
lution on human ADLs recognition performance (𝐹6,6256 = 278.0,
𝑝 < 0.001). With resolutions lower than 30 × 30 pixels, human
eyes can only recognize the ADLs with an accuracy below 75.8%.
When the image resolution increases to 50 × 50 pixels, participants
can recognize the activity with a fair accuracy — 88.4%. However,
participants are aware of some privacy features at the resolution
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Figure 5: Humans’ recognition performance on main activity
and privacy feature recognition tasks.
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of 50 × 50. For example, they can recognize the relationship and
nudity with an accuracy of 91.1% and 89.4%, respectively.

7 EFFECT OF RESOLUTION ON MACHINE’S
RECOGNITION PERFORMANCE

In this section, we explore the effect of image resolution on ma-
chine’s recognition performance of ADLs and visual privacy fea-
tures. We adopted the open-access cutting-edge deep learning meth-
ods as the machine recognizer.

7.1 ADLs Recognition
7.1.1 Training and Evaluation Dataset. We applied data augmen-
tation approaches to the training dataset in section 5, including
horizontal flip, and Gaussian Noise, enlarging the dataset by four
times. To fairly compare the recognition performance of the ma-
chine and the human, we utilized the same evaluation dataset in
section 6.

7.1.2 Training and Evaluation Procedure. We utilized both con-
volutional neural networks and transformer-based models as our
ADLs classifiers, including ResNet50 [28], Efficient Net [53] and
Vision Transformer (ViT) [20]. All the models used here were
pretrained with ImageNet dataset [18] that output 1000 probabilis-
tic values. In this experiment, we took every fame of the video clips
in our dataset as the model input during our training, validating,
and testing procedure. We first scaled the image of low resolution
to 512 × 512 pixels to standardize the input of the model. Then,
we fine-tuned the pretrained network using the training dataset
with a certain resolution (𝑟 ) in which the images were all at the
resolution of 𝑟 × 𝑟 . To transfer the pretrained network model to
our application, we added an additional five-node fully connected
layer at the end of the network. We used sigmoid as the activation
function. Once we finished the training procedure, we evaluated
the fine-tuned model using the evaluation dataset under the same
image resolution (𝑟 ). As we have described in section 5, we use the
randomly chosen 5% of the total dataset as the validation dataset
in our implementation. In order to avoid the over-fitting problem,
we used the early stopping method. In other words, we will stop
our training procedure when the accuracy on the validation dataset
does not rise anymore for 5 successive epochs.

7.1.3 Result. Table 2 shows the effect of image resolution on ma-
chines’ performance of the ADLs recognition task. Results indicate
that themachine outperforms the human regarding the ADLs
recognition task on low-resolution images. Vision Transformer
can maintain an accuracy of 84.4% even when the image resolution
is as low as 20 × 20. However, such a resolution is far from enough
for humans to recognize ADLs at an ideal accuracy level. For reso-
lutions above 100 × 100, both humans and machines can achieve
a high accuracy above 90%. Such results show the possibility of
constructing a range of image resolutions to preserve visual privacy
without bearing great loss in ADLs recognition simultaneously.

7.2 Privacy Features Recognition
7.2.1 Facial Identification. We adopted InsightFace [19] for facial
identification by testing whether the model can recognize human
faces in certain areas of the frames.We used the pretrainedArcFace

model for facial identification provided by InsightFace. Also, we
checked every frame of the video clips in this experiment. The result
is shown in Figure 6 as the teal line. Results from the ArcFace model
indicate that even the state-of-art models cannot detect any human
faces below 50 × 50 pixels. However, as the resolution increases
from 100 × 100 to 240 × 240 pixels, machine’s facial identification
performance significantly increases from 71.0% to 100.0%. Such
results imply that identifiable faces can be preserved well against
the machine attacker when the image resolution is below 50 × 50
pixels.

7.2.2 Nudity Recognition. We adopted the pretrained NudeNet 2
for binary nudity recognition. This model was trained to detect
nude parts of the human body in images. Here we utilized the
classifier model to help us make a distinction between safe and
unsafe images. We report the result of NudeNet as the orange line
in Figure 6. The precision and recall of NudeNet also reveal that it
cannot identify any nude parts below the resolution of 30×30 pixels.
Under the resolution of 100 × 100 pixels, NudeNet can recognize
frames containing nude parts with an accuracy of 88.0%. Therefore,
we conclude that resolutions below 30 × 30 pixels can effectively
preserve the nudity privacy feature.

7.2.3 Property and Object Detection. We adopted DETR [9] pre-
trained on the COCO dataset 3 for property and object detection.
Considering the availability of pretrained object detection models,
we used the detection performance of DETR on COCO objects as
an estimation of machine’s recognition performance on valuable
properties. We manually annotated the objects which belong to the
COCO classes in each frame as ground truth. In our implementa-
tion, we first resized videos of different resolutions up to 240 × 240
pixels. Then we kept bounding boxes with a confidence level above
a pre-set threshold (e.g., 0.75) as a result of the model. To evaluate
the model performance under different resolutions, we compared
the objects detected by the model and the ground truth of each
frame one by one to calculate the recognition accuracy. The purple
line in Figure 6 shows the recognition accuracy of DETR. Results
show that below the resolution of 50 × 50, DETR fails to detect
any object. On images with a resolution of 100 × 100, DETR can
achieve an accuracy of 72.0%. Under the resolution of 160 × 160,
large objects such as the main character can be detected precisely
with an overall accuracy of 77.0%. Under the resolution of 240×240,
the object detection results are more accurate, and small targets
such as bottles and cups can be detected, too. Therefore, DETR can
finally achieve an accuracy of 82.0%.

7.2.4 Relationship Classification. We adopted a pretrained cutting-
edge social relationship classification model GRM [55] on the eval-
uation dataset with different image resolutions. This model utilized
a node message propagation mechanism and a graph attention
mechanism to explore the interaction between the person pair of
interest and contextual objects. The prerequisite to inferring the
relationship between people is to obtain the context information
using the object detection model. In our implementation, we resized
the raw video of different resolutions to 240 × 240 pixels. Then, we
annotated the bounding boxes and classes of different objects using
2Software DOI: 10.5281/zenodo.3584720
3https://cocodataset.org/
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Table 2: The ADLs recognition performance of ViT, ResNet50, and EfficientNet, compared with human.

Resolution Human Machine
ViT ResNet50 EfficientNet

15 × 15 37.5% 81.0% 63.9% 52.9%
20 × 20 52.5% 84.4% 66.3% 63.5%
30 × 30 75.8% 89.8% 75.1% 68.0%
50 × 50 88.4% 90.7% 80.5% 74.6%
100 × 100 89.6% 92.2% 81.5% 75.1%
160 × 160 89.9% 93.2% 82.0% 80.0%
240 × 240 90.6% 94.6% 88.8% 83.9%
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Figure 6: Machines’ recognition performance of privacy features.

DETR and labeled the bounding boxes of the person pair whose
social relationship we wanted to examine. The model took every
frame of the raw videos and objects list as input and generated the
classification result as output.

The accuracy result we reported as the magenta line in Figure 6
describes the performance of the GRM model on the four-classes
social relationship recognition task including intimate relationship,
non-intimate relationship, no relationship, and no person. As is shown,
the GRMmodel can detect nothing and will classify any input image
as the no person type under resolutions below 30 × 30 pixels. Our
results here also proved that a low resolution below 30 × 30 is
sufficient to preserve the privacy of social relationships against the
cutting-edge machine recognition method. When the resolution
is 100 × 100 pixels, GRM can recognize social relationships in the
video with an accuracy of 34.1%. For resolutions of 160 × 160 pixels
and 240 × 240 pixels, GRM can achieve an accuracy of 60.9% and
80.5%, respectively.

8 JUSTIFY THE INFLUENCE OF IMAGE
SUPER-RESOLUTION

Image super-resolution techniques were proposed by researchers
to reconstruct a high-resolution image from a low-resolution im-
age [38, 54]. In this section, we justice whether cutting-edge super-
resolution techniques influence our results and findings regarding
the effects of low resolution on activity recognition and privacy
awareness through a user study.

8.1 User Study Procedure and Participant
We adopted one of the cutting-edge image super-resolution meth-
ods SwinIR [37] based on Transformer architectures as well as the
traditional bicubic method to upscale the videos in our evaluation
dataset by four times. Three examples of super-resolution processed
videos are shown in Figure 7.

We adopted a similar web-based interface as Figure 4 shows
except for changing the attention check question to addition and
subtraction test. In this study, we first introduced the purpose and
the procedure of our study. Then each participant took 8 trials
with each trial having one test on the raw video and one test with
videos after super-resolution. In each trial, we first presented each
participant with a randomly-chosen raw video in the evaluation
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dataset and asked them to answer questions of ADLs and privacy
features recognition as illustrated in Figure 4. The raw video’s
resolution was set to a random value among 15×15, 20×20, 30×30,
50 × 50, 100 × 100, 160 × 160 and 240 × 240. Then, we presented
them with the super-resolution videos together with raw videos
simultaneously and asked them to answer the same questions. To
avoid cross effects between videos under different resolutions, the
same raw video did not appear twice to each participant. Further,
we also ensured that the participants in this study were different
from those who participated in the previous studies.

We recruited 306 participants (123 females, 183 males) with an
average age of 21.76 (s.d. = 4.56). The user study lasted around
10 minutes. Each participant was offered a 5 USD gift card for
compensation.

Before
Super Resolution

After
Super Resolution

15
×
15

20
×
20

30
×
30

Figure 7: Examples of the effect of super resolution on videos
of low resolutions including 15 × 15, 20 × 20, and 30 × 30.

8.2 Results and Findings
In total, we received 4,896 test records with 273 (5.57%) of them
failed the attention check. Table 3 and Table 4 show the comparison
of participants’ overall recognition accuracy with or without super-
resolution. Results indicate that participants performed better on
super-resolution videos than on raw videos. Statistical analysis
suggests that when image resolution is below 20 × 20 pixels, super-
resolution techniques can significantly improve human recognition
performance on both activity recognition and privacy recognition
tasks. But it is worth noting that the improvement in recognition
performance brought about by super-resolution technology is still
less than that brought about by increasing the resolution itself.
Such a finding reveals that super-resolution techniques do not
provide enough additional information for humans to enhance their
perception ability in both activity recognition and visual privacy
awareness tasks.

In terms of the impact of the super-resolution technique on the
machine’s recognition performance, researchers have proved that
super-resolution can slightly facilitate vision-based recognition task
such as activity recognition [17, 29], object and text recognition [38,
59]. However, the influence of the super-resolution technique is
very limited. The results are still significantly inferior to that with
the original high-resolution images [14].

In conclusion, the additional visual information introduced by
the image super-resolution technique is insufficient to overcome the
effect of resolution on the recognition performance of humans and
machines. Therefore, we believe that the effects of image resolution
on human (section 6) and the machine’s (section 7) ADLs and visual
privacy recognition performance are robust against image super-
resolution techniques.

Table 3: The statistic of the overall accuracy on main activity
recognition with or without super resolution conditions. 𝑝 <

0.05 indicates a significant difference betweenwith orwithout
super resolution conditions.

Resolution Before After Significanceavg. std. avg. std.
15 × 15 0.386 0.487 0.452 0.498 𝑝 < 0.001
20 × 20 0.593 0.491 0.706 0.456 𝑝 = 0.002
30 × 30 0.803 0.397 0.845 0.362 𝑝 = 0.149
50 × 50 0.891 0.310 0.893 0.308 𝑝 = 0.932
100 × 100 0.846 0.360 0.898 0.302 𝑝 = 0.046
160 × 160 0.899 0.301 0.908 0.289 𝑝 = 0.701
240 × 240 0.908 0.289 0.927 0.260 𝑝 = 0.386

Table 4: The statistic of the overall accuracy on privacy fea-
tures recognition with or without super resolution condi-
tions. 𝑝 < 0.05 indicates a significant difference between with
or without super resolution conditions.

Resolution Before After Significanceavg. std. avg. std.
15 × 15 0.558 0.497 0.602 0.476 𝑝 < 0.001
20 × 20 0.673 0.469 0.736 0.440 𝑝 < 0.001
30 × 30 0.793 0.404 0.823 0.381 𝑝 = 0.038
50 × 50 0.851 0.356 0.866 0.340 𝑝 = 0.276
100 × 100 0.895 0.305 0.906 0.291 𝑝 = 0.359
160 × 160 0.905 0.292 0.913 0.280 𝑝 = 0.488
240 × 240 0.921 0.268 0.925 0.263 𝑝 = 0.766

9 MODELING THE TRADE-OFF OF PRIVACY
PRESERVATION AND ACTIVITY
RECOGNITION

In this paper, our goal is to present a method to model the trade-off
between privacy preservation and machine recognition. We have
obtained the estimation results of the main components in Equa-
tion 1. In this section, we take all these results into consideration
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and explain how we can utilize them to model the trade-off be-
tween privacy preservation and machine recognition. Based on our
modeling results, we further present how to apply our model to
applications.

9.1 Build the Model Using the Parameters from
the Studies

To summarize, we have investigated users’ perceived importance
of different privacy features under high or low image resolutions
in section 4. We chose users’ rating of these privacy features under
high-resolution image condition as the importance weight 𝜔𝑖 in
the model, which was shown in Table 1. Next, we examined both
human’s and the machine’s recognition performance under varying
resolutions in order to obtain an approximation of the evaluation
function 𝐿𝑇 and 𝐿𝑃 in our formulation. In realistic environments,
intelligent applications may rely on either humans or machines to
obtain private information from raw images. Therefore, we take
both human andmachine recognizers into consideration to preserve
privacy features in a comprehensive way. For the main recognition
task 𝑇 , which is activity recognition in our implementation, the
Vision Transformer outperforms all other models including humans
even on extremely low-resolution videos from the dataset. There-
fore, we choose the Vision Transformer as our final recognition
function 𝑓𝑇 and the evaluation results of the Vision Transformer
𝐿𝑇 have been demonstrated in Table 2. For each privacy feature 𝑃𝑖
including nudity, identifiable face, valuable property, and relation-
ship, we found that humans are generally more effective recognizers
compared with machines, especially on ultra-low-resolution videos
from the dataset. Therefore, we consider humans as the final 𝑓𝑃𝑖 in
our calculation. The evaluation results of each 𝐿𝑃𝑖 we are going to
use has been depicted in Figure 5.

9.2 Calculating the Objective Function
Based on the results of 𝐿𝑇 , 𝐿𝑃𝑖 , and 𝜔𝑖 we have discussed above,
we can calculate the objective function 𝑆 (𝑟 ) in Equation 1 for each
resolution we have sampled. Figure 8 illustrates how the values of
our objective function 𝑆 (𝑟 ) change with resolutions 𝑟 . The scaling
factor 𝜆 in our formulation indicates the sensitivity ratio of pri-
vacy preservation over activity recognition which can be flexibly
adjusted according to the deployment environment or user experi-
ence. Here we have only shown the cases for three different lambda
values, including 0.75, 1.00, and 1.25.

As is demonstrated in Figure 8, the value of the objective func-
tion 𝑆 (𝑟 ) shows a trend of first increasing and then decreasing with
the increase of resolution 𝑟 . For the case where lambda is 1.00, the
objective function takes its maximum value at a resolution between
20×20 and 30×30, which indicates a proper resolution for balancing
privacy preservation and activity recognition. Such an image reso-
lution value can be easily extended to a certain image resolution
range where the trade-off result is also acceptable. However, the
objective function takes a low value when the resolution is too low
(e.g., 15 × 15) or too high (e.g., 240 × 240). The reason behind this is
also consistent with our expectations. When the image resolution is
too low, although the privacy features can be better preserved, the
machine’s ADLs recognition performance is far from satisfactory.
On the contrary, high image resolutionmay greatly increase the risk

of privacy feature leakage except for improving ADLs recognition
performance.

Here we also noticed that as the scaling factor 𝜆 increases, the
maximum point of the objective function is also shifted to the left
in Figure 8. Such a finding shows that a lower resolution of the
image sensor is required if users are more concerned with privacy
preservation compared with activity recognition performance.

9.3 Applying the Model and the Modeling
Method to Applications

In this section, we present how to apply our method and model to
privacy-preserving machine recognition applications.

9.3.1 Deployment to a Real Scenario Application. When deploying
a real scenario application based on our method, one can install an
ultra-low-resolution (e.g., 20× 20 pixels) image sensor with an edge
computer running a machine learning method for ADLs recogni-
tion at home. To apply our framework for quantifying the trade-off
between privacy preservation and activity recognition, one first
needs to determine the sensitivity indicator 𝜆 in Equation 1, which
is closely related to deployment environment and user experience.
In our ADLs recognition example, the bathroom is a more visual
privacy-sensitive location than the kitchen. Therefore, we would
expect the image sensor in the bathroom having a lower resolution
to preserve more visual privacy. Second, with the development of
computer vision technologies, the performance of machine recogni-
tion on both activities and privacy features will exceed the current
results stated in this paper. Future designers just need to fine-tune
the results of the evaluation function 𝐿𝑇 and 𝐿𝑃 by selecting better
recognizers 𝑓𝑇 and 𝑓𝑃 to consider the results of these technological
advances. Third, one can leverage activities’ probability distribution
regarding the different environments in a home environment which
may have an effect on the results of the evaluation function 𝐿𝑇 and
𝐿𝑃 in our formulation. For instance, personal and toilet hygiene is
highly possible to happen in the restroom, while feeding is highly
possible to occur in the kitchen. Future designers need to modify
their training and evaluation data set according to the probability
distribution of activities of daily living (ADLs) in different scenarios.

9.3.2 Generalization to Other Applications. For other computer
vision based applications in a real scenario, we believe that our
pipeline and method can be easily adapted. For instance, using
an always-on low-resolution camera on AR glasses for activity
recognition, or using a low-resolution smartphone camera for hand
gesture recognition, etc. Even though different applications have
their own usage scenarios with different visual privacy features, our
method’s key idea and basic framework can still be used efficiently.
Although low-resolution image sensors can preserve visual privacy
from the hardware level, deploying the hardware itself costs a
large of human labor and money. Instead of purchasing the low-
resolution image sensor, we can simply update the firmware to
limit the camera’s resolution, turning them to low-resolution image
sensors. Further, we can attach an additional layer or lens on top
of available commercial RGB cameras. For instance, we can add a
piece of frosted glass, or a lens built for the Passive Infrared (PIR)
motion sensor to the commodity cameras 4. Most of these camera
4https://en.wikipedia.org/wiki/Passive_infrared_sensor
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Figure 8: Depicting the objective function based on the results of both humans’ and machines’ recognition performance.

system parameter selection issues can be discussed and solved in a
more generalized way of our methods.

10 LIMITATIONS AND FUTUREWORK
Our work is targeted at modeling the trade-off between visual
privacy and the core machine recognition task, e.g., activity recog-
nition in our case. Our purpose is to inspire future work to explore
more quantitative methods for privacy-preserving applications.
Therefore, future designers can apply or adapt these models ac-
cording to their applications to preserve users’ privacy as much as
possible. However, there do exist several limitations of our work
and we describe them below.

Utilizing Multimodal Information. We acknowledge that an im-
age sensor deployed at home can only collect images at a fixed
position, distance, and field of view after installation. Only with the
single modality data captured by images sensors, both machine’s
and human’s recognition performance can be easily affected by
the aforementioned factors. We also acknowledge that we didn’t
take multimodal data, for example, audio data into consideration.
Prior works have proved the effectiveness of leveraging multimodal
data in activity recognition. With multimodal information, we can
alleviate existing algorithms’ dependence on images, thus allowing
for a lower resolution of image sensors. We expect future research
can investigate how the modeling results of the trade-off between
privacy preservation and activity recognition can be changed by
multimodal information.

Privacy Preserving Methods. In this work, we only use pixeliza-
tion filters as the privacy-preserving method for the main task.
The advantages of using low-resolution images have already been
discussed in prior works. Nevertheless, we have to admit that re-
searchers have shown that low resolution alone does not provide
enough privacy guarantees. McPherson et al. found that obfuscated
images contain enough information correlated with the obfuscated

content to enable accurate reconstruction of the latter [39]. Al-
though we have compared the privacy recognition performance of
state-of-art machine learning algorithms on low-resolution images,
we believe that our evaluation results on low-resolution images
leave much room for discussion. We expect future research can ex-
plore the effect of more privacy-preservingmethods on the trade-off
between privacy preservation and activity recognition.

User Survey on Importance of Visual Privacy Features. We ac-
knowledge that our user study in section 4 aims to assess users’
perceived importance of visual privacy features. We didn’t limit par-
ticipants’ culture, age, gender, or technical backgrounds. However,
there are many other factors that may affect participants’ percep-
tion of privacy. For example, researchers have found that users on
Amazon Mechanical Turk, where our participants were from, tend
to be more privacy conscious [31, 46], thus are not representative
of the general population all over the world. It is also undeniable
that the perception of privacy varies substantially across cultures,
societies, times, and locations [2–4, 12, 32, 44, 51]. Therefore, our
estimation of the perceived importance (𝜔 in our formulation) of
privacy features obtained through our user studies is possibly not
applicable to populations in different cultural contexts across the
world. However, the framework proposed in this paper is meant
to inspire future researchers to consider humans’ assessments of
the importance of different visual privacy features. We expect that
there will be more independent works to explore the influence of
other factors on humans’ perception of privacy.

11 CONCLUSION
Using the at-home activity of daily livings (ADLs) as the scenario,
this paper models the trade-off of visual privacy preservation and
activity recognition over image resolution. To achieve this purpose,
we first conducted a user survey to obtain the most important
visual privacy features, including nudity, identifiable face, valuable
property, and relationship. Then, using the PA-HMDB51 dataset,
which contains videos from realistic environments, we quantified
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the effect of image resolution on the human’s performance on
ADLs recognition and visual privacy awareness tasks through a
user study. We further modeled the impact of image resolution
on the machine’s ability to recognize ADLs and visual privacy
features using cutting-edge machine learning methods. Finally, we
proposed a method with adjustable parameters to model the trade-
off of privacy-preserving ADLs recognition using low-resolution
images. Using this method, we can calculate an optimal range of
image resolution for visual privacy preserving ADLs recognition.
We envision that our method can inspire other vision-based systems
that require balancing privacy awareness and machine recognition
performance.
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