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Figure 1: A typical usage scenario enabled by voice-accompanying hand-to-face (VAHF) gestures. (a) The user wants to know 
how to make egg fried rice. (b) The user can perform diferent VAHF gestures to redirect their voice input to diferent targets 
(e.g., asking Siri, searching on Google with the transcribed text, and sending a voice message to mum). (c) The user performs a 
"phone call" gesture and speaks simultaneously. (d) The smart devices recognize the user’s intention through the performed 
VAHF gesture and simulate sending a voice message to the user’s mum. 
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ABSTRACT 
Gestures performed accompanying the voice are essential for voice 
interaction to convey complementary semantics for interaction 
purposes such as wake-up state and input modality. In this paper, 
we investigated voice-accompanying hand-to-face (VAHF) gestures 
for voice interaction. We targeted on hand-to-face gestures because 
such gestures relate closely to speech and yield signifcant acous-
tic features (e.g., impeding voice propagation). We conducted a 
user study to explore the design space of VAHF gestures, where 
we frst gathered candidate gestures and then applied a structural 
analysis to them in diferent dimensions (e.g., contact position and 
type), outputting a total of 8 VAHF gestures with good usability 
and least confusion. To facilitate VAHF gesture recognition, we 
proposed a novel cross-device sensing method that leverages het-
erogeneous channels (vocal, ultrasound, and IMU) of data from 
commodity devices (earbuds, watches, and rings). Our recognition 
model achieved an accuracy of 97.3% for recognizing 3 gestures and 
91.5% for recognizing 8 gestures (excluding the "empty" gesture), 
proving the high applicability. Quantitative analysis also shed light 
on the recognition capability of each sensor channel and their dif-
ferent combinations. In the end, we illustrated the feasible use cases 
and their design principles to demonstrate the applicability of our 
system in various scenarios. 

CCS CONCEPTS 
• Human-centered computing → Ubiquitous and mobile de-
vices; Gestural input. 

KEYWORDS 
hand gestures, acoustic sensing, sensor fusion 
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1 INTRODUCTION 
Voice input has become a natural and always-available interaction 
modality for wearable devices such as earphones and smartwatches. 
However, the modality control (e.g., the wake-up state) in voice 
interaction is still a challenging problem due to the implicitness of 
modality information in speech and the restricted NLP techniques. 
People have to repeat the hotword to switch to the modality or 
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the target device actively, which introduce extra burdens for the 
interaction. Thus, researchers have been seeking supplementary 
input methods as parallel input channels to assist voice interaction 
[52, 76, 78]. 

People tend to perform body gestures accompanying their voice 
for better expression of certain emotions or intentions during the 
conversation [61]. In such a case, we defned the gesture, which is 
performed simultaneously with the speech, as a voice-accompanying 
gesture. Analogously, in the voice interaction with smart devices, 
the use of voice-accompanying gestures could provide parallel in-
formation that expands the input channel bandwidth [34, 52, 62], 
simplifes the voice interface fow [59, 76, 78], and make voice in-
teraction more convenient [52, 59, 76]. The underlying logic why 
voice-accompanying gestures have been prevalent and widely re-
searched is due to the physiological nature that the voice channel 
and the gesture channel are highly independent and complemen-
tary [52] (e.g., performing a gesture as parallel input information 
while not repressing the voice expressivity). For instance, the user 
can defne a specifc voice-accompanying gesture (e.g., covering 
the mouth) instead of repetitively saying the wake-up keyword to 
keep the voice interface active. The user can also defne multiple 
gestures to represent the redirection of voice input to diferent input 
modalities (e.g., ignored, interrupted, transcribed, or raw audio in-
put), target devices (e.g., whether should the TV or the smartphone 
accept the input), and shortcuts (e.g., binding certain UI operation 
fows with the gesture). 

In this paper, we investigated the feasibility of using voice-
accompanying hand-to-face (VAHF) gestures as parallel channels 
to improve the traditional voice interaction fow. Specifcally, we 
aim at designing VAHF gestures and recognizing them with an 
acoustic-based cross-device sensing method. We targeted hand-to-
face gestures as the instantiation of voice-accompanying gestures 
because they have been proven to be natural, expressive (e.g., var-
ious landmarks on the face to yield a large gesture space), and 
more related to the speech by existing researches [71, 74, 76]. More-
over, hand-to-face gestures yielded signifcant features in voice 
propagation, which is benefcial for acoustic sensing. 

To understand the design space of VAHF gestures, we conducted 
a user-centric gesture elicitation study with a total proposal of 15 
gestures from end-users. Then we narrowed down the gesture set 
from 15 to 8 gestures with better usability and the least ambiguity. 

As for the sensing schemes, the underlying principle is that 
when the user speaks, each VAHF gesture creates a unique acoustic 
propagation path from the mouth to the set of microphones on 
wearable devices. Therefore, our method can recognize the hand-to-
face gesture using the acoustic features of each unique propagation 
path. Further, we incorporated an ultrasound channel and an IMU 
channel to provide supplementary sensing information and enhance 
gesture recognition. For the ultrasound channel, the smartwatch 
served as an ultrasound source and all microphones captured such 
signals from diferent positions to indicate position-aware features. 
For the IMU channel, the IMU on the ring can convey the attitude 
and motion of the user’s hand. We also investigated the fusion 
mechanism among diferent devices and channels. 

To evaluate our technique, we frst built a cross-device VAHF 
dataset consisting of 1800 samples of 8 VAHF gestures along with 
one "empty" gesture (meaning not performing a VAHF gesture). 
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Then we conducted 1) a two-factorial evaluation regarding sensor 
combination and model selection, 2) an extensive evaluation of a 
reduced gesture set, and 3) an ablation study for the optimal model 
to validate the computation feasibility and the applicability of our 
technique. Results showed our model achieved high recognition ac-
curacy of 97.3% for 3 + 1(empty) gestures and 91.5% for 8+1(empty) 
gestures recognition on our cross-device VAHF dataset. Quantita-
tive analysis also sheds light on the recognition capability of each 
sensor channel and its diferent combinations. 

At the end of the paper, we discuss real-life application scenar-
ios to demonstrate the applicability of VAHF gestures as well as 
provide general design implications for VAHF gesture-enhanced 
voice interaction. 

In summary, the contributions of this paper are as follows: 
• We conducted a comprehensive study to elicit the gesture 
space of VAHF gestures and proposed a gesture set with 
better usability, better social acceptance, less fatigue, and 
less ambiguity. 

• We propose a novel sensor-fusion technique for VAHF ges-
ture recognition which is supported by cross-device sensors. 
Our quantitative analysis sheds light on the recognition ca-
pability of the diferent sensor combinations over VAHF 
gestures with diferent characteristics. 

• We demonstrate a set of use cases of our gesture recognition 
technique that outline new opportunities for VAHF gestures 
to beneft voice interaction. 

2 RELATED WORK 
In this section, we presented related work in three aspects: enhanc-
ing voice interaction with parallel gestures, hand-to-face interac-
tion, and cross-device sensing for hand gestures. 

2.1 Enhancing Voice Interaction with Parallel 
Gestures 

Performing body gestures parallel to voice commands has been a 
prevalent method to convey certain intentions or information dur-
ing the voice interaction. People tended to use gestures of diferent 
body segments, such as head gestures[17, 52, 56, 65], gaze[18, 49], 
hand gestures [76], and facial expressions [77], to provide supple-
mentary information obliged for voice interaction. The purpose of 
introducing of certain parallel body gestures to the voice interface 
typically included: indicating the wakeup state [59, 76, 78], serving 
as the control (or trigger) signal [74, 77], and passing scene-related 
context information [1, 52]. For example, Yan et al. [77] proposed 
frowning, a facial expression of para-language, to implement inter-
rupting the responses during voice interactions between human 
and smart devices. Qin et al. [59] leveraged the speech features 
when user raise the microphone embeded in devices to close to 
mouth to facilitate wake-up free techniques. WorldGaze [52] used 
commodity a smartphone to recognize the real-world head-gaze 
location (e.g., certain buildings or objects) of a user to provide 
the voice agent with supplementary scene-related information for 
better comprehension. 

Our work was also within the framework of using parallel ges-
tures as active input to enhance voice interaction, which was most 
related to but achieved a leap over PrivateTalk [76], which allowed 
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users to activate voice input by performing a hand-on-mouth ges-
ture during speaking. Compared with existing work [59, 76, 77] 
where a specifc gesture (e.g., bringing the phone to the mouth[59]) 
was designed and recognized for specifc functionality (e.g., inter-
rupting the conversation or activating the voice assistance), our 
multiple VAHF gesture recognition on multi-modal wearable de-
vices could efectively broaden the input channel of actions as paral-
lel information with the potential of supporting a larger interaction 
space, such as defning multiple shortcuts. 

2.2 Hand-to-Face Interaction 
Gestures involving hand and face have been demonstrated as a 
natural and easy-to-use way to input commands. Prior research has 
proposed the validation of the inherent unobtrusiveness, subtlety 
and social acceptability[63] of hand-to-face interaction. Design 
space of hand-to-face gestures has been explored by prior research. 
For example, diferent face regions such as the ear [35], cheek 
[63, 75] or nose [40] were demonstrated to have the viability of 
hand-to-face input. Mahmoud et al. [50] proves that people prefer 
lower face regions to upper regions, especially chin, mouth and 
lower cheeks, for naturalistic interaction. Weng et al. [71] proposed 
recognition of hand-to-face gestures for AR glasses. Serrano et al. 
[63] provided a set of guidelines for developing efective Hand-to-
Face interaction techniques and found that the cheek is the most 
promising area on the face. Miniaturizing obfuscating, screening, 
camoufaging and re-purposing have been purposed by Lee et al.[39] 
as the strategies of the design of socially acceptable hand-to-face 
gestures. We refer to some principles (e.g. lower face region, social 
acceptance, etc.) from previous work mentioned above to design our 
subjective evaluation process. Diferent from previous work, our 
design space of hand-to-face gestures are generated from real-life 
conversations, which has more para-linguistic features resulting in 
performing more easily and naturally. 

Combining voice input with hand gestures can provide rich 
information to enable convenient and expressive multi-modal inter-
action [34]. "Put that there" was the frst multi-model interaction 
method introducing the pointing gesture to indicate the location 
mentioned in the voice command [5]. Bourguet et al. studied the 
temporal synchronization between speech (Japanese) and hand 
pointing gestures during multi-modal interaction [6]. Sauras-Perez 
et al. [62] proposed a human vehicle interaction system based on 
voice and pointing gestures that enables the user making sponta-
neous decisions over the route and communicate them to the car. 
Closest to our work, Yan et al. [76] proposed to enable hand-to-
mouth gesture interaction as a wake-up action for voice interfaces. 
However, the combination of the hand-to-face gestures and voice 
interaction in previous work is limited to few types of gestures and 
the fxed usage patterns. In our work, we discussed more types of 
gestures which can be used in versatile scenarios of voice interac-
tion. 

2.3 Cross-Device Sensing for Hand Gestures 
Free-form hand gesture sensing is key to enabling rich interaction 
space taking advantage of the expressiveness of human hand. Pre-
vious literature has investigated sensing solutions for free-form 
hand gestures with diferent sensors including cameras (RGB [26, 
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33, 57, 79], IR [8, 71], and depth [27, 45]), EMG sensors [47, 53], 
capacitive sensors [12], millimeter-wave radar [22, 44, 67], acoustic 
sensors [25, 46, 58, 68], and inertial sensors [7, 38, 66, 69]. Among 
these sensors, the camera is most widely researched since it has 
the strongest sensing capability to capture pixel-wise image data, 
based on which many computer vision models have been developed 
for fne-grained hand sensing such as detecting hand keypoints 
and recovering the hand pose. However, vision-based hand gesture 
sensing often requires externally-mounted camera and heavy com-
putation (e.g., using a GPU), which prevents the practical use in 
mobile and pervasive scenarios. Similarly, sensing methods based 
on EMG sensors [47, 53], capacitive sensors [12], and millimeter-
wave radar [22, 44, 67] require additional wearing on the human 
body, making them far from practical deployment. In our work, 
we focused on the latter two - microphones and inertial sensors -
because they are computational efcient and largely equipped on 
commodity devices such as smartphones, earbuds, smartwatches, 
and smart rings. Below we presented related work on acoustic- and 
inertial-based hand gesture sensing. 

2.3.1 Acoustic sensing. The principle of acoustic sensing for hand 
gestures is to measure how specifc hand gesture infuences the 
propagation of active (e.g., active ultrasound) or passive (e.g., human 
voice) sound sources or makes a sound. Based on the presence of 
an active sound source, it can be categorized into active acoustic 
sensing and passive acoustic sensing. 

Active acoustic sensing methods [68] has been widely explored 
for gesture recognition including in-air hand gesture [25], ambient 
activity [54], touch gesture on everyday objects or surfaces [46, 58], 
fnger tracking [80], silent speech interface [19, 82]. For example, 
Touch & Activate [58] enabled touch interface on everyday objects 
by measuring the acoustic frequency response of the object and the 
touch gesture. Strata [80] enabled 2-dimensional fnger position 
tracking using the refective impulse audio signal on commodity 
smartphones. Ando et al. [2] modeled the transfer function, or 
the propagation path of the sound, and used it in gesture recogni-
tion. These methods recognized the acoustic echo or propagation 
features caused by the gestures using a speaker and one or more 
microphones. Doppler efect was also frequently used for sens-
ing subtle hand gestures involving relative movements [25, 46]. 
EchoWhisper [19] also leveraged the Doppler shift of refection 
for near-ultrasound sound waves caused by the mouth and tongue 
movements to interpret the speech and build a silent speech inter-
face. 

Passive acoustic sensing recognizes sound activities using merely 
microphones [28, 29, 37, 54, 72, 73]. For instance, Tofee [73] enabled 
an ad-hoc touch interface on a table around the device using time 
of arrival correction. TapSense [28] enhanced fnger interaction on 
touch screens by detecting the unique sound features of fngertip, 
pad, knuckle, and nail. Acoustic Barcodes [29] was an identifying 
tag that used notches to produce sound when dragged across, which 
can be recognized by a microphone for information retrieval or 
triggering interactive functions. Daily activities or ambient envi-
ronment (e.g., taking a bus) can be detected based on features of 
the sound collected by a single microphone [54] or a microphone 
array. Ubicoustics [37] proposed a plug-and-use sound recognition 
pipeline for general-purpose activity recognition. Wu et al. [72] 
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further extended the environment acoustic event detection using 
an end-to-end system for self-supervised learning of events labeled 
through one-shot interaction. 

In our work, we took advantage of both passive and active acous-
tic sensing. To be more specifc, passive acoustic sensing recognized 
the hand’s infuence on the features of the accompanying speech, 
including frequency response, amplitude, etc. Active acoustic sens-
ing helped to determine relative position-based features among 
diferent devices. The two channels can provide supplementary 
capability in VAHF gesture sensing. 

2.3.2 Inertial Sensing. Inertial sensors, commonly integrated into 
commodity devices, are efcient in detecting motion- and attitude-
related hand/fnger gestures. For instance, a number of previous 
works [7, 38, 42, 43, 66, 69] used acceleration and rotation with 
wrist-worn inertial sensors to recognize hand gesture. Serendipity 
[70] recognized fve fne-grained gestures based on the IMU in 
of-the-shelf smartwatches. Mo-Bi [36] used a smartphone and 
two accelerometer-embedded wrist-worn devices for each hand 
to collect the hand-posture data and developed the implicit hand-
posture recognition software. Leveraging inertial sensors integrated 
into smartwatches, Float [64] recognized wrist-to-fnger gestures 
to enhance one-hand and smartwatch interaction. Gu et al. [24] 
enabled one-fnger typing with an index-fnger-worn IMU ring by 
detecting hand-to-surface touching events and rotation angles. Lu et 
al. [48] studied the sensing capability of dual wrist-worn devices and 
analyzed cross-device features for more accurate gesture inference. 

Inspired by these works, we incorporated an IMU ring into our 
sensing system to capture the motion features of VAHF gestures. 

2.3.3 Sensor Fusion Methods for Hand Gestures. Previous research 
has explored cross-device sensor fusion methods to enhance the 
recognition capability of diferent types of hand gestures, especially 
when the sensing capability of diferent sensors are complementary 
for recognizing diferent features. Sensor fusion methods included 
homogeneous fusion and heterogeneous fusion. Homogeneous fu-
sion aimed to add more homogeneous sensor nodes into the sensing 
system to capture fne-grained information. For example, fusing 
camera captures from diferent views [55] is a classical and efective 
solution to reduce 3D reconstruction or detection error which is also 
widely used in generating high-quality machine annotations. For 
acoustic sensing, adding more microphones to the scene achieved 
more fne-grained acoustic measurements, which is benefcial to 
various sensing purposes such as 2D localization [80] and gesture 
classifcation [68]. 

The other type is heterogeneous fusion, where diferent types 
of sensors are combined to merge their strengths [9, 14, 20, 31, 41]. 
For example, Li et al. [41] presented a hierarchical sensor fusion 
approach for human micro-gesture recognition by combining an 
Ultra Wide Band (UWB) Doppler radar and wearable pressure sen-
sors. Ceolini et al. [9] presented a sensor fusion framework that 
integrates complementary systems: the electromyography (EMG) 
signal from muscles and visual information. Ceolini et al. [10] also 
investigated the fusion of EMG and a camera on limited compu-
tational resources of mobile phones to detect gestures. A more 
typical scene is fusing an IMU with a camera [23], where the IMU 
detects the subtle contact signal and the camera senses the global 
hand state. Acoustico [21] fused acoustic and IMU signal for 2D 



        
           

       
        

          
          

         
          
        

  

    

    

     

      

     

     

      

        

      

     

    

     

   

       

   

  

 

  

  

 

  

 

 

  

 

 

 

   

 

 

    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

   

  

  

   

   

  

  

  

  

  

  

   

            
  

         
         

          
         

   
  

         
       

          
          

            
           

           
           

     

    
 

         
           

  

       
          
             

          
           
    

          
       

       

         
          
            

          
          

           
          

          
          

 
         

        
        
             

         
         

           
            

         
          

          
       

          
            

           
            

         
           
         
         

          

           
           

         
          

         
          
         

           
               
        

          
          

        
             

          
            

              
            

             
            

            
         

           
        

          

Table 1: Text description and empirical categorization for 
all the 15 gestures in our gesture set. Each gesture was em-
pirically categorized in three dimensions: contact position, 
contact type, and occlusion state. Contact position is repre-
sented in 5 levels: ear (E), mouth (M), chin(CN), cheek(CK), 
and none(N). Contact type is represented in 3 levels: fnger(F), 
palm(P), and hand segments(HS). The occlusion state on the 
sound propagation path for the human voice to ears is repre-
sented in 3 levels: hardly(H), partially(P), and completely(C). 
Index Gesture 

1 pinch ear rim 

2 thinking face gesture 

3 support cheek with fst 

4 non-contact cover mouth with palm 

5 support cheek with palm 

6 cover mouth with fst 

7 cover ear with arched palm 

8 hold up palm beside nose and mouth 

9 touch earphone with index fnger 

10 touch top ear rim 

11 touch vocal cord 

12 cover mouth with palm 

13 shushing gesture 

14 touch the back of ear rim 

15 calling gesture 

Contact Position 

E 

M, CN 

M, CK 

N 

M, CK 

M 

E 

M, CK 

E 

E 

N 

M, CK, CN 

M 

E 

M, CK, CN, E 

Contact Type 

F 

HS 

P 

P 

P 

HS 

P 

P 

F 

F 

F 

P 

F 

F 

HS 

Occlusion State 

H 

H 

P 

P 

P 

C 

C 

C 

H 

H 

H 

C 

H 

H 

P 

Semantics 

Earphone Manipulation 

Thinking, Querying 

Thinking, Resting 

Directional Speech, Whisper 

Thinking, Concentrating 

Interphone, Messaging 

Hearing, Phone Call 

Directional Speech, Block 

Earphone Manipulation 

Earphone Manipulation 

Voice Distortion 

Silence, Whisper 

Silence, Interruption 

Hearing, Attention 

Communication, Phone Call 

tap position localization based on the TDOA of the tap sound’s two 
propagation paths. 

In our work, we adopted both homogeneous fusion and het-
erogeneous fusion strategies. The former aimed to probe more 
measurement nodes into the sensing space, while the latter aimed 
to capture diferent types of features from diferent channels. 

3 DESIGNING VOICE-ACCOMPANYING 
HAND-TO-FACE GESTURES 

To thoroughly understand and explore the gesture space of voice-
accompanying gestures, we conducted a user-centric gesture elici-
tation study to elicit gesture design from end users. Subsequently, 
we conducted a hierarchical analysis process to narrow down the 
gesture space from 15 gestures to 8 gestures which are easy to 
perform, easy to memorize, and with less ambiguity. The design of 
this study was in line with the previous gesture elicitation work 
[13, 48, 74] consisting the typical phases of gesture proposal, gesture 
evaluation, and gesture set refnement. 

3.1 Voice-accompanying Hand-to-Face Gesture 
Proposal 

We conducted a brainstorming gesture proposal study to understand 
users’ preference on VAHF gestures and derive a gesture set with 
general agreements. 

3.1.1 Participants, Brainstorming Design, and Procedure. We re-
cruited 10 participants (4 female, all right-handed) from the local 
campus, with an average age of 21.3 (from 18 to 27, SD=2.4). Their 
familiarity score of wearable devices and voice interaction was 3.35 
(SD=1.2). The whole study took about 1 hour and each participant 
received 15$ for compensation. 

The purpose of this study is to encourage participants to brain-
storm as many voice-accompanying hand-to-face (VAHF) gestures 
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as they could without considering the sensing feasibility and to-
gether work out a usable VAHF gesture set with common agree-
ments. To achieve this point, we do not restrict the gestures to spe-
cifc application scenarios or tasks, which maintained their focus on 
the physical nature of performing diferent VAHF gestures. The only 
constraint we imposed on the design was that the gestures should 
be static and durable to meet the nature of "voice-accompanying". 
The whole study consisted of 4 stages: 1) icebreaking and introduc-
tion, 2) individual thinking, 3) individual proposal, and 4) group 
discussion. 

After a short icebreaking procedure where all the participants 
introduced themselves and familiarized themselves with each other, 
the experimenter acknowledged the participants of the purpose 
and the procedure for the study as well as the defnition of VAHF 
gestures to the participants. Then the participants went through 
an individual thinking process for 10 minutes where participants 
worked separately to come up with as many gestures as possible 
and wrote them down on a notebook as detailed as possible (e.g., 
encouraging them to write down the motivations, semantics, and 
potential usages of the gestures other than simply the descriptions). 
After that, each participant was asked to verbalize their proposal 
(including the gesture descriptions, motivations, semantics, and po-
tential usages) and perform the proposed gestures by hand orderly. 
They could also sketch and show their ideas on a public whiteboard. 
Participants then came up with a group discussion where one could 
either show the pros and cons of the others’ proposal or generate 
new gestures from the others’ inspiration. The discussion ended 
until all participants worked out a fnal gesture set with the consis-
tent agreement. The whole brainstorming process was hosted by 
two experimenters - one guiding the experiment while the other 
taking notes of the key points presented by the participants. 

3.1.2 Results and Discussion. Fig. 2 and the "Gesture" column of 
Table 1 illustrated the 15 VAHF gestures and their text descriptions 
proposed by users in the brainstorming study. The "Semantics" 
column summarized some of the typical semantics of each gesture 
from participants’ quotes. An interesting fnding is that participants 
tended to design the gestures in a mimetic and semantic-based 
manner, borrowing the inspirations from their daily activities and 
usages of smart devices. For example, touching gestures on the ear 
(gestures 1, 9, and 10 in Table 1, same as below) was regarded as the 
metaphor of earphone manipulations related to voice interaction 
(N=9), which came from their experiences of using wireless earbuds 
(e.g., triggering the voice assistant and controlling the volume and 
the progress). Participants also presented their potential usages, 
such as waking up Siri (P2), making a voice memo (P3), and sending 
a voice message to a specifc person (P8). Similarly, participants 
described gestures 6, 7, and 15 as "the imitation of using certain 
devices" (N=10). "Holding up the fst in front of the mouth is a cool 
gesture. It is just like sending an instant command with an interphone" 
(P4). "Covering the ear with the arched palm is like you are holding 
the phone while the ’calling’ gesture is like you are imitating an old-
fashioned telephone. I would prefer the former one because it is easy 
to perform and seems more natural to others" (P10). 

In addition to the above gestures related to device usage, some 
gestures were proposed for their prevalence in daily communica-
tion and social expression. Participants (N=10) showed their will to 
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transfer these gestures to the interaction with voice assistance. For 
example, the "shushing" gesture (gesture 13) and the "faring ear" 
gesture (gesture 14) were proposed because they were frequently 
used in daily dialog. "Shushing has the meaning of silence and inter-
ruption. We can also use it to interrupt the conversation with the voice 
assistant" (P3). "The ’faring ear’ gesture means ’pardon’ or shows 
attention to the speaker. I guess it would be nice to assign this gesture 
to functions with similar meanings" (P1). Gestures 4, 6, 7, and 12 
were mouth-related gestures proposed by the participants, with 
the general meanings of special speech, lowered volume, whisper, 
and silence. The gestures were distinguished by diferent ways of 
covering the mouth. "When I hold up the palm on one side of the 
mouth, I probably want to speak to the one on the other side direction-
ally. However, when I cover my mouth, the meaning could be totally 
diferent" (P3). Similarly, participants designed three face-related 
gestures (gestures 2, 3, and 5), indicating thinking, querying, rest-
ing, or concentrating, yet with slightly diferent implications. "It 
would be wonderful the voice assistant could respond to my ’thinking 
face’ gesture by querying my words on the searching engine" (P2). 
Exceptionally, P5 proposed a "touch vocal cord" gesture (gesture 11) 
with a unique position. "The vocal cord afects the timbre, meaning 
to ’make a diferent sound’ (P5)." 

Although the semantics of each gesture seemed clear to individ-
uals, we found some conficts in the group discussion stage. For 
example, regarding the "cover mouth with fst" gesture (gesture 6), 
most participants showed approval of the "interphone" metaphor 
while some participants (P2, P5) thought it should be with the se-
mantics of "silence" and "secrete". Some participants also mentioned 
the meanings and preferences of certain gestures might vary un-
der diferent cultural backgrounds, especially for the gestures with 
social functionalities. 

3.2 Optimizing VAHF Gesture Set 
To derive the fnal user-defned gesture set from all gestures pro-
posed by all participants, we collated the gestures and asked partic-
ipants to perform all the gestures, and conducted subjective ratings 
from 4 dimensions. We resolved repeatability between gestures by 
empirical categories, which intuitively characterized the similarity 
between gestures from 3 dimensions. We chose one gesture from 
each category to a subset of the most preferable gestures. 

3.2.1 Subjective Evaluation. After deriving a gesture set with 15 
gestures, we sought to fnd out which gesture is most suited for 
voice interactions, especially in social acceptance and using fatigue. 
We recruited 25 participants (10 male and 15 female) for our sub-
jective evaluation, with an average age of 21(from 19 to 32, SD = 
2.1). All of the participants were right-handed. Each participant 
performed all gestures three times using their right hand. The order 
of the gestures was pre-determined to counterbalance ordering 
efects. For each gesture, the experimenter would show an example 
video of this gesture to ensure the participant could perform the 
gesture correctly. The participant then followed the instructions 
provided on a laptop screen to perform gestures. After performing 
the gesture three times, the participant was asked to rate the ges-
ture according to the following four criteria along a 7-point Likert 
scale (1: strongly disagree to 7: strongly agree), and the results are 
shown in Fig. 2: 

Li and Liang, et al. 

• Usability measured ergonomics to refect the comfort of 
the gesture. The participants are required to consider the 
gesture not only in stationary conditions (e.g., sitting) but 
also under moving conditions (e.g., running). The higher the 
score, the easier the gesture is to perform. 

• Social Acceptance measures if the user will feel uncom-
fortable or embarrassed, or if performing the gesture will 
disturb others in public settings. The higher the score, the 
more acceptable the gesture is in social environments. 

• Disambiguity measures the difculty of confusing the ges-
ture with daily hand movements or with other gestures. The 
higher the score, the less ambiguous the gesture is. 

• Fatigue measures the physiological burden to perform the 
gesture. The higher the score, the less fatigue the gesture is 
to perform. 

3.2.2 Design Principles and Finalized Gesture Set. In order to elim-
inate the design consistency and gestures with signal similarity 
to derive gestures that can be naturally performed and quickly 
remembered, we categorized all the gestures to propose the most 
representative one in each category. Considering the propagation 
path of the human voice around the head, we identify three struc-
tural properties to represent the proposed gesture set, which are 
illustrated in Table 1: 

• Contact Position: Due to the diferent contact positions of 
the fngers, the microphone mounted on the ring can receive 
diferent sounds. Because the mouth is the source of the 
sound, the closer the fnger touches the sound source, the 
louder the sound will be picked up by the microphone on the 
ring. In all gestures, the contact positions of the fngers are 
the mouth(M), the cheek(CK), the chin(CN), and the ear(E). 

• Contact Type: Diferent contact types, specifcally divided 
into fngers(F), palms(P), and hand segments(HS) by which 
hands used to contact the face region, have clear distinctions 
in morphology which can be distinguished easily by users 
without ambiguity. Furthermore, diferent contact types will 
form a unique structure on the face to afect the collection 
of the earphones’ feed-forward microphones. 

• Occlusion State: The occlusion state, which is separated 
in 3 levels(hardly(H), partially(P), and Completely(C), will 
produce diferent sounds by afecting the propagation path 
from the human voice to the ears. For example, gesture 7 
(cover ear with arched palm) and gesture 12 (cover mouth 
with palm) shown in Fig. 2, which ’completely’ occlude the 
receiver (ears) and the transmitter (mouth) of the sound 
the propagation path in the air, will cause a loss of high-
frequency sound. 

We combined the subjective evaluation results shown on Fig. 
2 (in 4 dimensions: usability, social acceptance, disambiguity, and 
fatigue) with the gesture set optimization process. The process was 
based on frst grouping gestures with the same structural property 
combinations from the above three dimensions and chose one ges-
ture according to the subjective scores to represent each category. 
From the categorization results, we found that gestures belonging 
to the E-F-H category include gestures 1, 9, 10, and 14. This type of 
gesture with fngers to contact the ear region and have similarity 
in signal. Moreover, E-F-H gestures are also commonly used to 
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Figure 2: Drafts illustrating each gesture in the gesture set: 1) pinch the ear rim, 2) thinking face gesture, 3) support cheek with 
fst, 4)non-contact cover mouth with palm, 5)support cheek with palm, 6) cover mouth with fst 7) cover ear with arched palm, 
8) hold up palm beside nose and mouth, 9) touch the earphone with index fnger, 10) touch the top ear rim, 11) touch the vocal 
cord, 12) cover mouth with palm, 13) shushing gesture, 14) touch back of ear rim with fngers, 15) calling gesture. The mean±s.d. 
of users’ subjective scores (1-7, the higher the better) on Usability (U), Social Acceptance (S), Fatigue (F) and Disambiguity (D) is 
shown on the bottom of each draft. Scores of gestures in our fnal gesture set are highlighted in orange. 

interact with earphones. We chose gesture 1 to represent E-F-H ges-
tures in our fnal subset of VAHF gestures according to subjective 
ratings; Gestures 3,5 belong to M,CK-P-P gestures. Considering the 
operating region of gesture 4 is also near mouth and cheek(M, CK) 
although it does not actually contact the face and the gesture 4’s 
other two dimensions are the same P(Contact Type)-P(Occulasion 
State) with gesture 3, 5, we grouped gestures 3,4,5 into one cate-
gory and chose gesture 5 to represent this category. Gestures 11 
and 13 are omitted due to their lower social acceptance (e.g., lower 
than 3.5). And the remaining gestures (2,6,7,8,12,15) are kept in 
the gesture set due to their specifcity in the three dimensions and 
higher subjective scores. The gesture selection process resulted in 8 
gestures. We checked the subjective scores of each dimension of the 
eight gestures selected again and found they are all above 4.4 and 
have a comprehensively higher score over others, which proves 
that our gesture selection is subjectively reasonable and practical 
for users. 

The above gesture selection process fltered out the following 
8 gestures: gesture 1 (E-F-H), gesture 2 (M,CN-HS-H), gesture 5 
(M,CK-P-P), gesture 6 (M-HS-C), gesture 7 (E-P-C), gesture 8 (M,CK-
P-C), gesture 12 (M,CK,CN-P-C), gesture 15 (M,CK,CN,E-HS-P) 
where the indexes were consistent with Fig. 2. These gestures con-
stituted our fnal gesture set. 

4 RECOGNIZING VOICE-ACCOMPANYING 
HAND-TO-FACE GESTURES WITH 
CROSS-DEVICE SENSING 

In this section, we introduce the design considerations and the 
technical details of our cross-device sensing method to recognize 
VAHF gestures. We explain the implementation considerations re-
garding device and channel selection. Then we present individual 
sensing models for vocal, ultrasonic, and IMU channels. Finally, we 
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clarify the sensor combination and fusion strategies for real-world 
deployment. 

4.1 Considerations and Technical Overview 
We frst clarify the considerations of our implementation before go-
ing into the technical details. To recognize VAHF gestures, we chose 
3 types of commercial wearable devices - wireless ANC earbuds, 
smartwatches, and smart rings - as the sensor nodes in consider-
ation of real-life deployment. Each wireless ANC earbud consists 
of an inner microphone and an outer microphone for noise cancel-
ing. The smartwatch is equipped with a microphone and a speaker 
which is capable to play sounds at 22.5 KHz and the ring is equipped 
with a microphone and an IMU. We chose the microphones and the 
IMUs as the sensor candidates in consideration of the computation 
efciency for the always-availability (e.g., raise-to-speak technique 
on an Apple watch). These sensors are widely equipped on the 
aforementioned commercial wearable devices (earbuds, watch, and 
ring). 

An illustration of the entire system is shown in Figure 3. The 
sensing system consists of three independent models: vocal model, 
ultrasonic model, and IMU model. Each channel takes the corre-
sponding preprocessed signal from the devices and outputs the 
feature vectors, which are fused and fed to the classifer layers to 
output the prediction logits. 

4.2 Recognizing VAHF Gestures with 
Single-Modality Solutions 

To facilitate efcient recognition of VAHF gestures, we frst build 
three individual sensing models involving three independent chan-
nels of features - vocal features, ultrasonic features, and IMU fea-
tures. Each channel of features serves as individual input of recog-
nition in diferent dimensions. 

4.2.1 Vocal Model. Performing hand-to-face gestures while speak-
ing leads to changes in the acoustic property including amplitude, 
frequency response, and reverberation for the received signal. For 
example, an "hold up the palm beside nose and mouth" gesture may 
impede the direct transmission of sound to the left earbud’s micro-
phone, resulting in a lower amplitude and decay in high frequency 
in the corresponding channel. Since we focus on the diference in 
the acoustic property among the distributed microphones, we frst 
fgured out the reference channel. Typically, we chose the inner 
microphone as the reference channel when inner and outer micro-
phones were simultaneously used and the outer microphone of the 
right earbud when inner channels were disabled. 

Similar to prior work, we processes the audio data for classifca-
tion using mel spectrum [30]. Given a set of audio segments from all 
channels [�1, · · · , �� ; ��� � ] with the sample rate of 16 KHz, we con-
vert each segment into the frequency domain by frst applying the 
short-time Fourier transform then adopting a mel-scale transform 
with 128 mel flterbanks, after which we pad or trunk each spectrum 
in the temporal axis with zeros into 128 × 250 (≈ 3 seconds) and ac-
quire �+1 maps [�1, · · · ,�� ;��� � ]. Then we subtract the reference 
map ��� � from all the monitored map �� to acquire the channel-
wise diference in mel spectrum [�1 −��� � , · · · ,�� −��� � ;��� � ]. 
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Finally, we concatenate all the maps in the frst axis into a sin-
gle input frame that can be fed into a deep-learning classifcation 
model. 

A MobileNet V3 Large [32] model pretrained on ImageNet [60] 
is used as the backbone network for feature extraction. The input 
frame is fed to the feature extractor layers of the pretrained model 
to generate a 1-D feature series ����� . Such a model is chosen in 
consideration of the balance between computational complexity 
and performance [32]. Beneftting from the well-designed network 
structure and the large parameter space with good initialization, 
MobileNet V3 Large has the potential in capturing fne-grained 
textural and geometry features from the concatenated spectrum 
map. 

Despite the direct use of the neural network on the mel fre-
quency map, we extracted two additional sets of statistics features 
- transient signal amplitude and pair-wise similarity among Mel-
frequency spectrum coefcients (MFCC) series - as classifer input, 
which is inspired by PrivateTalk’s [76] solution in dealing with 
channel diference and delay between audio segments. For the tran-
sient amplitude feature, we use a sliding window with the size and 
stride of 200 to compute the amplitude series for each segment, 
after which we pad or trunk each series to a fxed length of 250. 
Then we concatenate all the amplitude series into a 1-D feature 
series ���� . For pair-wise MFCC similarity, we frst compute the 
MFCC series for each audio channel, then resample each MFCC 
map in the temporal domain into 20-frame segments with a stride 
of 10. For each pair of segment series, we compute their similarity 
using dynamic time warping (DTW) [3]. We acquired the pair-wise 
similarity feature vector ����� by concatenating all the above 
1 
2 �(� + 1) simularity values. 
After getting ����� , ���� , and ����� , we concatenate them into 

a 1-dimensional vocal feature ���� , which can either be used in an 
individual recognition model or be combined with other features. 
For an individual recognition model, ���� is fed into a multi-layer 
perceptron (MLP) classifer to predict the performed gesture. 

4.2.2 Ultrasonic Model. When the user performs a hand-to-face 
gesture, with his hand reaching diferent position on the face, the 
relative positions among the wrist, the fnger, and the ears are 
temporally changing, thus yielding salient positional features. To 
facilitate such features, we devised an embedded ultrasonic sensing 
component, where the speaker on the smart watch works as an 
active source transmitting a 17.5 KHz - 22.5 KHz linear chirp signal 
which is captured by the microphones on the target devices. Such 
a design is inspired by the theory of Frequency Modulated Contin-
uous Wave (FMCW) [51], which is widely used in radar and indoor 
positioning systems to acquire positional tracking information. The 
sensing principals can be formalized as a typical linear chirp based 
FMCW. Let �0 (�) = �0��� (2� �0� + � � �2) be the source signal and 

� 
�� (�) = �1��� (2� �0 (� − �0) + � � (� − �0)2) be the signal received 

� 
by the ��ℎ device, where � = �1 − �0 is the bandwidth and � is the 
period of the chirp. We frst compute the correlation �0 (�)�� (�) and 
then pass the result to a low-pass flter to acquire the low-frequency 
component: 

1 � 
��� (�0 (�)�� (�)) = 

2
�0�1��� (2� �0�0 + � (2�0� − �0

2)) (1)
� 
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Figure 3: The sensing algorithm pipeline. 

Note that ��� (�0 (�)�� (�)) is a cosine function form of � with an 
amplitude of 12 �0�1 and a frequency of 2 � �0, where the amplitude 

� 
indicates the decay of the signal transmission and the frequency 
is proportional to the delay �0 of the received signal. So we frst 
compute the spectrum of ��� (�0 (�)�� (�)) using short time Fourier 
transform (STFT). We extracted the following two features based on 
the spectrum: 1) the image feature ����� of the spectrum using a pre-
trained MobileNet V3 network and 2) the amplitude and frequency 
series ������ (which is fattened into a 1-D vector) derived from 
the spectrum. Finally, we concatenate ����� and ������ into ������ , 
which can be either fed into a downstream classifer or combined 
with other features as mentioned above. 

4.2.3 IMU Model. Devices worn on the user’s hand, such as a 
watch and ring, help to capture the movement and attitude of the 
user’s moving hand, thus benefcial for recognizing hand-to-mouth 
gestures. In our setting, we choose to mount a 9-axis wireless IMU 
on the ring as previous work [43] did. The IMU reports 3-axis accel-
eration, 3-axis angular velocity, and the quaternion at 200 Hz. For 
gesture recognition, we adopted a fxed window of 400 frames (or 
2 seconds), concatenating the acceleration, angular velocity, and 
quaternion series into a 4000-length vector. Then we used a 3-layer 
MLP with the structure of ������� (0.5) → ������ (4000, 512) → 
���� → ������ (512, 512) → ���� → ������ (512, 9) for classif-
cation. 

4.3 Sensor Combination and Fusion Strategies 
In consideration of the real-world deployment, we frst fgure out 
the reasonable device and sensor combinations. The devices include 
1) left earbud (LE) with inner and outer microphones (��,� , ��,� ), 2) 
right earbud (RE) with inner and outer microphones (��,� , ��,� ), 3) 
watch with a microphone (�� ), and 4) ring with a microphone (�� ) 
and an IMU. Considering earbuds are most commonly used, we 
chose them as the primary device, which would work in diferent 

forms including two-side, one-side (wearing one earbud), and outer-
only (for ones without active noise canceling). The introduction 
of the watch could be benefcial in providing an active ultrasound 
source as well as a hand-mounted microphone. Last, a ring device 
with an IMU and a microphone could track the movement of the 
hand and fnger as well as provide a fnger-mounted microphone. 
Based on the above observation, we devised four typical settings 
as follows for investigation: 1) single earbud (RE); 2) two earbuds 
(LE+RE); 3) two earbuds + watch (LE+RE+W); and 4) all devices 
(LE+RE+W+R). 

For settings 3) and 4), since the active ultrasound source and 
the IMU enable the ultrasonic model and the IMU model, a fusion 
method is required to fuse diferent recognition models from difer-
ent channels. We investigated two fusion strategies: 1) logit-level 
fusion and 2) feature-level fusion. 

Let �� , �� , and �� be the feature extractor network of vocal, 
ultrasonic, and IMU models respectively and �� , �� , and �� be 
the corresponding multilayer classifer that outputs the logits. For 
logit-level fusion, the output logits are computed as 

������ = � · �� (�� (�� )) + � · �� (�� (�� )) + � · �� (�� (�� )) (2) 

where �, �, and � are learnable weight parameters (�� , �� , and �� 
are the corresponding channels of input). For feature-level fusion, 
the output logits are computed as 

������ = �� ��� ( [�� (�� ), �� (�� ), �� (�� )]) (3) 

, where [*, *, *] refers to concatenation and �� ��� is another MLP 
classifer that takes the concatenated features as input and outputs 
the logits. 

5 EVALUATION 
In this section, we conducted a systematic evaluation on the cross-
device sensing method illustrated in the previous section. We frst 
built a cross-device VAHF dataset consisting of 10 users × 20 sen-
tences × (8+1) gestures = 1800 samples. Then we evaluated our 
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cross-device sensing method on the dataset in the dimensions of 
sensor combination, model selection, gesture reduction, and model 
ablation. 

5.1 Participants and Apparatus 
We recruited 10 participants (6 female and 4 male) with an average 
age of 21.2 (from 19 to 28, SD=2.64) and all participants were right-
handed. All participants were recruited via emails and websites in 
our organization. We used a pair of earbuds with microphones, a 
smart watch with a motion sensor and a microphone, and a smart 
ring with a motion sensor and a microphone. The data of the mi-
crophones and motion sensors were fetched synchronously by a 
data collection thread. 

5.1.1 Microphones. We used the Sony WF-1000XM3 wireless noise-
canceling headphone 1 and ZOOM H6 Handy recorder 2 in this 
paper. We used four one-channel TRS audio cables to connect to 
the feed-forward and feed-back microphones with headphones and 
a two-channel TRS audio cable to connect to the watch and the 
ring respectively. The ZOOM H6 audio recorder can record these 
six channels of timely synchronized audio data to a TF storage card 
(32 GB). The audio sampling rate was set to 48 KHz. To remain 
the same acoustic characteristic, we kept all the hardware in its 
original position in the earphone. The battery was run out of power 
to disable the on-chip software including the active noise canceling. 

We use the MI Watch 3 with 3-axis accelerometer and 3-axis 
gyroscope at 100Hz. The data is kept locally on watch and would 
be pulled after each round of the experiment. 

5.1.2 Inertial Measurement Unit. We used a ring embedded with a 
wireless BMI-055 9-axis Inertial Measurement Unit (IMU) module, 
as shown in Figure 4. The IMU data (3-axis acceleration, 3-axis 
gyroscope data, 3-axis geomagnetic data, and 3-axis Euler angle, 
current system time) is transmitted to a PC with a Bluetooth module 
at 200Hz (460800 baud rate). 

5.2 Data Collection 
We collected gesture samples from 10 participants. The data collec-
tion entailed recording voice, ultrasound, and motion data while 
participants performed VAHF gestures corresponding to Section 3 
and speak with daily voice commands. Each data collection study 
lasted about 60 minutes. Initially, participants were asked to read 
and sign consent forms. They were then shown instruction slides 
explaining the overall procedure of the data collection session and 
videos of VAHF gesture set from Section 3. Then we instructed 
participants to put on the earbuds, the smartwatch, and the ring 
properly, helping them to adjust the wearing until they felt com-
fortable with the devices. 

Each participant was required to perform 15 gestures and record 
10 voice commands for each gesture (150 gesture samples in to-
tal). For each gesture, the participant was shown a slide with the 
gesture’s name, the 10 voice commands, and the posture (sitting 
or standing). The order of the gestures and the posture condition 

1https://www.sony.com/electronics/truly-wireless/wf-1000xm3 
2https://zoomcorp.com/en/us/handheld-recorders/handheld-recorders/h6-audio-
recorder/
3https://www.mi.com/global/mi-watch-lite 
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Table 2: The English translations of the voice commands used 
in data collection. The participants read the commands in 
Chinese. These voice commands were picked from Apple 
Siri’s tutorial. 

Index Voice Command Index Voice Command 

1 Text Mom. 11 Turn the temperature up to 24 degrees. 

2 Read my messages. 12 Show the photos taken today. 

3 Who is calling? 13 Find the popular restaurants nearby. 

4 Set an alarm for eight o’clock. 14 What is the latest movie? 

5 Pay with Apple Pay. 15 How to take a holiday on National Day? 

6 Transfer 20 yuan to Amy. 16 Buy train tickets to Beijing. 

7 Remind me to pick up the clothes. 17 How is the weather today? 

8 What is my plan today? 18 Open Voice Memos. 

9 Play my favorite song. 19 How to go to the nearest metro station? 

10 Turn on the living room lights. 20 Countdown 20 minutes. 

were randomly picked to remove the order efect. The 10 voice com-
mands were randomly picked from the daily Siri voice commands4, 
as shown in Table 2. 

During the recording of the 10 gesture samples of each gesture, 
the experimenter frst turned on the recording of the IMU ring, the 
watch’s ultrasound, and the recorder. Then the participant clapped 
his or her hands to provide a synchronous signal used for the 
synchronization of diferent sensors. For each gesture sample, the 
experimenter frst pressed a key on the PC to label a tick and record 
the system time, which was used for gesture sample segmentation, 
and then signaled the participant to perform the gesture and read 
the corresponding voice command while keeping the gesture. This 
process was repeated 10 times until the participant fnished all 
10 gesture samples. After that, the experimenter turned of the 
recording. 

5.3 Data Preprocessing 
Our data preprocessing process consisted of four steps: channel 
synchronization, segmentation, voice activation detection (VAD), 
and vocal-ultra sound separation. Below we illustrate the imple-
mentation details. 

5.3.1 Channel Synchronization. The synchronization between au-
dio channels was achieved by the audio card in ZOOM H6. To 
synchronize the audio channels and the IMU channel, we required 
the user to clap their hand to provide a signal for alignment before 
starting data collection for each session. Then we located such a 
clapping peak in both the audio channels and the IMU channel to 
acquire the relative time shift. The peak in the audio channels and 
the IMU channel was detected by fnding the frst local maximum 
in the amplitude spectrogram and the acceleration spectrogram, 
respectively. 

5.3.2 Audio Segmentation and VAD. After aligning all the channels, 
we segment the audio data which includes 10 voice commands for 
each. This was achieved by simply separating a piece of audio 
using the keystroke points annotated by the participants during 
recording. After getting the coarse segmentation, we further ran a 
VAD algorithm [11] to remove the silent period at the two ends in 
each segment. 

4https://support.apple.com/siri 

https://4https://support.apple.com/siri
https://3https://www.mi.com/global/mi-watch-lite
https://2https://zoomcorp.com/en/us/handheld-recorders/handheld-recorders/h6-audio
https://1https://www.sony.com/electronics/truly-wireless/wf-1000xm3
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Figure 4: The apparatus of data collection. (a) Hardware overview. (b) A ring with an IMU and a microphone. (c) An earphone 
with a feed-forward microphone and a feed-back microphone. (d) A smartwatch with a microphone and a speaker. (e) A Zoom 
H6 recorder with six audio input channels. 

Figure 5: (a) Experiment setup. (b) A gesture example. 

5.3.3 Separation of Ultrasound and Vocals. We used a Butterworth 5 

highpass flter with 17500Hz cutof frequency to separate the ultra-
sound and vocal from the audio data. 

5.4 Evaluation Design 
The evaluation consists of three sessions. In the frst session, we 
conducted a two-factorial evaluation to analyze the recognition 
performance with regard to sensor combination and model selec-
tion. For sensor combination, corresponding to Section 4.3, we 
investigated fve settings: 1) single (right) earbud with inner and 
outer microphones (RE, 2 audio channels), 2) two earbuds with 
inner and outer microphones (LE+RE, 4 audio channels), 3) two 
earbuds with outer microphones + watch (LE+RE+W, 3 audio chan-
nels), 4) all devices without the earbuds’ inner channels (ALL-4ch, 
4 audio channels), and 5) all devices with all channels (ALL-6ch, 6 
audio channels). For model selection, we investigated the follow-
ing six models: 1) vocal only (V), 2) ultrasound only (U), 3) IMU 
only (I), 4) vocal + ultrasound(V+U), 5) vocal + ultrasound + IMU 
with logit-level fusion (ALL-L), and 6) vocal + ultrasound + IMU 
with feature-level fusion (ALL-F). It is worth mentioning that the 
above two factors are correlated. The ultrasound channel would 
be activated unless the watch is used. Similarly, the IMU channel 
would be activated when the ring is used. Other factors, including 
the network structure, hyperparameters (max training epoch=100, 
dropout=0.5), and optimization strategies, are strictly controlled. 
We adopt three optimization strategies - pretraining, dropout, and 

5https://en.wikipedia.org/wiki/Butterworth_flter 

warm-up to improve the performance and training robustness of 
our model. For pretraining, we initialized the MobileNet V3’s pa-
rameters with the one pretrained on ImageNet [60]. For dropout, we 
added a dropout layer with a probability of 0.5 after the input layer 
to alleviate overftting during training. For warm-up, we adopted a 
warm-up and weight decay strategy on the learning rate using the 
following piecewise function: if � ≤ 10, then �� (�) = 0.1 × � × �� (0), 
else �� (�) = 0.97�−10 × �� (0), where � is the training epoch and 
�� (�) is the learning rate of the ��ℎ epoch. 

In the second session, we conducted an extensive evaluation 
on a reduced gesture set to analyze the optimal performance and 
usability of each sensor combination for practical deployment. The 
reduced gesture set contains three signature gestures - cover mouth 
with palm (G1), cover ear with arched palm (G2), and hold up the 
palm beside nose and mouth (G3) - which received high preference 
scores from the previous user study and intuitively had signifcant 
efects on the acoustic propagation. For each sensor combination, 
we chose the optimal model, as acquired above, to compute the 
classifcation accuracies of each gesture and all three gestures ({G1, 
E}, {G2, E}, {G3, E}, and {G1, G2, G3, E}, where E refers to the empty 
gesture). All the evaluation settings were consistent with the frst 
session. Such an evaluation helps to ground the applicability value 
of the minimal functionality under diferent hardware settings. 

In the last session, we conducted an ablation study for the optimal 
model to analyze the efects of the optimization strategies in the 
model design: 1) pretraining, 2) dropout, and 3) warm-up. After 
getting the optimal model above, we ran the model in the same 
setting except disabling 1) all the three optimizations, 2) pretraining, 
3) dropout, and 4) warm-up to acquire the recognition accuracy 
in these 4 ablation settings. Such a study helped to validate the 
efectiveness of our model design. 

All the above evaluations were conducted with leave-one-user-
out cross-validation. For all the numerical comparisons, we reported 
the results along with the Wilcoxon Signed-Rank test to indicate 
the signifcance. 

5.5 Results 
Table 3 showed the results of the recognition performance regarding 
sensor combination and model selection. 

https://5https://en.wikipedia.org/wiki/Butterworth_filter
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Table 3: Evaluation results regarding diferent sensor com-
binations and model selection. The notions in the table are 
consistent with Section 5.4. The numbers in the table indicate 
recognition accuracies in % with standard deviations. 

V U I V+U ALL-L ALL-F 

RE 39.5(6.3) - - - - -

LE+RE 70.3(10.0) - - - - -

LE+RE+W 84.2(12.0) 52.4(11.5) - 85.8(13.2) - -

ALL-4ch 89.9(10.5) 66.7(13.6) 49.0(5.3) 89.8(10.3) 90.8(10.2) 91.5(8.9) 

ALL-6ch 90.0(10.9) 70.9(14.5) 49.0(5.3) 89.2(11.4) 90.7(9.9) 90.9(9.4) 

For vocal-only models, we observed a constant increase in recog-
nition accuracy as more sensor nodes were introduced (e.g., from 
39.5% with a single earbud to 90.0% with all the sensors, � = 
−2.81, � < 0.05). However, the diference between ALL-4ch and 
ALL-6ch was not signifcant, meaning when multiple devices were 
used, the introduction of the earbuds’ inner channels brings limited 
information for the vocal channel. For ultrasonic-only models, the 
performance increased from 52.5% to 70.9% (� = −2.81, � < 0.05) 
as the ring microphone and the earbuds’ inner microphones were 
added. Notably, the independent use of the ultrasonic channels has 
its unique advantage of not relying on the vocal feature so that 
the model can still work well in scenarios such as noisy environ-
ments and whispering. The IMU model achieved an accuracy of 
49.0%, meaning the IMU could provide complementary information 
on hand and fnger movement, though far from practical as an 
individual model. 

As for the sensor fusion models, we notice the vocal+ultra model 
had a performance increase over the vocal-only model with fewer in-
put channels (LE+RE+W, 84.2% V.S. 85.8%, � = −1.64, � = 0.1), while 
it had no increase for ALL-4ch (89.9% V.S. 89.8%, � = −0.18, � = 
0.86) and had a decrease for ALL-6ch (90.0% V.S. 89.2%, � = −0.98, � = 
0.33). This is probably because the vocal-only model with multiple 
channels (e.g., 6 channels) is a strong baseline, and combining it with 
an inferior model would introduce additional noise. Regarding all-
channel fusion, we found feature-level fusion slightly outperformed 
logit-level fusion in accuracy (91.5% V.S. 90.8%, � = −0.98, � = 0.33), 
probably due to the larger parameter space. We also observed 
a slight performance decrease for fusion models when adding 
the inner channels of the earbuds to ALL-4ch (91.5% V.S. 90.9%, 
� = −0.36, � = 0.72), although the diference was not signifcant. 
The optimal model (all-channel feature-level fusion for ALL-4ch) 
achieved a 9-class recognition accuracy of 91.5%, which signif-
cantly outperformed the vocal-only model (� = −1.96, � < 0.05) 
with the same channels. 

To ground a better understanding of how each channel (vocal, 
ultrasound, and IMU) contributed to the recognition, we analyzed 
the confusion matrix of four models (vocal-only, ultra-only, IMU-
only, and feature-level fusion) under ALL-4ch, as shown in Figure 
6. This result was understandable because for the gestures with 
larger confusion, we could easily fgure out their similarity based on 
semantics. For example, gesture pairs (0, 4) and (3, 7) yield larger 
confusion for vocal and ultrasound models, where we observed 
similar touch positions for each pair of gestures (ear for (0, 4) and 
mouth for (3, 7)). Gesture 1 confuses with gestures 3 and 7 in the 
ultrasound model probably due to a similar hand position, though it 
yields less confusion for the vocal model probably due to diferent 

Li and Liang, et al. 

Figure 6: The confusion matrix of diferent models: vocal-
only, ultra-only, IMU-only, and feature-level fusion. 0-9 rep-
resent the following gestures respectively: 0 - pinch the ear 
rim, 1 - calling gesture, 2 - support cheek with palm, 3 - cover 
mouth with palm, 4 - cover ear with arched palm, 5 - thinking 
face gesture, 6 - hold up the palm beside nose and mouth, 7 -
cover mouth with fst, and 8 - empty gesture. 

Table 4: Recognition accuracy on the reduced gesture set. G1: 
cover mouth with palm, G2: cover ear with arched palm, and 
G3: hold up the palm beside nose and mouth. 

RE LE+RE LE+RE+W ALL-4ch 

G1 82.3(11.4) 92.1(12.8) 97.8(6.7) 95.7(7.3) 

G2 83.0(13.0) 98.8(1.9) 97.9(6.3) 100.0(0.0) 

G3 75.5(26.7) 90.6(9.0) 94.2(8.4) 100.0(0.0) 

G1+G2+G3 64.4(10.6) 87.3(8.9) 91.3(11.3) 97.3(4.5) 

occlusion levels (gestures 3 and 7 yield greater occlusion) that may 
infuence the frequency response of the human voice. 

Results on the reduced gesture set were shown in Table 4. Since 
ALL-4ch achieved higher recognition accuracy than ALL-6ch in the 
fusion model (e.g., 91.5% V.S. 90.9%), we dropped ALL-6ch in this 
table. We had the following observations: 1) Using one earbud with 
inner and outer microphones (RE), which is a severely restricted 
setting, could achieve a narrowly applicable accuracy of over 80% 
for recognizing a specifc single gesture (82.3% for G1 and 83.0% for 
G2) while it performed worse in recognizing other gesture (e.g., G3) 
or multiple gestures, which is understandable due to limited sensing 
information. 2) Using a pair of earbuds (LE+RE) could signifcantly 
boost the performance, with promising accuracies of 87.3% for rec-
ognizing all three gestures and 98.8% for recognizing G2, indicating 
the high applicability of such compact hardware form. 3) Addi-
tional hardware including a watch and ring brought the feasibility 
of fusing more input channels (e.g., ultrasound), which constantly 
improved the performance to a highly robust one (e.g., 97.3% for 
recognizing all three gestures and 100% for recognizing G2 and G3) 
and meanwhile lifting the distinguishable gesture space (e.g., from 
3 gestures to 8 gestures, see Table 3) with high applicability (e.g., 
91.5% for simultaneously recognizing 8 gestures). The above results 
showed a leap over previous work with similar interaction modal-
ity (e.g., PrivateTalk [76]), revealing the feasibility of broadened 
gesture space (e.g., recognizing 8 gestures simultaneously) and the 
efectiveness of multi-device sensing. 

The results of the ablation study are shown in Table 5. We found 
disabling pretraining, dropout, and warm-up caused diferent levels 
of performance degradation. Disabling pretraining caused the most 
signifcant decrease in performance (−14.3%, � = −2.81, � < 0.05), 
which is probably because the feature extractor network (MobileNet 



       

           
        

 

  

   
   
   
   

   

         
        

              
           

            
        

           
         

              
  

   
         

          
         

       
       

      
         

          
          

   

        
         

          
          

           
           

           
         

     
       

         
         

            
          

        
           

           
           
           

           
           

          
            

            
           

           
          

            
           

         
           

          
       

          
        

           
         

                
           

           
            

           
           
         
          

      
      

         
           

          
              

         
       

          
          

         
            

           
           

           
           

           
           

             
        

      

          
           

          
         

             
         

          
           

            
           

   

Table 5: Results of the ablation study. The numbers in the 
table indicate recognition accuracies in % with standard devi-
ations. 

Techniques Accuracy 

No Optimization 75.8(12.2) 
No Pretraining 77.2(12.8) 
No Dropout 91.2(7.8) 
No warm-up 87.8(11.1) 

Full Model 91.5(8.9) 

V3) with pretraining on large-scale datasets could better extract 
diferent levels of image features. Meanwhile, disabling dropout 
caused slight decrease of 0.3% (� = −0.18, � = 0.86), which was not 
signifcant, and disabling warm-up caused a decrease of 3.7% (� = 
−2.67, � < 0.05). The introduction of warm-up and dropout aims to 
optimize the training procedure (e.g., alleviating overftting) and 
improve the robustness of the model. Compared with the raw model 
with no optimization, our model achieved a signifcant increase 
of 15.7% (� = −2.81, � < 0.05), showing the superiority of all the 
optimization techniques. 

6 APPLICATION SCENARIOS 
To demonstrate the applicability of VAHF gestures in voice inter-
action, we frst presented the interaction space created by VAHF 
gestures along with example real-life scenarios. Then we discussed 
the design considerations and implications regarding the deploy-
ment of VAHF gestures in real practice. 

6.1 Interaction Space and Scenario Description 
The introduction of VAHF gestures achieves the unique beneft 
of assigning a multi-class label to speech segments, which brings 
great potential to broaden the traditional voice interaction space in 
the following aspects. 

6.1.1 VAHF Gestures as Modality Control Signals. Wakeup-free 
interaction. The most intuitive function for modality control in 
voice interface is to use hand-to-face gestures (e.g., covering the 
mouth) to indicate whether the current speech is with interaction 
intention that should be processed by the voice assistant, which has 
been achieved and widely researched by previous work [59, 76, 78]. 
In our work, VAHF gestures have the inherited capability to support 
wakeup-free interaction simply by assigning one of the gestures 
for the wakeup state control. 

Dynamic modality control in multi-round interaction with 
voice assistant. We demonstrate an example scenario using VAHF 
gestures for dynamic modality control in the multi-round dialog 
that has never been achieved before. When the user is enrolled in 
a multi-round dialog with the voice assistant, the complexity of 
the interaction behavior increases signifcantly. For example, in 
a specifc dialog round, the user has diferent options to proceed 
with the dialog: 1) appending - the user appends a voice command 
and expects the voice assistant to process the command based on 
the dialog context in the regular order; 2) interrupting - the user 
wants to interrupt the current dialog (e.g., the voice assistant stops 
immediately and waits for new voice commands) and start a new 
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dialog (abandoning the dialog context) with the new commands; and 
3) editing - the user wants the voice assistant to edit the commands 
that they previously asked based on the dialog context and the brief 
editing command (e.g., the user says "How is the weather today?" 
When the assistant is answering, the user adds an editing command 
"No, I mean tomorrow."). Since our technique enables a channel 
width of up to 9 gestures (including the empty gesture) as modality 
input, we can assign diferent VAHF gestures to the three modalities 
of voice input - appending (e.g., covering the mouth), interrupting 
(e.g., covering the earphone), and editing (e.g., holding up the palm 
beside the mouth) - in the multi-round dialog scenario to enable 
more fexible and intelligent voice interaction fow. 

6.1.2 Binding Shortcuts to VAHF Gestures. VAHF Gestures as UI 
shortcuts. Simulating the execution of certain interaction paths 
through voice commands is a prevalent form of voice interaction on 
smartphones and wearable devices. When an interaction path takes 
a text entry slot or a period of raw speech as the input, it can be re-
placed with certain VAHF gestures. For example, the user can defne 
the "phone call" VAHF gesture as opening WeChat and sending a 
voice message of the user’s raw speech to Alice. Another example is 
to defne the "thinking face" gesture as opening the Google website 
and searching for the text transcribed from the raw speech input. 
Such replacements of complex UI shortcuts with VAHF gestures 
could potentially reduce the repetition of the interaction path in 
speech, especially in a multi-round interaction. 

Registration and reservation of the VAHF-gesture-enabled 
shortcut session. Regarding the binding of shortcuts with VAHF 
gestures, a more exciting design question is how the VAHF gestures 
are binded in real-world practice. Normally, the binding is fxed 
and can be set by the GUI (e.g., on a smartphone). On the contrary, 
we here present a dynamic registration and reservation mechanism 
for VAHF-gesture-enabled shortcut sessions, which are worthy 
of extensive exploration. In such a mechanism, for an unbinded 
VAHF gesture, when the user performs the gesture while narrating 
the full voice command, the voice assistant would automatically 
extract the UI shortcut from the command and bind it with the 
performed gesture. Later when the user wants to access the shortcut 
for a second time, they could perform the binded gesture while 
saying the input slot instead of the full command. The session 
and the dialog context are fully preserved for the gesture until 
a new command with UI shortcut semantics is input. The voice 
assistant would ask the user whether to update the binding of 
the gesture to a new shortcut. We believed such a design of a 
dynamic registration mechanism for VAHF gestures would beneft 
memorability, fexibility, and lower cold-start cost. 

6.1.3 VAHF Gestures as Spatial Indicators. VAHF gestures in voice 
interaction are also capable of indicating the target to interact with 
from the multiple interactable devices or elements. For example, in 
an IoT scenario where multiple voice-interactable devices (e.g., a 
smartphone, a TV, and a smart speaker) are in the same room, the 
user could perform diferent VAHF gestures with voice commands 
to trigger voice interaction with diferent devices. Similarly, in a 
complex UI control scenario (e.g., flling in a form with multiple 
text boxes), a VAHF gesture is displayed beside each text box, and 
the user could perform the corresponding VAHF gesture to input a 
particular text box. 
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6.2 Design Considerations for VAHF Gestures to 
Enhance Voice Interaction 

The VAHF gestures proposed in our paper open the opportunity 
to design novel voice interactions for mobile, wearable, and HMD 
devices that allow users to quickly switch among modalities, ac-
celerate common tasks, and manage multi-device interaction in 
diferent scenarios. We discussed two issues regarding the real-
world deployment of VAHF gestures. 1) Combination strategy 
for better performance. Although VAHF gestures have shown 
great potential in applicability, simply adding on all the functions 
described in the previous section is not feasible due to the channel 
capacity and the recognition accuracy. For example, as shown in 
Tables 3 and 4, an accuracy of 91.5% for 9 classes is not yet highly 
usable, but a 4-class sub-gesture set achieved an accuracy of 97.3%, 
which is considered highly usable. Therefore, a fne-grained design 
on the selection of gestures (e.g., alleviating using two gestures 
with higher confusion at the same time) and the switch of gesture 
sets in diferent scenarios is key to implementing a highly usable 
VAHF-gesture-enhanced voice interaction system. 2) Scalability 
and extensibility. Although we only investigated an optimized 
VAHF gesture set with 8 gestures in our work, our sensing method 
was open to absorbing other extensive VAHF gestures. Our analysis 
method in Sections 3.1 and 3.2 provide a practical design guideline 
to elicit new gestures and analyze their feasibility. Further, our 
framework of recognizing VAHF gestures by multiple wearable 
devices has the advantage of appending or cutting down certain 
sensing channels easily, so the gesture set should be scalable and 
convertible for the system’s fexibility. 

7 DISCUSSION AND LIMITATIONS 

7.1 Form Factor for Deployment 
Currently, our sensing algorithms were run and evaluated in an 
ofine setting with a full-functional prototype. As the instantia-
tion, we also implemented a prototypical realtime VAHF gesture 
recognition system with the devices shown in Fig. 4, a laptop, and 
a GPU server. The Zoom H6 recorder served as an audio card that 
streamed realtime audio data to the laptop. The PC ran a realtime 
data prepocessing program (written in Python, similar to Section 
5.3) on one 2.3GHz Intel CPU core. The PC sent the processed audio 
segment to the GPU server using a sliding-window strategy while 
the recognition model processed the audio segment on one Nvidia 
RTX 3090 GPU and sent the results back to the PC. The whole 
pipeline ran at 60FPS with a delay of less than 50ms (excluding the 
network delay). The actual FPS could be controlled by adjusting the 
stride of the sliding window (typically an FPS higher than 5 could 
provide a good immediate experience). 

Although our work demonstrated the computational feasibility 
of recognizing VAHF gestures, we should further consider the form 
factors for real-life deployment regarding synchronization, channel 
access, computational complexity, etc. We discussed the following 
three questions: 

(1) How to synchronize and transmit the signal from dif-
ferent channels? In our implementation, we used a strong syn-
chronization system, where all the audio channels were wired to 
the audio card of ZOOM H6. In real deployment, the system could 

be implemented using Bluetooth low energy (BLE) technique for 
real-time signal transmission and synchronization (e.g., using broad-
cast mode or mesh mode for communication6), allowing dynamic 
communication among devices. 

(2) How to determine the proper channels or devices to 
enable in diferent scenarios? As discussed in Section 6, we 
suggest the channels and devices should be enabled dynamically 
based on context information (e.g., the activated devices and the 
surrounding environment). The system would provide multiple 
levels of interaction progressively based on the activated devices 
(e.g., more complex gesture set for more devices) while preserving 
certain environment constraints (e.g., avoid using ultrasound in 
quiet scenarios or degrading the interaction capability in a noisy 
environment). With such context-aware optimizations, our tech-
nique could be implemented in a more user- and energy-friendly 
manner. 

(3) How to reduce the computational complexity? In our im-
plementation, we chose MobileNet V3, a light-weight NN model ca-
pable for mobile devices, as the backbone model in consideration of 
the computational efciency. Further, there are three possible ways 
to reduce the computational complexity: 1. using dynamic channels 
(e.g., using the minimal channels in an efcient mode); 2. using 
more light-weight feed-forward NN models (e.g., ShufeNet[81]) 
for recognition; and 3. adopting bottom-level optimization (e.g., 
parameter quantization [15, 16] or customized hardware such as 
FPGA [4]). 

7.2 Robustness against Environmental 
Interference 

Currently, our data were collected in an indoor environment with no 
background noise, aiming to validate the feasibility of recognizing 
VAHF gestures in an ideal setting. For real-world deployment, the 
recognition model is expected to deal with more complicated data 
with lower signal-noise ratio (SNR) and more environmental noise. 
So further research on the efect of environmental interference and 
how to build a robust recognition model should be conducted. Two 
strategies - 1) training the model with more diverse data coming 
from real-world scenarios or synthesization; 2) using advanced 
preprocessing techniques (e.g., active noise canceling algorithms) 
to reduce the noise and improve the SNR - may resolve this issue, 
which are worthy of further investigation. 

7.3 Ultrasound Usage 
We were well acknowledged the use of ultrasound for sensing could 
be controversial due to the interference and damage to one’s hear-
ing. In our work, we used a chirp signal from 17.5KHz to 22.5KHz 
and we noticed in our data collection procedure, some of the par-
ticipants could hear the ultrasound and found it annoying. Further, 
ultrasound at sufcient sound pressure levels exert underlying dan-
ger of hearing damage even if it cannot be heard (though we strictly 
controlled the ultrasound amplitude in our study). Therefore, the 
use of ultrasound, including the amplitude, frequency, and duration 
should be more carefully designed for a gesture recognition system. 
More research should be conducted to explore the use of ultrasound 
and alternative sensing methods. 
6https://www.bluetooth.com/learn-about-bluetooth/tech-overview/ 

https://6https://www.bluetooth.com/learn-about-bluetooth/tech-overview


       

  
          

       
         

         
            

           
          

        
       

         
        

           
       

         
         

           
          

          
         

          
           

            
          

         
          

           
         

 
           

         
        

        
  

 
           

          
            

          
        

 
           

         
            

          
 

              
             

           
           

 
            

         
 

            
         
           

        
 

           
          

       
           

           
           

          
 

           
          

           
       

            
            

          
   

             
           

    
              

           
           
         

            
          

          
          

 
             

       
           

      
 

          
         

           
  

              
          

           
      

 
          

            
      

 
             

        
            

 
            

          
          

        
       

             
         

        
 

             
           

       
              

           
            
           
           

  
             

             
             

 
             

             
     

 
          

          
          

 

8 CONCLUSION 
In this paper, we investigated the design space and the recogni-
tion method of voice-accompanying hand-to-face (VAHF) gestures 
to enhance voice interaction with parallel gesture channels. To 
design VAHF gestures, we frst conducted an elicitation study, re-
sulting in a total proposal of 15 gestures, followed by a hierarchical 
analysis process to output the most salient 8 gestures with the 
least ambiguity and physical confusion. Then we proposed a novel 
cross-device sensing method fusing diferent sensor channels to 
recognize para-linguistic hand-to-face gestures, achieving a high 
recognition accuracy of 97.3% for 3+1(empty) gestures and 91.5% 
for 8+1(empty) gestures recognition on our cross-device VAHF 
dataset. The uniqueness of our work is that we explored a broad-
ened and scalable VAHF-gesture-based interaction space, which 
remains under-researched, to facilitate voice interaction in a more 
diverse manner (e.g., defning a shortcut or parsing parameters). 
Compared with prior work [59, 76] where a specifc gesture (e.g., 
bringing the phone to the mouth[59]) was designed and recognized 
for 1-bit modality control (e.g., activating the voice assistant), our 
multi-device sensing framework is not only capable for recognizing 
up to 8 VAHF gestures simultaneously from the hand-of "empty" 
gesture, but also benefts from the scalability (e.g., adding a device 
or adding a gesture is easy under our framework). As mobile devices 
and scenarios are becoming prevalent these years, voice input has 
become an essential modality of pervasive interaction. We envision 
our work would further enhance the efciency and capability of 
current voice interaction and serve an important role in the future 
voice interaction of various scenarios like AR and IoT. 
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