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ABSTRACT 
Cough monitoring can enable new individual pulmonary health 
applications. Subject cough event detection is the foundation for 
continuous cough monitoring. Recently, the rapid growth in smart 
hearables has opened new opportunities for such needs. This pa-
per proposes EarCough, which enables continuous subject cough 
event detection on edge computing hearables, by leveraging the 
always-on active noise cancellation (ANC) microphones. Specif-
cally, we proposed a lightweight end-to-end neural network model 
— EarCoughNet. To evaluate the efectiveness of our method, we 
constructed a synchronous motion and audio dataset through a user 
study. Results show that EarCough achieved an accuracy of 95.4% 
and an F1-score of 92.9% with a space requirement of only 385 kB. 
We envision EarCough as a low-cost add-on for future hearables to 
enable continuous subject cough event detection. 

KEYWORDS 
Cough event detection, Subject cough detection, Hybrid active noise 
cancelling, Feedforward and feedback microphones, Deep learning 

ACM Reference Format: 
Xiyuxing Zhang, Yuntao Wang, Jingru Zhang, Yaqing Yang, Shwetak Patel, 
and Yuanchun Shi. 2023. EarCough: Enabling Continuous Subject Cough 
Event Detection on Hearables. In Extended Abstracts of the 2023 CHI Con-
ference on Human Factors in Computing Systems (CHI EA ’23), April 23– 
28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 6 pages. https: 
//doi.org/10.1145/3544549.3585903 

1 INTRODUCTION 
Cough is one of the most relevant and common indicators of pul-
monary diseases[4, 18]. Subject cough refers to the cough originat-
ing from the user of the cough event detection method rather than 

∗This is the corresponding author. 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for proft or commercial advantage and that copies bear this notice and the full citation 
on the frst page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s). 
CHI EA ’23, April 23–28, 2023, Hamburg, Germany 
© 2023 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-9422-2/23/04. 
https://doi.org/10.1145/3544549.3585903 

China 

the cough emitted from the user’s environment (such as the cough 
from other pulmonary disease patients), which is defned as envi-
ronmental cough. Future automatic cough event detection methods 
are expected to have subject-awareness [11], which is the ability to 
distinguish subject cough events from environmental cough events. 
Without subject-awareness, cough event detection methods would 
incorrectly detect environmental coughs and further provide mis-
leading health or disease reports to clinicians, which signifcantly 
limits the health application scenarios [27]. 

In recent years, earphones have become one of the most ubiqui-
tous end-user accessories [7]. The global hearables market is pro-
jected to reach $93.90 billion by 2026 [22]. With the rapid growth of 
the hearables market, modern smart earphones are developed with 
rich sensing capabilities and microcontrollers with computational 
capability, which attracted the research community to explore ways 
to leverage earphones in the feld of health and physiological sens-
ing. Smart earphones have already been leveraged to detect various 
physiological signals [3, 6, 13, 16, 17, 19, 23, 28], including heart 
rate [10, 13], brain signals [16] and respiration rates [15, 23]. Be-
sides, it has been proved that real-time, privacy-safe, low-cost, and 
ubiquitous cough event detection was able to achieve by leveraging 
active noise cancellation earphones [29]. 

This paper presents EarCough, a technique that enables con-
tinuous subject cough event detection on edge computing hear-
ables. Specifcally, we proposed a lightweight end-to-end deep learn-
ing model named EarCoughNet, which takes the dual-channel au-
dio from hybrid active noise cancellation microphones on smart 
earbuds as input. To evaluate the efectiveness and reliability of 
EarCough, we built a dataset targeted at subject cough event detec-
tion with sensor fusion data: dual-channel audio data from active 
noise cancellation microphones of Bose QC 20, plus motion data 
from the IMU sensor. EarCough achieved an accuracy of 95.4% and 
an F1-score of 92.9% on the constructed dataset, with a space require-
ment of only 385kB. We envision EarCough as a low-cost add-on for 
future hearables to enable continuous personal pulmonary health 
monitoring. 

This paper’s main contributions have three folds as below. 
1) We proposed EarCough, a technique that enables continu-

ous subject cough event detection. To the best of our knowledge, 
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EarCough is the frst subject cough event detection method uti-
lizing the diference between dual-channel audio of the built-in 
always-on hybrid ANC microphones in commodity hearables. 

2) We evaluated EarCough’s efectiveness and reliability via user 
study. Results show that EarCough realizes subject cough event 
detection every 0.5 seconds at an accuracy of 95.4% and an F1-score 
of 92.9% with only 385 kB space requirement. 

3) We established the frst dataset targeted at continuous subject 
cough detection with the sensor fusion data: dual-channel audio 
data from two active noise cancellation microphones plus motion 
data from the IMU sensor. 

2 BACKGROUND AND RELATED WORKS 
Cough is one of the most common and prominent symptoms as-
sociated with many respiratory diseases such as COPD, asthma, 
and tuberculosis [4, 18]. Automatic cough event detection methods 
can provide valuable features for pulmonary diagnosis and health 
condition assessment [11, 27, 31]. 

Recently, the research community has widely explored auto-
matic cough event detection methods, most of which are audio-
based [5, 9, 14, 24, 26, 29, 32], owing to the valuable characteristic 
spectral signature contained in cough sounds [2]. For instance, 
Wang et al. [29] proposed HearCough, enabling state-of-the-art 
continuous cough event detection based on the audio signals from 
commodity hearables. However, most previous work ignored the 
importance of distinguishing coughs emitted from the subject (sub-
ject coughs) and coughs originating from the subject’s environment 
(environmental coughs), which . In public scenarios, the falsely de-
tected environmental coughs would then be mistakenly considered 
for a health analysis or disease diagnosis by clinicians, which could 
have serious adverse consequences due to harmful medication use 
and increased costs for patients [27]. 

To fll the gap in subject-awareness, researchers have already 
explored methods targeting distinguishing between coughs emitted 
by diferent coughers. For instance, Whitehill et al. [30] proposed 
Whosecough, a cougher verifcation model using audio-based multi-
task learning strategy and achieves high accuracy under in-the-wild 
data. Jokic et al. [12] presented TripletCough, leveraging triplet net-
work architecture and audio signals captured from smartphones 
to distinguish cough events among diferent coughers. However, 
these works only focus on diferentiating the cougher who emits 
the cough rather than subject cough event detection from other 
events under diferent noisy environments, which does not directly 
feed the need of the healthcare industry. As a result, some previous 
works introduced subject-awareness into cough event detection 
methods, which were regarded as subject cough event detection 
methods. For example, Rahman et al. [21] proposed an audio-based 
subject cough event detection method, which leveraged feature 
engineering and random forest, and achieved 94.2% precision on 
subject cough event recognition and is suited to be applied on 
smartphones. Nevertheless, this method was evaluated only on the 
in-lab dataset, which may sufer from performance drop under in-
the-wild scenarios. Besides, no practical approach can be deployed 
to a microcontroller with only hundreds of kilobytes of RAM (e.g., 
ARM M4F). 

Recently, smart earbuds are often developed more than just au-
dio listening devices, ofering an expanding suite of sensors and 
microcontrollers with computational capability. Most modern ear-
buds are equipped with active noise cancellation (ANC), which 
was designed to enhance users’ listening experience by reducing 
environmental noises. Hybrid ANC is one of the most adopted so-
lutions since it produces the best noise reduction while alleviating 
acoustic discomfort to human ears1. To achieve hybrid active noise 
cancellation, one or a set of feed-forward (reference) microphones 
are placed at the outer side of the earphone to collect the environ-
mental noises. Then an adaptive flter running on the digital signal 
processor will generate an anti-phase signal with 180◦ phase delay 
to the speaker to eliminate the noises propagated to the human 
ear. A feedback (error) microphone, placed between the speaker 
and the ear, is deployed to further monitor the noise cancellation 
performance and then fne-tune the adaptive flter. 

Audio signals received by the feed-forward and feedback mi-
crophones are diferent due to many factors, such as the distance 
and the orientation of the sound source. As a result, we envision 
leveraging the diference between the dual-channel audio signals to 
achieve subject-awareness. Moreover, due to the proximity of ear-
phones to the mouth, high-quality subject cough sounds could be 
acquired and thus can be leveraged for a more robust cough event 
detection system. Besides, active noise cancellation earphones are 
usually compact, portable, and minimally intrusive. As a result, we 
envision hybrid active noise cancellation smart earbuds as an ideal 
hardware platform for continuous subject cough event detection. 

Compared to previous works, EarCough achieves state-of-the-art 
subject cough event detection performance with less computational 
needs. To the best of our knowledge, we are the frst to develop a 
resource-efcient end-to-end subject cough event detection method, 
which is compatible with the microcontroller in modern earphones. 

3 METHOD 

3.1 The Construction of Synchronous Audio 
and Motion Dataset 

Although in this paper, EarCough takes only audio signals as input, 
we envision sensor fusion with audio and motion data as a potential 
method to further improve the performance of subject cough event 
detection. As a result, we collect synchronous audio and motion 
data and construct the dataset. 

3.1.1 Participants. We frst recruited 10 participants (3 females, 7 
males) with an average age of 21.4 (s.d. = 0.80). None of them had 
pulmonary diseases. 

3.1.2 Hardware platform for synchronous data collection. We estab-
lished a hardware platform based on smart earbuds for data collec-
tion. The hardware platform is shown in Figure 1, which comprises 
three main components. We used the hybrid ANC earbuds Bose QC 
20 as the core collection device, equipped with feed-forward and 
feedback microphones. Since there is no motion sensor in Bose QC 
20, we embedded an inertial measurement unit named MPU9250 
into the earbuds. The internal structure of the earbuds is shown 
in Figure 1C. During the collection, dual-channel audio (48 kHz) 

1https://blog.teufelaudio.com/hybrid-anc/ 
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Figure 1: Hardware platform for data collection A: Partic-
ipant wearing the collection devices B: Three components 
of the hardware platform C: internal structure of modifed 
Bose QC 20, we embedded the IMU sensor named MPU9250 
into the earbuds. 

is captured by microphones in Bose QC 20 and imported into the 
DR-05X recorder on the far right of Figure 1B for storage. The 
embedded MPU9250 shown in Figure 1C is used to collect 6-axis 
motion signals (including 3-axis accelerometer and 3-axis gyro-
scope data) at a sampling rate of 1kHz, which are further imported 
into the Arduino Feather M0 chip on the far left of Figure 1B for 
processing and storage. 

3.1.3 User study design and procedure. The user study was con-
ducted in a standard conference room. During the collection proce-
dure, each subject needs to complete the same ten groups of exper-
iments under three sound environments, including quiet room (43 
∼ 50dB), noisy room (64 ∼70dB), and environmental cough (45 ∼ 
60dB). The study was approved by the Institutional Review Board 
(IRB). 

For the noisy indoor sound environment, Bluetooth speakers 
are used to randomly play all kinds of noise to create the sound 
environment, which aims to simulate real-life application scenarios. 
The played background sounds includes natural sound, musical 
instrument sound, animal sound, human sound, transportation 
sound and most of the non-cough sound events in users’ life. The 
environmental cough sound environment is created by playing 
multiple cough audio randomly. All cough audios are high-quality 
cough audio from FreeSound [8] website. The sound environment 
of environmental cough was created to simulate the public social 
scenarios where multiple people have cough symptoms. We did 
not simulate two participants coughing simultaneously in the same 
conference room, which may expose our participants to extremely 
high health risks. 

In each sound environment, the participant wore the hardware 
and fnished seven groups of collections in sitting position, includ-
ing single cough 10 times, continuous cough 10 times, 5 bites of 
apple, 5 sips of water, laughing when watching funny videos (video 
lasts for 1.5 minutes), reading stories for 2 minutes, and randomly 
move their heads for 1 minute. The participants also fnished three 
groups of collection in walking state, including walking for 30 sec-
onds, single cough 10 times while walking and continuous cough 
10 times while walking. 

The collecting procedure lasted for about one hour. After com-
pleting the data collection user study, a total of 33059.79 seconds of 
dual-channel audio and motion data were obtained. Each partici-
pant received a 15 USD gift card for their time and efort. We passed 
the hardware prototype among users after thorough sterilization 
with 75% alcohol. 
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Table 1: Statistic results of collected data 

Event Total Dur. (sec.) Average Dur. (sec.) S.D. 
Single coughs (sitting) 120.1 0.384 0.291 

Continuous coughs (sitting) 247.7 0.796 0.228 
Bites of apple 1519.0 10.264 3.783 
Sips of water 96.2 0.601 0.594 
Laughing 182.3 1.823 1.590 
Reading 2640.7 88.023 10.510 

Randomly head movement 631.5 21.050 6.762 
Walking 1036.8 34.560 4.833 

Single coughs (walking) 150.3 0.515 0.250 
Continuous coughs (walking) 204.0 0.682 0.293 

Environmental coughs 1799.3 1.166 0.323 

To ensure the annotation quality, we recruited three professional 
data annotators to annotate the data. The statistic results of col-
lected data after annotation was shown in Table 1. 

3.2 EarCoughNet: An End-to-end Deep Learning 
Model For Subject Cough Detection 

3.2.1 Architecture of EarCoughNet. The input of EarCoughNet 
is the raw dual-channel audio signals of the hybrid active noise-
canceling earbuds, and the output is the probability of the subject 
cough event and other events, respectively. As shown in Figure 2, 
EarCoughNet consists of four convolution blocks and three fully 
connected layers. The frst convolution layer of the frst convo-
lution block is a 2-dimensional convolution layer, which extracts 
the features of the diference between the dual-channel audio. The 
rest of the convolutional layers are all 1-dimensional convolutional 
layers, which has fewer parameters and thus can efectively reduce 
the model size and resource requirements. 

Figure 2: EarCoughNet architecture 

3.2.2 Training procedure. We divided the constructed dataset into 
training (6 users), validation (2 users) and testing (2 users) dataset. 
All the audio data was cut into 500-ms audio clips, since cough 
lasted for 350-ms on average [1]. We applied data augmentation 
methods to the audio of training dataset to expand its size and 
reduce the model’s susceptibility to environmental factors. The 
audio data augmentation consisted of three stages, which are 

• Standard audio data augmentation including gain adjust-
ment, time shift, pitch shift, speed adjustment and random 
masking by making 0-10% of random points zero. 

https://33059.79
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• Noise augmentation including adding machine stimulated 
white Gaussian noise and mixing background noise from 
various environmental settings. The background noises are 
selected from ECS-50 [20]. 

• Data formatting including data re-sampling and data nor-
malization. 

After augmentation, the composition of the three datasets is 
listed in Table 2. We adopted early-stopping strategy on the eval-
uation dataset to decide the end of our training. We trained four 
EarCoughNet variants with diferent sampling rate, including 48kHz, 
24kHz, 16kHz, and 8kHz. To evaluate the models’ efectiveness, we 
conducted a cross-user evaluation process on the testing dataset. 

Table 2: Composition of training, validation and testing 
dataset 

Samples Training Validation Testing 
Subj. coughs 2947 842 844 
Env. coughs 4835 1208 1269 
Other events 48104 9620 10403 

Audio clips are all 500-ms windows. 

4 RESULTS AND DISCUSSIONS 

4.1 Baselines 
We selected two existed cutting-edge cough event detection meth-
ods as baselines. 

(1) HearCough [29]. HearCough is the frst efective end-to-
end continuous cough event detection method that can be 
deployed on commodity hearables. However, this work did 
not consider subject-awareness. We re-implemented and 
evaluated the model on our constructed dataset. 

(2) EOCD [21]. EOCD is an efcient online cough detection 
model deployed on smartphones. This method developed 
specifc modules for subject-awareness and achieved out-
standing subject cough event detection performance on in-
lab dataset. 

4.2 Evaluation Metrics 
We considered the following evaluation metrics: 1) detection per-
formance, 2) space requirement, 3) time complexity. 

• Detection performance. We used overall accuracy and F-1 
score in distinguishing subject coughs and other samples 
as the major metrics. Further, since subject-awareness is 
the ability to distinguish subject coughs and environmen-
tal coughs, we also used overall accuracy and F-1 score in 
distinguishing subject coughs and environmental coughs as 
another pair of performance metrics. 

• Space requirement. Since the edge computing unit has lim-
ited on-board storage that stores the model and the tempo-
rary inputs and outputs at each layer, we used space require-
ment as on-chip metrics, which indicate the deployablility 
of the techniques. 

• Time complexity. Real-time detection is an essential ability 
for cough event detection methods. As a result, less inference 
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time is required, which can be represented by the less time 
complexity of the model. We used the FLOPs of the model 
as the metric of time complexity. 

4.3 Results and Findings 
We present major evaluation results of all the variants of EarCough-
Net and the two baseline methods in Table 3 and Table 4. 

Table 3: Evaluation results of efectiveness. 

Model Input Size Acc.-1+ F1.-1+ Acc.-2# F1.-2# 

EarCoughNet 0.5s @ 48 kHz 93.37% 89.80% 96.9% 96.8% 
EarCoughNet 0.5 s @ 24 kHz 95.01% 92.66% 96.4% 96.2% 
EarCoughNet 0.5 s @ 16 kHz 95.23% 92.25% 95.5% 96.3% 
EarCoughNet 0.5 s @ 8 kHz 95.35% 92.89% 95.5% 94.6% 

EOCD∗ 0.6 s @ 44.1 kHz 94.20% 93.70% – – 
HearCough 0.5 s @ 11 kHz 87.88% 88.04% 51.64% 45.70% 
+ Acc. and F1. for distinguishing subject coughs and other audio samples. 
# Acc. and F1. for distinguishing subject coughs and environmental coughs. 
∗ Unreported values in this row were not evaluated in the original work. 

Table 4: Evaluation results of computing and space require-
ments. 

Model Input Size Flops (M) Space (kB) 
EarCoughNet 0.5s @ 48 kHz 73.91 1665 
EarCoughNet 0.5 s @ 24 kHz 36.88 897 
EarCoughNet 0.5 s @ 16 kHz 24.53 641 
EarCoughNet 0.5 s @ 8 kHz 12.20 385 

EOCD∗ 0.6 s @ 44.1 kHz – 99000 
HearCough 0.5 s @ 11 kHz 16.20 480 
∗ Unreported values in this row were not evaluated in the original work. 

EarCoughNet is efective for subject cough event detec-
tion. As shown in Table 3 and 4, EarCoughNet achieves comparable 
detection performance when compared to the EOCD model. How-
ever, as an end-to-end model, EarCoughNet has signifcantly less 
requirement in computing resources and storage space. Compared 
to HearCough, EarCoughNet yields higher detection performance 
at all sampling rates. Worth mentioning, EarCoughNet signifcantly 
outperforms HearCough in terms of subject-awareness, which re-
fects the weakness for works not considering subject-awareness. 
Since HearCough at an 11 kHz sampling rate can be deployed on the 
popular microcontroller of commodity hearables, EarCoughNet at 
8kHz sampling rate potentially enables real-time on-board subject 
cough event detection with even less space and computing power 
compared to HearCough. 

A sampling rate at 8 kHz is sufcient for subject cough 
event detection using end-to-end deep learning model. Cough-
ing sounds have a spectral distribution between 350 Hz and 4 
kHz [25]. In order to retent the information of coughs, the sam-
pling rate should be higher than 8kHz according to Nyquist’s law. A 
higher sampling rate provides more high-frequency features, which 
are unnecessary for cough detection and even introduce more con-
fusing information about cough-like sounds emitted by human 
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beings, including laughter and speaking. According to the analysis 
of the results, EarCoughNet with a higher sampling rate increases 
the error rate of misidentifying cough as laughter and speaking, 
which causes a signifcant performance drop at the sampling rate 
of 48kHz. Compared to EarCoughNet with a sampling rate of 16 
kHz or 24 kHz, EarCoughNet at the sampling rate of 8 kHz achieves 
equivalent detection performance with less computing power and 
space requirement, which showed that 8 kHz is sufcient for subject 
cough event detection. 

Efective subject-awareness of EarCoughNet comes from 
the diference of dual-channel audio. An ablation study was 
conducted to investigate the reason for EarCoughNet’s outstanding 
performance in subject-awareness. Specifcally, we varied the input 
of EarCoughNet from dual-channel to single-channel audio from 
either the feedback microphone or the feed-forward microphone. As 
shown in 5, single-channel audio-based EarCoughNet sufers from 
a performance drop in subject-awareness compared to the dual-
channel audio-based EarCoughNet, which demonstrated that the 
diference between the dual-channel audio benefts the performance 
of subject-awareness. 

Table 5: Ablation study results of EarCoughNet 

Input of EarCoughNet Acc.# F1.# 

Dual-channel audio 95.50% 94.60% 
Feed-forward microphone’s audio 88.87% 82.15% 
Feedback microphone’s audio 89.77% 89.14% 

# Acc. and F1. for distinguishing subject coughs and environmental coughs. 

5 CONCLUSION AND FUTURE WORK 
In this paper, we have proposed EarCough, a technique that en-
ables the always-on hybrid active noise cancellation microphones 
in commodity hearables for continuous subject cough event detec-
tion. We proposed a lightweight end-to-end deep learning model — 
EarCoughNet, which leverages the diference between feed-forward 
and feedback audio of hybrid ANC smart earbuds to achieve efec-
tive subject-awareness. To evaluate the efectiveness of the method, 
we constructed the frst synchronous audio and motion dataset 
targeted at subject cough event detection. We proved EarCough’s 
efectiveness and reliability by training and evaluating the model 
on the constructed dataset. Results show that EarCough achieved 
subject cough event detection with an accuracy of 95.4% and an 
F1-score of 92.89% at the audio sampling rate of 8kHz with only 
385kB space requirement. To the best of our knowledge, we are 
the frst to develop a resource-efcient end-to-end subject cough 
event detection compatible with the microcontroller in modern 
earphones. 

Although EarCough achieves outstanding feasibility and ef-
ciency, our constructed dataset needs to expand the evaluation 
scenarios. For instance, we have not included scenarios when peo-
ple are listening to the sounds playing from the earbuds. Since the 
played sounds may infuence the quality of the feedback micro-
phone’s audio, extra modules based on noise cancellation will be 
added on EarCough to decrease the negative efect. After expanding 
the dataset, we will make it publicly accessible to help the research 

community improve subject cough event detection methods. Be-
sides, we have not evaluated EarCough in real-life scenarios. As 
a result, we plan to conduct a feld study in the wards of stroke 
patients with cough symptoms and further fne-tune EarCough-
Net based on the evaluation results. Finally, since cough usually 
causes body movements, we envision that sensor fusion methods 
will further increase the detection performance of EarCough with 
the motion features extracted from inertial measurement unit (IMU) 
signals. 
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