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A B S T R A C T   

Flipping is a potential interaction method for dual-display phones with front and rear screens. However, little is 
known about users’ phone flipping behaviors. To investigate it, we iteratively conduct three user studies in this 
research. We first elicit 36 flipping gestures from 22 users and present a design space according to the results. We 
then collect users’ flipping data and subjective evaluation of all user-defined gestures through the second user 
study. We design a flipping detection algorithm based on the data collected and deploy it on an off-the-shelf dual- 
display phone. Another evaluation study shows that it can detect users’ flipping efficiently with an average 
accuracy of 97.78%. Moreover, users prefer many flip-based applications on dual-display phones to existing non- 
flipping approaches on regular single-screen phones. In conclusion, our work provides empirical support that 
flipping is an intuitive and promising input modality for dual-display phones and sheds light on its design 
implications.   

1. Introduction 

In recent years, smartphone manufacturers and companies have 
released many dual-display phones with two screens on both the front 
and back of the device, such as Vivo NEX Dual Display Edition (Fig. 1a), 
ZTE Axon M, ZTE Nubia X (Fig. 1b), YotaPhone series (Fig. 1c), Hisense 
A2, and so on. Some foldable phones like Huawei Mate X series (Fig. 1d) 
also have screens on both sides in the folded state. By utilizing the two 
screens, dual-display phones can support precise back-of-device in-
teractions (Cui et al., 2021; Shimon et al., 2015; Wobbrock et al., 2008; 
Wu and Yang, 2020), present more contents, share content with others, 
and offer users a sense of uniqueness. One of the typical benefits of 
dual-display phones is implementing regular shots and selfies with only 
one single high-quality camera (system). Users can simply flip the phone 
to choose from taking regular shots or selfies (Fig. 2). 

Since dual-display phones offer another screen on the back, it is 
intuitive for users to access it by flipping the phone. Hence, flipping can 
be served as a potential input modality for dual-display phones with low 
cognitive cost. However, though flipping the phone has been mentioned 
in the previous work as one of the user-defined gestures for mobile 
interaction (Ruiz et al., 2011) or a gesture delimiter (Ruiz and Li, 2011), 
none had systematically investigated it in literature, especially for 
dual-display phones, which leaves the following questions:  

• What can the dual-display phone flipping be used for? Do users like 
applications based on flipping?  

• How do users flip a dual-display phone? Is there an agreement among 
users on used flipping gestures with different applications and use 
cases? What are the users’ subjective evaluations of these gestures?  

• How does a phone detect users’ flipping motions? What are the 
patterns of various flipping gestures? 

To answer these questions, we iteratively conduct three user studies 
in this research. The remainder of this paper is organized as follows. 
First, we give a brief review of related work in Section 2. Next, we 
discuss potential application scenarios for flipping the dual-display 
phone in Section 3. After that, we collect user-defined flipping ges-
tures through a user-elicitation study and then conduct another user 
experience study to collect motion sensor data for all elicited flipping 
gestures and get users’ subjective evaluation of these gestures in Section 
4. After labeling and analyzing the data collected, we summarize some 
findings on users’ flipping behaviors in Section 5. Also in Section 5, we 
design a flip detection algorithm based on the findings and deploy it on 
an off-the-shelf dual-display phone to implement automatic display 
switching. We then carry out the third user study to evaluate the algo-
rithm’s performance and get subjective feedback of different flipping 
applications, different display switching methods, and different manual 
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intervention methods if the phone fails to detect flip in Section 6. 
Finally, we discuss other topics related to phone flipping and directions 
of future work in Section 7 and conclude the paper in Section 8. 

In sum, our contributions and main findings are the following:  

• We present 36 distinct user-defined flipping gestures for dual-display 
phones, which can be grouped into 20 categories (Fig. 6).  

• The average time duration of flipping is 1144.96 ms. Among all 
gestures, “Wrist” gestures (flipping gestures that mainly rotate the 
wrist) are the fastest (M = 866.96 ms). On the contrary, the slowest 
ones are one-handed non-“Wrist” gestures (M = 1448.43 ms).  

• Users’ subjective evaluations of flipping gestures are largely in line 
with the time costs. Meanwhile, users perceive more differences from 
gesture types than which hand is involved (dominant hand and non- 
dominant hand).  

• We present a straightforward data-driven flip detection algorithm 
based on the findings. We also introduce a “turn on both screens 
during flipping” mechanism to reduce the perceived latency. 

• Automatic display switching takes almost half the time of the exist-
ing manual switching methods. Therefore, users generally prefer it 
and like many flip-based interactions and applications. 

For convenience, phones mentioned in the remainder of this paper 
all refer to dual-display phones unless otherwise specified. Also, we will 
use the term “front screen” to refer to the screen currently facing the user 
and “rear screen” to refer to the screen that is not. 

2. Related work 

2.1. Phone flipping and tilting in previous work 

Ruiz et al. (2011) investigated motion gesture design for the mobile 
computing paradigm through a 20-participant guessability study 
(Wobbrock et al., 2005) that elicits end-user motion gestures to invoke 
commands on a smartphone device. Flipping the phone was one of the 
user-defined gestures, which was used to hang up a call. In addition, 
users designed gestures that quickly rotate the phone around the y-axis 
(Fig. 3) to the left/right and return back for “pan left/right” tasks. Ruiz 
and Li (2011) also used the DoubleFlip gesture (flipping the phone 
around the y-axis and then back) as an always-active input delimiter for 
mobile motion-based interaction. Their experiments showed that the 
DoubleFlip gesture is highly resistant to false positive conditions while 
still achieving a high recognition rate. It indicates that smartphones may 
be able to detect phone flipping with embedded sensors, though the 
DoubleFlip gesture consists of two flipping motions in sequence. These 
use cases inspired us that flipping motion could be used as an input 
trigger for various applications. We will further push forward the idea to 
dual-display phones and discuss other use cases in Section 3. 

Comparing to flipping, tilting is much more common for regular 
single-screen phones and has been researched by many researchers. For 
example, Rahman et al. (2009) explored tilt-based interaction using a 
mobile device. Results showed that users could comfortably perform up 

to 16-levels wrist-based input on the pronation/supination axis. Chang 
et al. (2015) investigated users’ touch behavior on large mobile device 
touchscreens and then utilized tilting gestures to assist one-hand tar-
geting. Furthermore, Eardley et al. (2017) investigated how form factors 
impact hand usage and movement on mobile phones, including tilt and 
rotation effects. 

2.2. New input modality and interaction for smartphones 

Since the smartphone is in users’ hands most of the time, many re-
searchers have studied and utilized users’ grasps and finger placements 
as active gestures to trigger an action or passive information to adapt an 
interface. For instance, Wimmer and Boring (2009) deployed capacitive 
sensors on the left and right of their HandSense prototype, which 
correctly classify over 80 percent of all touches, discriminating six 
different ways of touching the device. Furthermore, Le et al. (2016) 
investigated finger placement and hand grasp during smartphone 
interaction. They then presented InfiniTouch (Le et al., 2018c), a system 
that enables touch input on the whole device surface with capacitive 
sensors on the front, the back, and three sides. Instead of adding 
capacitive sensors, Quinn et al. (2019) designed squeeze gestures for the 
Google Pixel 2 by utilizing strain gauge elements adhered to the inner 
sidewall of it. Besides, Goel et al. (2012) introduced GripSense, a system 
that only leverages mobile device touchscreens, built-in inertial sensors, 
and vibration motor to infer hand postures with 84.3% accuracy. 

On the other hand, touchscreens are the most common and successful 
input method for smartphones. Le et al. (2018a) extended the touch 
input vocabulary by the palm and presented PalmTouch (Le et al., 
2018b), an additional input modality for smartphone interaction that 
differentiates between touches of fingers and the palm. Xiao et al. (2015) 
and Mayer et al. (2017) extended the input richness of touchscreens by 
estimating and utilizing the finger orientation and angle on commodity 
touchscreens. Yang et al. (2019a) utilized the phone as the input device 
for indirect touch gesture typing. Liang et al. (2012) combined touch 
and motion gestures to support 3D manipulation of objects at a distance 
with a dual-surface concept device. 

Since we also explore an input modality new to users (i.e., flipping) 
in this research, we learn from previous work when designing different 
parts of our studies, such as how to develop a user-defined gesture set 
(Ruiz et al., 2011) as well as the algorithm sensitivity adjustment 
(Quinn et al., 2019). 

3. Application scenarios for flipping 

We conducted a 16-person brainstorming session (mostly HCI re-
searchers/students and some smartphone practitioners / application 
developers) to discuss the application scenarios for flipping. We roughly 
divide the results into three usages as follow and explain some design 
ideas:  

1. Multitasking: dual-display phones have one more screen than regular 
phones. Taking advantage of this, we can utilize both screens to run 

Fig. 1. Dual-display phones and foldable phones with front and rear screens.  
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different applications. Typical scenarios would include switching 
between chatting and watching videos: when a message is coming 
while watching a video, users can flip the phone to switch to the 
chatting application automatically. Meanwhile, the video is paused. 
After replying to the message, flipping the phone again to continue 
watching the video. Another instance is that flipping to the back of 
the phone will activate a user-predefined application, e.g., a mirror 
application or a weather application. Besides application switching, 
flipping the phone can also be used to change appearance and con-
tents (e.g., change wallpapers of the lock screen, switch between 
casual mode and business mode, temporarily hide private messages, 
etc.)  

2. Using flipping as a trigger: as mentioned in the introduction, flipping 
itself can serve as a new input modality for dual-display phones. For 
example, users can flip the phone to reject an incoming call during a 
business meeting or delay the alarm for 5 min while sleeping. In both 
scenarios, users can flip the phone in an eyes-free manner (i.e., no 
need to look at the phone), and these scenarios are not only for dual- 
display phones but also for regular phones. As for dual-display 
phones only, flipping can also be used to switch between taking 
selfies and regular shots when taking photos. Instead of embedding 
two cameras (front and rear), dual-display phones can utilize only 
one single high-quality camera (or camera system) to implement 
both taking regular shots (Fig. 2a) and selfies (Fig. 2b).  

3. Viewing the other side of objects: we all know that we can see the 
back of an object by flipping it. Hence, it is intuitive and natural that 
flipping the dual-display phone will display the other side of objects. 
For example, users can flip the phone to view the back of clothes 
when shopping online (Fig. 4a and b), or see the meaning/translation 
of a word when memorizing words (Fig. 4c and d), or view the back 
of an e-card or an envelope. In addition, based on flipping the phone 
to change different views, we can also design puzzle video games like 
Fez (Wikipedia, 2021). 

Most use cases mentioned above require the phone to support an 
automatic display switch when flipping (the rear screen before flipping 
will become the front screen which should be turned on after flipping, 
and vice versa). We will discuss how to detect phone flipping in Section 
5. 

4. User-defined flipping gestures and user preference 

In this section, we first carried out a user-elicitation study to collect 
flipping gestures. We then presented a representative gesture vocabu-
lary in the phone flipping design space based on the results. Finally, we 
conducted a follow-up user experience study to get users’ subjective 
feedback on these gestures. 

4.1. Gesture elicitation 

4.1.1. Apparatus 
We used Vivo NEX Dual Display Edition (Model V1821A) (VIVO, 

2021) as the experimental device in this study and in the subsequent 
studies. The phone dimensions are 157.2× 75.3× 8.1 mm 
(6.19 × 2.96 × 0.32 in), with a 6.39-inch main display and a 5.49-inch 
secondary display. It weighs 199 g (7.02 oz). The running OS was 
Android 10.0. 

4.1.2. Study design and procedure 
We first gave the participants a brief introduction to the dual-display 

phone and the idea of flipping. In order to get closer to real usage, 
participants in this study would design and perform flipping gestures 
while experiencing various typical application scenarios listed in 
Table 1. The scenarios were selected from the discussion in Section 3 and 
could cover all combinations of phone orientations before and after 
flipping (i.e., portrait, landscape, and landscape rotated 180∘ around the 
z-axis, see Fig. 3). The last session, “10. Free”, does not include any 
application scenarios and allows participants to flip the phone at will 
freely. 

We instructed participants to focus on gesture design by assuming 
the phone would be capable of recognizing any kinds of flipping ges-
tures (Tu et al., 2020). Correspondingly, the experimental software in 
this study was implemented with a Wizard-of-Oz design: there is no 
flipping recognition algorithm; both screens of the phone were always 
on in this study. We also encouraged participants to design as many 
gestures as possible and explain their designs (think-aloud). Other than 
these instructions, we would not give any suggestions or ask any ques-
tions to participants to avoid bias from experimenters. 

A video camera recorded the process of study (Fig. 5). We informed 
participants that only their hands and the phone were captured, and the 
recorded videos were for research purposes only. 

Fig. 2. A Dual-display phone can utilize only one single high-quality camera (system) to support both regular shots and selfies. Flipping the phone switch between 
taking a regular shot and a selfie. 

Fig. 3. Definition of the coordinate system. The grey arrows indicate coun-
terclockwise direction (The z-axis is not used when considering flipping). 
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4.1.3. Participants 
We recruited 22 participants (P1–P22, 11 female, 11 male) from the 

campus, aged from 19 to 27 years (M = 21.3, SD = 2.2). All participants 
were right-handed. Their hand lengths (measured from the middle of 
inter stylion to the tip of the middle finger) ranged from 160 cm to 204 
cm, which comprised samples from the 1tst to 85th percentile of the data 
reported in an anthropometric survey (Gordon et al., 2014). They have 
been using smartphones for 5.5 to 13.0 years (M = 8.03, SD = 1.59). The 
display of their daily-used smartphones ranged from 4.70-inch to 
6.89-inch (M = 6.16, SD = 0.58). Among them, 17 participants were new 
to dual-display phones. The study lasted for 5–10 min. Participants were 
compensated 10 CNY (about 1.5 USD) for their time. 

4.1.4. User-defined gestures 
According to the videos, each participant designed an average of 

16.86 (SD = 6.26) distinct flipping gestures, respectively. We divided all 
of the user-elicited flipping gestures into 20 categories (Fig. 6). There are 
four main factors for flipping:  

1. Hand(s) holding the phone before and after flipping, including left 
hand (L), right hand (R), and both hands (B).  

2. Phone orientations before and after flipping, including portrait (P) 
and landscape (L). Note that we do not distinguish the two landscape 
orientations here (0∘ and 180∘ around the z-axis) because the next 
factor (rotation direction) could cover it.  

3. Rotation direction and which axis the rotation is around: here, we 
used the coordinate system (Fig. 3) defined in Android API (Google, 
2021b). The rotation direction includes clockwise(CW) and coun-
terclockwise(CCW). The rotation is around the y-axis by default, or 
around the x-axis if specified. The z-axis is not used when considering 
flipping.  

4. Special cases, including “Wrist” and “OnTable”: “Wrist” means the 
flipping is achieved mainly by rotating the wrist. The phone is held 
tightly during flipping and the grip postures are relatively steady (e. 
g., see “10. RR-PL-CW-Wrist” in Fig. 6 for example). “OnTable” 
means the phone is placed on the table before and after flipping. 

We used the above four factors to name each gesture. Taking “16a. 
LR-PP-CCW” in Fig. 6 as an example, it means the phone is held in the 
left hand before flipping and in the right hand after flipping. The phone 
is in portrait orientation before and after flipping. The rotation direction 
is counterclockwise around the y-axis (Fig. 3). 

The gesture set shown in Fig. 6 is a subset of user-performed gestures. 
Gestures only performed by one participant (e.g., LR-PP-CW) and other 
low-frequency gestures that are difficult to perform (e.g., RR-PL-CW, 
designed by two participants) were discarded. In addition, some 
bimanual symmetric flipping gestures are grouped into one category in 
Fig. 6 (e.g., “5a. BB-PP-CCW” and “5b. BB-PP-CW”). After filtering, there 
are 36 gestures grouped into 20 categories in total. Among all gestures, 
“7.BB-LL-CW” and “18b.RR-PP-CCW-OnTable” have been defined by the 
most participants. 

4.1.5. Agreement rate 
Agreement rate (AR) (Findlater et al., 2012; Vatavu and Wobbrock, 

2015) measures the homogeneity for nominal data (Vuletic et al., 2021). 
We calculated AR for each session listed in Table 1 to evaluate the degree 
of agreement among flipping gestures elicited from different partici-
pants, with the following formula: 

Fig. 4. Two examples of flipping the phone to view the other side of objects. Fig (a) and Fig (b) show an example that the user flips the phone in hand and keeps the 
same grip before and after flipping. Fig (c) and Fig (b) show an example that the user flips the phone mainly by rotating the wrist. 

Table 1 
Application scenarios used in the user-elicitation study.  

Session Phone Orientation before/after 
flipping 

1–3. Switch between chatting and 
watching video  

Portrait ⇔ Portrait  
Portrait ⇔ Landscape  
Portrait ⇔ Landscape 
(180∘) 

4 and 5. Swap between two videos / 
Change videos 

In hand Landscape ⇔ Landscape 
Landscape ⇔ Landscape 
(180∘) 

6. Memorize words  Portrait ⇔ Portrait 
7. View the back of commodity clothes  Portrait ⇔ Portrait 
8. Reject an incoming call On 

table 
Portrait ⇔ Portrait 

9. Change lock screen’s appearance Portrait ⇔ Portrait 
10. Free Any Any  

Fig. 5. An example picture of recorded video. The participant was watching a 
simple video in landscape mode. 
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AR(s) =
|P|

|P| − 1
∑

Pi⊆P

(
|Pi|

|P|

)2

−
1

|P| − 1
(1)  

where P is the set of all user-defined gestures for session s, and Pi is a 
subset i of identical gestures from P1 According to Vatavu and Wobbrock 
(2015), the interpretation of AR is: a low agreement when AR ≤ 0.1, a 
medium agreement when 0.1 < AR ≤ 0.3, a high agreement when 0.3 
< AR ≤ 0.5, and a very high agreement when AR > 0.5. The results are 
shown in Fig. 7. 

According to Fig. 7, the agreement rates for sessions can be grouped 
into four tiers:  

1. Sessions 4 and 5 (AR ≈ 0.5): participants achieved a near very high 
agreement when switching between videos. Actually, most partici-
pants designed and only designed “6. BB-LL-CCW” and “7. BB-LL- 
CW” for session 4, “8a. BB-LL-CCW-X” and “8b. BB-LL-CW-X” for 
session 5, respectively. It shows that users tend to hold the phone in 
both hands when flipping in landscape orientations because, just as 
P6 and P10 said, “it is difficult to flip with one hand.” Correspondingly, 
the flipping gestures are highly consistent among users, only differ in 
the direction of rotation. 

Fig. 6. User-defined flipping gestures. The number in parentheses indicates how many participants have designed this gesture. Users’ subjective ratings on Easiness 
(E), Social Acceptability (S), and Fatigue (F) are also shown in the form of mean ± SD, which were collected through a subsequent user study and will be discussed in 
detail in Section 4.2. The top three and bottom three scores of each criterion are hightlighted in red and green with circle and triangle markers respectively. Results of 
Wilcoxon signed-rank tests are also shown (p < 0.05 are highlighted in bold). Symmetrical gestures colored in grey are omitted and not displayed. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 

1 We count by gesture here, not by category. For example, “5a. BB-PP-CCW” 
and “5b. BB-PP-CW” are counted as different gestures. 
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2. Sessions 8 and 9 (AR ≈ 0.3): the phone is placed on the table in both 
sessions. According to Fig. 6, flipping gestures using the right hand 
(“18a.”, “18b.”) are performed much more often than gestures using 
the left hand (“18c.”, “18d.”), which is in line with the fact that all 

participants are right-handed. Moreover, few participants used both 
hands for flipping. As P13 stated, “using the desktop to support the 
phone during flipping, flipping with one hand is even more convenient 
than two hands.” As a result, participants reached a high agreement in 
sessions 8 and 9.  

3. Sessions 1–3 (0.1 < AR < 0.2): participants reached a medium 
agreement when switching between chatting and watching a video. 
The most often defined gestures for sessions 1, 2, and 3 are “3.RR-PP- 
CW”, “17b. BB-PL-CW”, and “17a. BB-PL-CCW”, respectively. We 
observed that participants would actually flip the phone in hand to 
get a comfortable hand posture after flipping instead of just rotating 
the wrist. “I need to type on the screen after flipping” (P3). “(I design this 
flipping gesture) to avoid blocking the screen with my hands” (P13, P21). 
As a result, no participant designed “Wrist” gestures in sessions 1–3, 
which is different from the next group (sessions 6 and 7).  

4. Sessions 6, 7, and 10 (AR ≤ 0.1): participants designed the most 
various gestures in these sessions. Other than gestures mentioned 
above, participants also designed “Wrist” gestures: “Since I only need 
to view the back briefly, turning my wrist to read word translation and 
then quickly turning back is more convenient than flipping the phone in 
my hand” (P9, P17). Hence, on one hand, the most often defined 
gestures for sessions 6 and 7 were “12.RR-PP-CCW-Wrist” and “14. 
RR-PP-CW-Wrist”. On the other hand, almost all of the “Wrist” ges-
tures of this study were designed in sessions 6 and 7. 

Fig. 6. (continued). 

Fig. 7. Agreement rate for each session (L and P are shorts for landscape 
and portrait). 
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The last session, “10. Free”, has the lowest AR as expected. “1.RR- 
PP-CCW”, “3. RR-PP-CW”, “5a. BB-PP-CCW”, and “7. BB-LL-CW” are 
most often designed. 

4.2. User preference 

After the user-elicitation study, we conducted a follow-up user 
experience study to get users’ subjective evaluation of each gesture 
shown in Fig. 6. 

4.2.1. Study design and procedure 
In this study, we asked participants to use each gesture in Fig. 6 to 

flip the phone and then give subjective ratings. 
Fig. 8 shows the experimental setting. Participants sat at the table 

with the dual-display phone in hand. Similar to the previous elicitation 
study, the process of this study was also recorded with the camera of 
another mobile phone. 

According to a pilot study, users perceived little difference between 
some symmetric flipping gestures, especially for bimanual symmetric 
ones. Therefore, in order to reduce the time of the formal study and the 
total number of rating items, some symmetric flipping gestures were 
grouped into the same session (i.e., be performed and rated together). As 
a result, there were 20 sessions in the study, each consist one gesture 
category (name from 1. to 20. in Fig. 6). 

At the beginning of each session, participants first watched a 
demonstration video of the flipping gesture and then imitated it. After 
learning the gesture, participants tapped the START button of the exper-
imental program on the phone to start this session’s recording. After 1 s, 
the phone would vibrate for 0.5 s to inform the participant to start 
flipping, and then the participant performed the required gesture to flip 
the phone. After flipping, participants should hold the phone relatively 
steadily for at least 0.5 s, and then another vibration would come in 1 s. 
This process would repeat ten times, which means participants would 
perform the flipping gestures ten times in each session. This design was 
derived from the pilot study, allowing participants to focus on flipping 
without counting the number of flips. The stability testing was achieved 
by the phone’s inertial measurement units (mainly gyroscopes). Before 
the formal study, participants would take a test session to familiarize 
themselves with the study procedure and the dual-display phone. 

During the study, the phone logged values and timestamps of all 
supported motion sensors (Google, 2021a). These data were collected 
for subsequent statistical analysis of flipping and for designing flip 
detection algorithm, which will be discussed in the next section, Section 
5. 

If a session contains two symmetric gestures (e.g., “16a. LR-PP-CCW” 
and “16b. RL-PP-CW”), both gestures would be performed five times 
alternately (i.e., 16a, 16b, 16a, 16b...). If a session contains four sym-
metric gestures (e.g., 20a–20d), participants could perform the gestures 
in any combination at will, ten times in total. 

One of the objectives of this study is to investigate the difference 

between flipping with the dominant hand and the non-dominant hand. 
Therefore, sessions containing gesture categories in the same row in 
Fig. 6 would be arranged successively (mostly symmetrical and similar 
gestures performed by the left and right hand respectively, e.g., “1. RR- 
PP-CCW” and “2. LL-PP-CW”). Other than that, the order of sessions was 
counterbalanced across participants to minimize the carryover learning 
effect. Participants could take a break between sessions. 

At the end of each session, after flipping ten times, participants rated 
the gesture through a questionnaire which contains three criteria on a 7- 
point Likert scale (1 - worst, 7 - best) (Likert, 1932), with the de-
scriptions as follows:  

• Easiness: “Can you perform the gesture easily?”.  
• Social Acceptability: “Does the gesture look strange from others? Is 

it easy to attract attention? Can others understand and accept that 
you are flipping the phone?”  

• Fatigue: “Do you feel tired after performing the gesture repeatedly?” 

These subjective criteria have been commonly used in gesture eval-
uation studies  (Hsieh et al., 2016; Kim and Xiong, 2021; Lu et al., 2020; 
Serrano et al., 2014; Xu et al., 2020a; Yang et al., 2019b). As a 20-session 
study, participants were allowed to modify previously given ratings after 
experiencing and comparing different flipping gestures. We also 
encouraged participants to make think-aloud comments when rating. 

4.2.2. Participants 
We recruited 19 participants (P1–P19, 10 female, 9 male) from the 

campus, aged from 19 to 25 years (M = 21.0, SD = 1.6). Almost all (17) 
participants have participated the previous gesture elicitation user 
study. All participants were right-handed. Their hand lengths ranged 
from 160 cm to 203 cm, which comprised samples from the 1tst to 85th 
percentile of the data reported in an anthropometric survey (Gordon 
et al., 2014). They have been using smartphones for 5.5 to 9.5 years (M 
= 7.59, SD = 1.12). The display of their daily-used smartphones ranged 
from 4.70-inch to 6.83-inch (M = 6.18, SD = 0.57). Among them, 15 
participants were new to dual-display phones. The study lasted for about 
60 min. Participants were compensated 100 CNY (about 15 USD) for 
their time. 

4.2.3. Overall results 
All participants were able to perform each flipping gesture. The 

ratings of all 20 gesture categories are also shown in Fig. 6. The average 
ratings of all gestures were 5.40 (SD = 0.71) on Easiness, 6.14 (SD =

0.40) on Social Acceptability, and 5.36 (SD = 0.60) on Fatigue. 
Friedman tests found significant effects of gesture category on the rat-
ings of Easiness (χ2(19) = 116.89, p < 0.001), Social Acceptability 
(χ2(19) = 73.39, p < 0.001), and Fatigue (χ2(19) = 100.36, p < 0.001). 

4.2.4. Dominant hand vs. non-dominant hand 
To investigate differences in users’ perceptions of flipping with the 

Fig. 8. Experimental setting of the user experience study. The participant was watching the demonstration video.  
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dominant hand and the non-dominant hand, we conducted Wilcoxon 
signed-rank tests to compare five pairs of symmetric unimanual flipping 
gestures (1.–4. and 10.–15.) respectively. Results are also shown in 
Fig. 6. In most cases, there is a significant difference either on Easiness 
or on Fatigue. It indicates that users generally agreed that flipping with 
the non-dominant hand is more difficult and tiring. The only exception is 
the pair of “3. RR-PP-CW” and “4. LL-PP-CCW”. As P14 said, “Using my 
thumb to push the edge of the phone (to flip the phone) seems no difference 
with my left hand and right hand.” 

On the other hand, no significant difference was found for all sym-
metric unimanual gesture pairs in terms of Social Acceptability. “As 
long as I don’t drop the phone, there is no difference which hand I use to flip 
the phone” (P6, P18). P3 echoed that “It’s as if people don’t care whether 
you hold the phone with your left hand or right hand.” 

To get further insight, we ran a 2 × 5 within-subjects test on the five 
pairs of symmetric gestures, with a 2-level factor Hand (dominant and 
non-dominant) and a 5-level factor Gesture. We used the aligned rank 
transform tool (ARTool) (Wobbrock et al., 2011) developed by Kay and 
Wobbrock (2021) to align and rank data for nonparametric ANOVAs. 
Table 2 shows the results, where we used the partial eta squared (η2

p) to 
report effect sizes (explained in Appendix A). As expected, we observed 
significant main effects of Hand on both Easiness and Fatigue. How-
ever, according to the effect sizes, Gesture played a more significant role 
than Hand in all criteria, i.e., participants did feel the difference when 
flipping with the dominant hand and non-dominant hand, but they 
perceived more differences from gesture types rather than which hand is 
involved. Hand × Gesture interaction effects were not significant in all 
three criteria. 

4.2.5. Other findings 
We sorted all 20 gesture categories by their total scores (Fig. 9). 

Among all gestures, “10. RR-PL-CW-Wrist”, “16.LR-PP-CCW”, and “6. 
BB-LL-CCW” are the Top-3 favorite gestures. In addition, all of the Top-7 
gestures (35%) are either gestures performed by both hands or gestures 
mainly rotating the wrist. Most participants agreed that these gestures 
are easier to perform, e.g., “I felt more confident (in successfully flipping) 
when using both hands” (P1, P10, P14), “It (‘Wrist’ gesture) is easy to 
perform since I can hold the phone tightly when flipping.” (P11). However, 
not all bimanual gestures were favored by participants, e.g., “8. BB-LL- 
CCW-X” received the lowest score. Participants reported that flipping 
the phone around the x-axis is much harder than flipping around the y- 
axis (P3, P6, P8). “9. BB-PP-CCW-X” is a bit better than “8. BB-LL-CCW- 
X” because, as P1 said, “when holding the phone in portrait orientation with 
both hands, I can move the phone slightly down in my hands, pinch the two 
ends (of the x-axis) between my thumbs and forefingers, and then flip it 
(around the x-axis).” 

As mentioned in Section 4.2.1, users perceived little difference be-
tween most bimanual symmetric gestures. However, the pair of “6.BB- 
LL-CCW” and “7.BB-LL-CW” is an exception. According to the results of 
Wilcoxon signed-rank tests shown in Fig. 6, the ratings of “6. BB-LL- 
CCW” are significantly higher than the ratings of “7. BB-LL-CW” on 
Easiness and Fatigue. The difference is that when performing the 
former, users would use their thumbs to push the bottom edge of the 

phone from the back of the phone; but when performing the latter, the 
users’ thumbs would instead reach the top edge of the phone and pull it. 
As also described in Section 4.2.4, users preferred to push the phone 
from behind rather than stretching their thumbs first to reach the phone 
and then pull it. Similar conclusions would also be reached when 
comparing “1. RR-PP-CCW” and “3. RR-PP-CW” (Easiness: Z = −

2.507, p < 0.05, r = 0.41; Fatigue: Z = − 1.778, p = 0.075, r = 0.29, 
trending), as well as comparing “2. LL-PP-CW” and “4. LL-PP-CCW” 
(Easiness: Z = − 2.602,p < 0.01, r = 0.42; Fatigue: Z = − 2.391,p <

0.05, r = 0.39) 

5. Flipping data analysis and flip detection algorithm 

In this section, we first analyzed motion data collected in the pre-
vious user study. We then designed a flip detection algorithm based on 
the findings. 

5.1. Data labeling and processing 

As mentioned in Section 4.2.1, we collected raw data from motion 
sensors when participants performed different flipping gestures. Since 
participants flipped ten times in each session, we needed to segment the 
data and label the beginning and end of each flip. We first used a simple 
motion detection program to get coarse-grained annotations by seg-
menting data (flipping and not flipping). We then manually checked and 
adjusted the annotations with the help of data visualization (or relabeled 
them if needed). Fig. 10 shows an example of labeling. The two sensors 
shown in Fig. 10, gravity and gyroscope, are the most frequently referred 
to when labeling. 

After labeling, the time durations of each flipping action can be 
easily calculated. We removed 44 outliers (1.16% of the data) that were 
more than three times the standard deviation away from the mean of its 
gesture category. As a result, up to 5 data were removed for each gesture 
category. 

5.2. Time duration 

The average time duration of all flipping gesture categories was 
1144.96 ms (SD = 397.18 ms). Fig. 11 shows the mean time durations of 
every gesture category. We ran a repeated measures ANOVA (RM- 
ANOVA) with the single 20-level factor Gesture Category. Mauchly’s Test 
of Sphericity indicated that the assumption of sphericity had been 
violated (χ2(189) = 655.13, p < 0.0001). Since the Univar Greenhouse- 
Geisser Epsilon (ε = 0.322) is below 0.75 (Verma, 2015), we reported 
the results with the Greenhouse-Geisser correction: F6.109,109.963 =

33.656, p < 0.0001, η2
p = 0.652. There is a significant main effect of 

Gesture Category on gesture duration. The slowest gesture (“2. 
LL-PP-CW”: M = 1593.44 ms, SD = 292.44 ms) takes almost twice as 
long as the fastest one (“10. RR-PL-CW-Wrist”: M = 815.18 ms, SD =
217.92 ms). 

According to Fig. 11, all of the 6 “Wrist” gestures were the fastest (M 
= 866.96 ms, SD = 279.56 ms). As P11 stated, “I don’t need to change grip 
posture during flipping.” P1 echoed that “Not only my wrist but also my arm 
will rotate; this makes phone flipping more easily and quickly.” Behind the 
“Wrist” gestures, two-handed gestures constitute the second tier (M =
1127.98 ms, SD = 329.02 ms), except “8. BB-LL-CCW-X” (M = 1423.10 
ms, SD = 283.13 ms). The one-handed non-“Wrist” gestures were the 
slowest (M = 1448.43 ms, SD = 397.11 ms). Among them, “3. RR-PP- 
CW” and “4. LL-PP-CCW” were significantly faster than “1. RR-PP-CCW” 
and “2. LL-PP-CW”, respectively (1. vs. 3.: F1,18 = 21.03, p < 0.0005,
η2

p = 0.539; 2. vs. 4.: F1,18 = 14.42,p < 0.005,η2
p = 0.445). These results 

are all consistent with users’ subjective evaluations in Section 4.2.5. 
However, different from the users’ subjective feelings, there is no 

significant difference between flipping with the dominant and non- 
dominant hand on time durations (F1,18 = 0.398, n.s., η2

p = 0.022). 

Table 2 
Results of repeated measures ANOVAs using ARTool.  

Criterion Factor F1,162/F4,162 p η2
p 

Easiness Hand 4.73 0.031* 0.0284 
Gesture 7.02 <0.0001* 0.1477 
Hand × Gesture 0.06 0.994 0.0014 

Social Acceptability Hand 1.41 0.237 0.0086 
Gesture 2.57 0.040* 0.0597 
Hand × Gesture 0.18 0.950 0.0044 

Fatigue Hand 5.42 0.021* 0.0324 
Gesture 9.79 <0.0001* 0.1947 
Hand × Gesture 0.19 0.941 0.0048  
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Fig. 12 shows the distribution. According to Figs. 11 and 12, participants 
spend about the same amount of time performing symmetric unimanual 
gestures with the dominant and non-dominant hand. 

5.3. Gyroscope data 

When considering flipping, the gyroscope is naturally the most 
important sensor. Based on which axis to flip around, we classified the 

Fig. 9. Subjective ratings of all 20 gesture categories in terms of easiness, social acceptability, and fatigue (rate from 1 to 7, the higher the better), sorted by 
total score. 

Fig. 10. Data visualization and labeling. The example picture here shows the motion sensor data from one participant’s “16a. LR-PP-CCW” and “16b.RL-PP-CW” 
session. The vertical dotted lines indicate the labeled beginning/end of a flipping action. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 
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flipping gestures into three types: (1) gestures that are mainly flipping 
around the y-axis, (2) gestures that are mainly flipping around the x- 
axis, and (3) gestures flipping around both the x-axis and y-axis simul-
taneously, namely all of the “PL” and “LP” gestures which switch be-
tween portrait and landscape orientations. Fig. 13 shows the 
distributions of the three flipping gesture types. From it we can see the 
obvious difference between the three gesture types, which will be used 
for flip detection. 

5.4. Flip detection 

Based on the findings, we designed a straightforward data-driven flip 
detection algorithm as follows. The algorithm buffers the last 2500 ms of 
motion sensor data, which can cover over the 99th percentile of the 
flipping duration according to Fig. 12. It then detects flipping based on 
the buffered data at 100 Hz. If the current gyroscope readings do not 
exceed a pre-defined small threshold on both the x-axis and y-axis, the 
algorithm simply determines that the phone is not flipping for energy 
saving. The threshold is set to 1.0 radians/s at default, which is less than 

the 1tst percentile of the flipping gyroscope data according to Fig. 13. If 
passing the threshold, the algorithm will further try to find if there is a 
time interval ending with the current time that meet the following 
conditions: the average gyroscope readings of x-axis and y-axis are be-
tween the 1tst and 99th percentile of the data of any one of the three 
flipping gesture types (Fig. 13), as well as the accumulated rotation 
angles. If such interval(s) exists, it will report all of the possible time 
intervals along with the confidences based on statistical density (the 
more it appears in the statistics, the higher the confidence is). If the 
confidence exceeds a threshold, then a flip is detected and reported. The 
minimum time interval length is set to 400 ms, i.e., each flipping will last 
for at least 400 ms (below the 1tst percentile of the data in Fig. 12). 

The above algorithm briefly describes how to detect a complete 
flipping. However, according to a pilot study, if the phone switches the 
display only until it detects a complete flipping, almost all users 
perceived the delay and felt unsatisfied with the sudden brightening of 
the screen. Therefore, we improved the algorithm to support the 
detection of partial flipping. The main idea is the same as mentioned 
above; the only difference is the statistical data used, i.e., data from parts 

Fig. 11. The mean time durations of all 20 flipping gesture categories. Error bars indicate one standard deviation applying Bessel’s correction.  

Fig. 12. The distribution of flipping gestures’ duration. The vertical dashed lines indicate the 1tst and 99th percentile of the duration of that type and the vertical 
dotted lines indicate the averages. 
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of the flip (duration, gyroscope, etc.) were used instead of the entire 
flipping. In addition, since users reported dissatisfaction with the display 
switching delay and sudden brightening, the more sensitive and 
aggressive the algorithm detects the flipping, the better. However, 
increasing the algorithm’s sensitivity would lead to more false positive 
errors, which also negatively affecting user experience. Thus, we 
introduced a trick to prevent it: temporarily turn on both screens during 
flipping. We suspected that users could only see one screen in most 
cases, even more so when flipping. Therefore, it would not hurt user 
experience, and users would not perceive the “delay of display switch-
ing” since the rear screen was already on as soon as the user saw it. In our 
implementation, both screens will be on when flipping reaches a certain 
angle (more aggressive compared to flip detection), and the screens 
reject all touch inputs during flipping to prevent unintended touch. 

To test whether users like this design and get suitable parameters for 
flip detection, we designed flip detection sensitivity as a 7-level user- 
configurable setting (Table 3). The higher the sensitivity, the more 
aggressive the detection algorithm. For example, the phone will switch 
displays when it detects a partial flipping and the rotation angle reaches 
a total of 115 degrees around the x-axis and y-axis at sensitivity 1, 90 
degrees instead at sensitivity 4 or higher. The phone will turn on both 
screens temporarily when the flipping reaches a specific angle at 
sensitivity 5 or higher. Since the phone’s front screen does not always 
face the user directly before flipping, we also tested when to turn on both 
screens by adjusting the response angle in sensitivities 5–7. The testing 

will be conducted in the next user study (Section 6). Fig. 14 shows the 
user interface of sensitivity adjusting (Quinn et al., 2019), in which users 
can experience flipping with the newly set sensitivity at will. The default 
sensitivity is 4. The parameters in Table 3 are not exposed to users. 

Besides the gyroscope, we also utilized linear acceleration sensors to 
reject some false positive errors, i.e., the motion that is not a phone 
flipping but looks similar to it from gyroscope readings. For example, 
users sit by the bed and then lie down while holding the phone aloft. 
Another example is that users turn backward while holding the phone in 
front of their chests. In these situations, the screen facing the user has 
not changed, but gyroscopes will sense rotations from one or more axes. 
In other words, the relative position and orientation relationship of the 
phone and the user’s face have not changed, but the phone moves 
significantly in the world coordinate system (compared to flipping in 

Fig. 13. The distributions of gyroscope data for three flipping gesture types: (1) gestures that are mainly flipping around the y-axis, (2) gestures that are mainly 
flipping around the x-axis, and (3) “PL” and “LP” gestures, i.e., switching between portrait orientation and landscape orientation. The vertical dashed lines indicate 
the 1tst and 99th percentile of the data, and the vertical dotted lines indicate the averages. 

Table 3 
Parameters of the flip detection algorithm.  

Sensitivity Switch displays Turn on both screens 

1 115∘ never 
2 105∘ never 
3 95∘ never 
4 90∘ never 
5 90∘ 75∘ 

6 90∘ 65∘ 

7 90∘ 55∘  
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hand). Using linear acceleration sensors to detect phone movement can 
simply handle it. 

6. User evaluation of flip detection and flipping applications 

Based on the collected data and findings in Section 5, we designed 
and implemented the flip detection algorithm and deployed the proto-
type on the dual-display phone. In this section, we conducted a user 
study to test the detection algorithm and get users’ subjective evaluation 
of different flipping applications, different display switching methods, 
and different manual intervention methods when the display does not 
switch. 

6.1. Study design and procedure 

We first gave the participants a brief introduction to the dual-display 
phone and the idea of flipping. They then got familiar with the phone. 
The experimental setting was similar to the previous studies (Fig. 8). 

There are three parts to this study. Participants will experience 
various applications or methods in each part and rate them on different 
criteria. 

The first part is experiencing and evaluating six application pro-
totypes based on flipping. The six applications are: 1) switching between 
watching the video and chatting, 2) switching between regular shot and 
selfie, 3) rejecting a phone call, 4) delaying an alarm, 5) viewing the 
back of clothes, and 6) memorizing words. Participants were instructed 
to use every application ten times, which also meant flipping the phone 
ten times. Take rejecting the call as an example: a virtual phone call 
would be made to the phone; turning it over would reject it. After a 
random 2–4 s, another phone call would come. After experiencing, 
participants rated the application through a questionnaire which con-
tains the following four descriptions on a 7-point Likert scale (1-strongly 

disagree, 7-strongly agree): 1) “I can successfully flip the phone”, 2) 
“The phone can successfully detect flips”, 3) “I like this application”, and 
4) “I prefer the flipping approach on the dual-display phone to the 
current non-flipping implementation on regular single-screen phones”. 
Also, we evaluated the performance of the flip detection algorithm in 
this part. 

In addition to the flipping applications, we also introduced the flip 
detection sensitivity to participants. They could adjust and experience 
different sensitivities (Fig. 14) before and during the first part of the 
study. In the end, we collected the sensitivity that participants changed 
to and their subjective feelings through the questionnaire. Note that the 
specific parameters in Table 3 were not exposed to participants. 

The second part of this study compares flipping to other existing 
manual display switching methods on the dual-display phone. They are: 
1) pressing the power button on the right, 2) pressing power buttons on 
both sides together, 3) sliding horizontally with three fingers, and 4) 
tapping the “Display on the other screen” UI button in the slide-up 
control center. There are power buttons on both sides of the phone in 
symmetrical positions, so pressing them together is feasible and can be 
used for display switching. Similarly, there will always be a power 
button on the right, no matter which screen faces users. Pressing it will 
turn on the front screen (and turn off the rear screen), which can be used 
to switch displays after flipping the phone. We instructed participants to 
flip the phone and use each display switching method ten times. They 
then rated these four manual methods along with automatic display 
switching when flipping on a 7-point Likert scale (the higher, the better): 
Simplicity, Efficiency, (the possibility of) Trigger by mistake, and 
Preference. 

The third and final part of the study evaluates five manual inter-
vention methods when the algorithm fails to detect the flipping and the 
display does not switch. In such cases, the front screen after flipping is 
off, and users need to switch displays manually. The five intervention 
methods are: 1) single-finger double tap, 2) single-finger circle draw, 3) 
pressing the power button on the right, 4) pressing power buttons on 
both sides together, and 5) multi-fingers double tap. Note that methods 
1, 2, and 5 require the touchscreen to be able to always read touch input 
(or turn on for a while without displaying anything if the gyroscope 
readings pass a threshold). The flip detection algorithm was turned off, 
and participants would flip the phone and then manually intervene as if 
the phone failed to detect the flipping. We asked participants to use each 
intervention method ten times in both one-handed and two-handed use, 
respectively. Method 5, multi-fingers double tap, is for two-handed use 
only. Participants then rated the intervention methods with the same 
criteria in the second part: Simplicity, Efficiency, Trigger by mistake, 
and Preference. 

In this study, we did not give participants any instructions or guid-
ance about flipping gestures. They could use any flipping gestures they 
like to turn over the phone freely. In each part of the study, the order of 
applications/methods was counterbalanced across participants, and 
participants could modify previously given ratings after experiencing 
and comparing different applications/methods. We also encouraged 
participants to make think-aloud comments when rating. 

6.2. Participants 

We recruited 12 participants (P1–P12, 5 female, 7 male) from the 
campus, aged from 19 to 27 years (M = 22.4, SD = 2.6). None had 
participated in the previous data-collection study. All participants were 
right-handed. Their hand lengths ranged from 161 cm to 204 cm, which 
comprised samples from the 2nd to 85th percentile of the data reported 
in an anthropometric survey (Gordon et al., 2014). They have been using 
smartphones for 4.5 to 11.0 years (M = 8.67, SD = 1.88). The display of 
their daily-used smartphones ranged from 5.65-inch to 6.89-inch (M =
6.12, SD = 0.37). Among them, 10 participants were new to dual-display 
phones. The study lasted for about 40 min. Participants were compen-
sated 60 CNY (about 9 USD) for their time. 

Fig. 14. User interface for adjusting detection sensitivity.  
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6.3. User evaluation of flipping applications 

Fig. 15 shows the subjective ratings of flipping applications. Based on 
the high rating of “I can successfully flip the phone” (M = 6.78, SD =
0.11), users have no difficulty using all of the applications by flipping. 
Moreover, users generally liked all of the offered flipping applications 
(M = 5.57, SD = 0.41). Among the six applications, users liked 2) 
switching between selfies and regular shots (M = 6.08, SD = 0.76) and 4) 
delaying an alarm the most (M = 5.92, SD = 1.61), followed by 1) 
switching between watching the video and chatting (M = 5.58, SD =
1.66) and 6) memorizing words (M = 5.67, SD = 1.11). Users consis-
tently preferred 4) delaying an alarm by flipping to non-flipping 
implementation on regular phones (M = 6.17, SD = 1.34). As P3 said, 
“It is fantastic to be capable of delay the annoying alarm in an eyes-free 
manner.” In contrast, users did not prefer to reject a phone call (M =
4.08, SD = 1.26) or view the back of clothes (M = 4.50, SD = 1.76) by 
flipping: “In most cases, I will check who is calling and decide whether to 
answer it. Hence, flipping the phone in an eyes-free manner to reject the call is 
not that attractive to me.” (P12) “It is too cumbersome to turn over the phone 
to view photos from different angles comparing to sliding.” (P11) However, 
the cost of flipping may turn into a benefit sometimes. Memorizing 
words is a typical example (M = 5.25, SD = 1.23): “I like this design (flip 
to read the meaning/translation of the word) because it makes me carefully 
recall the meaning of the word before flipping. Only when I can not remember 
the word at all, I will flip the phone to check it.” (P6) 

6.4. Performance of flip detection 

Every participant flipped the phone 6 × 10 = 60 times in the first 
part of the study. The average accuracy of the flip detection algorithm 
was 97.78% (SD = 2.08%), with 0–4 undetected flips for each partici-
pant. Participants also gave a high score on “The phone can successfully 
detect flips” (Fig. 15, M = 6.61, SD = 0.22). 

As for flip detection sensitivity, four, six, and two participants chose 
sensitivity 4, 5, and 6, respectively. It indicates that users want the rear 
screen to be turned on before seeing it during flipping. The “turn on both 
screens” mechanism helped achieve this and was accepted by most 
participants. In addition, participants rated an average of 6.50 (1 =
strongly disagree, 7 = strongly agree) on “I’m satisfied with the speed of 
display switching with the chosen sensitivity.” Besides, though some 
participants reported that they did not feel the difference between 
adjacent sensitivities (P4, P12), all of them could perceive the difference 
between sensitivities 1 and 7. 

6.5. User evaluation of display switching methods 

Fig. 16 shows the subjective ratings of display switching methods. As 

expected, simply flipping the phone to switch displays received the 
highest scores on both Simplicity (M = 6.58, SD = 0.64) and Efficiency 
(M = 6.50, SD = 0.87) since existing manual display switching methods 
all require more steps on top of flipping. In particular, tapping the UI 
button in the control center requires three steps: first sliding up the 
control center, then tapping the “Display on the other screen” button, 
and finally flipping the phone. Hence, it received the lowest Efficiency 
score (M = 3.50, SD = 1.32) but the highest Trigger by mistake score 
(M = 5.92, SD = 1.11; the higher the score is, the better). As for sliding 
horizontally with three fingers, P1 and P4 complained that “it can only be 
performed by two hands, which may cause inconvenience in some cases.” 

Users’ subjective evaluations of Efficiency were consistent with the 
actual time costs of display switching methods, as also shown in Fig. 16. 
Simply flipping the phone to switch displays spent significantly less time 
than manual methods. As a result, users consistently preferred it (M =
6.08, SD = 0.76) as they were satisfied with the accuracy and latency of 
the flip detection algorithm. 

6.6. User evaluation of manual intervention methods 

Fig. 17 shows the subjective ratings of manual intervention methods. 
Single-finger double tap was the favorite choice for both one-handed 
and two-handed use, which received the highest Simplicity, Effi-
ciency, and Preference ratings. In contrast, pressing power buttons 
together was the least favorite one. P6 explained the reason: “When 
holding the phone in both hands, it is uncomfortable to press the power 
buttons simultaneously no matter using the thumbs or index fingers of both 
hands. When holding it in one hand, pressing buttons with the thumb and 
index finger does feel good, just like gripping. However, to do so needs to 
change the grip posture after flipping the phone, which is inconvenient.” On 
the other hand, P4 shared concern for pressing the button on the right: 
“it is not intuitive to tell which power button is ‘on the right’ when using the 
phone in landscape orientation, especially after flipping it.” Moreover, “To 
avoid accidentally triggering, I need to be careful not to press the power button 
during flipping” (P5, P8). Therefore, users generally liked double tap and 
draw gestures on the front screen, especially for two-handed use in 
which users can hold the phone in one hand and do touch input with the 
other hand. 

7. Discussion, limitation, and future work 

We now discuss some topics related to phone flipping but not 
covered in our studies. Meanwhile, we summarize some limitations of 
this paper, which we also see as opportunities for future work. 

Fig. 15. Subjective ratings of flipping applications collected on a 7-point Likert scale (1 = strongly disagree, 7 = strongly agree). The horizontal lines represent 
results of Wilcoxon signed-rank tests: for a given line, the rating of the square application is significantly higher than that of the dot one (p < 0.05). Error bars indicate 
one standard deviation. 
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7.1. Turning on which screen when waking on the phone 

We have discussed how to detect flipping to support display 
switching when flipping. However, in addition to display switching, 
there still remains a problem of which screen should be turned on when 
waking on the dual-display phone. In other words, which screen is facing 
the user. Possible solutions and clues may include:  

• Touch input. Users can explicitly tap the desired screen to wake it, 
similar to the existing Tap to Wake feature (Apple, 2021). Similarly, 
users can press the fingerprint identity sensor to unlock the desired 
screen (if both sides of the phone support fingerprint recognition).  

• Lifting direction (linear acceleration of z-axis). It is especially useful 
when users wake on the phone with the Raise/Lift to Wake feature 
(Apple, 2021).  

• Power button on the right. As mentioned in Section 6, pressing the 
power button on the right will wake the front screen. It requires the 
phone to have two symmetric buttons on both the left and right sides. 

7.2. Unintended touch 

Some participants in our user studies were concerned about the 
unintended touch problem during flipping. In our prototype imple-
mentation, we simply reject all touch inputs during flipping to prevent 
unintended touch. The condition is whether the gyroscope readings in 
the x-axis and y-axis (Fig. 3) pass a threshold, which is straightforward 
and preliminary. The patterns of unintended touch during flipping and 
the corresponding error recovery method are both worth researching 
and require thorough investigations, which can refer to previous works 
on unintended touch for direct pen interaction (Annett et al., 2014), 

back-of-device touch panels (Le et al., 2019), and interactive tabletops 
(Xu et al., 2020b). 

7.3. Impact of hand size and mobile form factors 

In this research, we used a specific commercial off-the-shelf phone as 
the only experimental device (described in Section 4.1.1) in user studies. 
However, mobile form factors, especially the phone size, may impact 
hand movements of flipping (Eardley et al., 2017). For example, if the 
phone size gets bigger, some users may not be able to perform some 
unimanual flipping gestures or spend more time and effort flipping. 
Correspondingly, users’ hand sizes may also influence their flipping 
behaviors. In fact, we already found a weak negative correlation be-
tween hand length and average flipping time duration in our study (R2 =

0.10). 

7.4. Limitations of collected flipping data 

On one hand, we collected users’ flipping data in a lab setting, in 
which users were relatively concentrated. The patterns of flipping 
behavior may be different if the user is distracted. For example, the user 
flips the phone while conversing with others, i.e., with the dual-task 
interference (Pashler, 1994). Also, we only collected flipping data 
while the user is sitting. It is worth exploring whether there is a differ-
ence in how users flip the phone under different conditions, such as 
walking, running, and lying down. Moreover, the sensor reading would 
be much noisier when the user is moving or in a vibration environment 
(e.g., on a bus). Although they mainly affect accelerometers and flip 
detection mostly depends on the gyroscope, it may still be challenging to 
accurately and efficiently detect users’ flipping behaviors in these 

Fig. 16. Subjective ratings of display switching methods collected on a 7-point Likert scale (the higher, the better) and average time costs. The horizontal lines 
represent Wilcoxon signed-rank tests / RM-ANOVA results: for a given line, the rating / time cost of the square method is significantly higher than that of the dot one 
(p < 0.05). Error bars indicate one standard deviation. 

Fig. 17. Subjective ratings of manual intervention methods collected on a 7-point Likert scale (the higher the better). The horizontal lines represent results of 
Wilcoxon signed-rank tests: for a given line, the rating of the square method is significantly higher than that of the dot one (p < 0.05). Error bars indicate one 
standard deviation. 
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circumstances. 
On the other hand, since dual-display smartphones are a relatively 

new product type and not very popular yet, most participants of the user 
studies did not use a dual-display phone in their daily lives. Therefore, 
data collected in this research mainly reflected the flipping behaviors of 
users who are new to dual-display phones. Possible learning effects and 
their implications have not been adequately studied. Finally, as a pre-
liminary study of a new interaction method, the number and diversity of 
the participants in our user studies was limited. Hence, some results in 
this research may not be directly generalized to different cultural con-
texts (e.g., the social acceptance subjective rating of gestures). 

8. Conclusion 

In this research, we proposed flipping as a new input modality for 
dual-display phones. We first discussed potential application scenarios 
for flipping the dual-display phone through brainstorming, with the 
following three main usages: multitasking, using flipping as a trigger, 
and viewing the other side of objects. We then elicited 36 user-defined 
flipping gestures from 22 participants (Fig. 6) and showed the agree-
ment rates of the flipping gestures in different application scenarios 
(Fig. 7). 

Next, we conducted a user experience study with 19 participants to 
collect sensor data for all flipping gestures and get users’ subjective 
evaluations regarding easiness, social acceptability, and fatigue (Fig. 9). 
Results showed that the average time duration of flipping is 1144.96 ms. 
The slowest gesture (M = 1593.44 ms) takes almost twice as long as the 
fastest one (M = 815.18 ms) (Fig. 11). “Wrist” gestures (flipping gestures 
that are mainly achieved by rotating the wrist) are the fastest (M =
866.96 ms) among all gestures, followed by two-handed gestures (M =
1127.98 ms). Meanwhile, users also generally preferred “Wrist” gestures 
and two-handed gestures (Fig. 9). Besides, users perceived more differ-
ences from different gesture types than which hand is used to flip 
(Table 2). In fact, there is no significant difference between flipping with 
the dominant and non-dominant hand on time costs (Fig. 12). 

Based on the findings and data collected, we designed the flip 
detection algorithm to automatically switch displays when flipping and 
then implemented it on a commercial off-the-shelf dual-display phone. 

We introduced the “turn on both screens temporarily during flipping” 
mechanism to reduce the perceived latency of display switching without 
modifying the detection sensitivity of the algorithm. A user evaluation 
study showed that the algorithm achieved 97.78% detection accuracy, 
and users were satisfied with display switching speed. Compared to 
existing manual display switching methods, users consistently preferred 
automatic display switching when flipping since it is much more effi-
cient (Fig. 16). We also collected users’ subjective evaluations of flip- 
based applications (Fig. 15) and manual intervention methods (when 
the display does not switch) (Fig. 17). 

Overall, our work demonstrates that flipping is a practical and 
promising interaction modality for dual-display phones and provides 
design implications for it. 
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Appendix A. Effect size 

In this research, we reported effect sizes along with p values to illustrate both the substantive significance (effect size) and statistical significance (p 
value) in quantitative studies (Sullivan and Feinn, 2012). Specifically, the partial eta squared (η2

p) and the correlation coefficient (r) (Rosenthal et al., 
1994) were reported for RM-ANOVA and the Wilcoxon signed-rank test respectively (Tomczak and Tomczak, 2014). The formulas are presented 
below: 

η2
p =

SSeffect

SSeffect + SSerror
(A.1)  

where SSeffect is the sum of squares for the effect and SSerror is the sum squared errors. 

r =
Z
̅̅̅
n

√ (A.2)  

where n is the total number of observations on which Z is based. 
The thresholds for interpreting effect size (Cohen, 2013) are summarized as follows (Table A.1): 

Table A.1 
Thresholds for interpreting effect size.  

Test Relevant effect size Effect size threshold 

Small Medium Large Very large 

Repeat measures ANOVA η2
p 0.0099 0.0588 0.1379 / 

Wilcoxon signed-rank test r 0.10 0.30 0.50 0.70 (Rosenthal, 1996)  
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