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Abstract—Standard sleep quality assessment methods require
custom hardware and professional observation, limiting the
diagnosis of sleep disorders to specialized sleep clinics. In
this work, we leverage the internal and external microphones
present in active noise-cancelling earbuds to distinguish sounds
associated with poor or disordered sleep, thereby enabling at-
home continuous sleep sound monitoring. The sleep sounds our
system is able to recognize include, but are not limited to, snoring,
teeth grinding, and restless movement. We analyze the resulting
dual-channel audio using a lightweight deep learning model built
around a variation of the temporal shift module that has been
optimized for audio. The model was designed to have a low
memory and computational footprint, making it suitable to be
run on a smartphone or the earbuds themselves. We evaluate our
approach on a dataset of 8 sound categories generated from 20
participants. We achieve a classification accuracy of 91.0% and
an F1-score of 0.845.

Index Terms—earbuds, audio event detection, temporal shift
module, health, sleep quality

I. INTRODUCTION

Sleep disorders are often difficult to self-diagnose because
it is impossible to recall the severity, frequency, and nature
of symptoms that occur while unconscious. This is not only
true for respiratory disorders like obstructive sleep apnea and
mouth breathing, but also for conditions like sleep bruxism
(i.e., teeth grinding). Further, these conditions often do not
manifest acute symptoms until damage has already been done.
The gold-standard diagnostic technique for many sleep disor-
ders is polysomnography [1], which typically requires that a
patient spend at least one night in a specialized sleep clinic.
During that time, the patient is instrumented with a battery
of sensors ranging from airflow and oxygen saturation sensors
for measuring breathing to EMG sensors and movement belts
for measuring motion [2]. These studies can be onerous and
expensive, meaning that sleep disorders can go undiagnosed
until symptoms become severe.

Prior work has shown that it is possible to automatically
detect sleep disorder symptoms using the sensors embedded
in commodity devices like smartphones [3], smartwatches [4],
and wireless routers [5]. However, these approaches are limited
in a couple of ways: (1) they are only sensitive to overt
symptoms like body movement and snoring, and (2) they can
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have trouble determining who is presenting the symptom when
there are multiple people in the same bed.

Wireless earbuds are quickly becoming a pervasive com-
modity device, with global sales reaching 129 million units in
2020 [6]. In fact, commercial earbuds like the Bose Sleepbuds
II' are designed to be worn at night so that people can listen to
music and audiobooks as they fall asleep. Not only are earbuds
becoming more pervasive, but they are also becoming more
sophisticated and sensor-laden. Most notably, many earbuds
provide active noise cancellation (ANC), which requires both
an interior and exterior microphone to function. The inner
microphone’s physical isolation and placement in the occluded
ear canal allow it to perceive internal body sounds that micro-
phones in other ubiquitous devices cannot. This configuration
of microphones also makes it trivial to identify the person
producing those sounds since the internal microphone is far
more sensitive to the wearer than others in the room.

In this work, we demonstrate that audio collected from
ANC-enabled earbuds can be analyzed to identify body sounds
associated with sleep disorders. We first modified a set of com-
modity earbuds so that we could record voluntarily-produced
sleep sounds (e.g., grinding, snoring, breathing movement)
from 20 participants. We then created a deep learning model
that is able to classify those sounds. The model is based on
a traditional convolutional neural network (CNN) architecture
but is made more computationally efficient by using a modified
version of the temporal shift module [7] that was optimized
for audio. The model’s parameters total 236 kB, making it
compact enough to load onto a smartphone or even the earbuds
themselves. In our evaluation, we found that our model yields
an accuracy of 91.0% and an Fl-score of 0.845 across all
participants without the need for subject-specific training data.

To summarize, our main contributions are as follows:

1) A lightweight deep learning audio event classification
model leveraging a new variant of the temporal shift
module [7] for audio data,

Uhttps://www.bose.com/en_us/products/wellness/noise_masking_sleepbuds/
noise-masking-sleepbuds-ii.html
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2) The application of that model on sleep sound events
recorded from the microphones embedded in ANC-
enabled earbuds, and

3) An evaluation of our approach on a dataset of 8 sound
categories generated from 20 participants.

II. METHODS

We first describe our data collection process, including the
hardware we used to record sleep sounds and the procedure
that participants were asked to follow. We then outline the
steps we used to process the resulting audio, including pre-
processing, data augmentation, and sleep sound classification.

A. Hardware

We modified a Sony WF-1000MX3 ANC-enabled earbud?
for data collection. Both the interior and exterior microphones
were wired out and connected to a recorder for audio capture.
The microphones recorded audio at 48 kHz; however, our
early experiments showed that most of the frequency content
for our target sleep sounds was below 2 kHz. As a result,
we downsampled the audio to 4 kHz to enable a lightweight
classifier that requires less memory.

B. Data Collection

Our dataset comprises eight acoustic event classes that prior
literature has shown to be correlated with poor sleep or might
otherwise be produced at night [8]-[10]. It also includes
sounds associated with conditions like bruxism, COPD, and
asthma that become less regulated during sleep [11]-[14].
Since many of these sounds can be produced in multiple
ways (e.g., mouth- and nose-breathing), we further divided
our classes into subclasses. This resulted in 20 sound types
that were recorded during our experiments. The complete list
of sounds can be found in Table I.

We would have preferred to record our dataset during peo-
ple’s natural sleep; however, some sounds and behaviors are
naturally produced more frequently than others, which would
have led to a highly imbalanced dataset and the possibility
of missing classes. Reliably identifying and labelling sleep
sounds from continuous sleep also requires a controlled sleep
environment and additional instrumentation, which can impact
people’s natural sleep behaviors [15]. By recording voluntarily
produced sounds, we were able to include more types of
sounds in our dataset than would have been possible had
we recorded participants while they were asleep. Other audio
analysis tasks have used voluntary sounds to validate their
methods, most notably cough detection [16], [17].

We recruited 20 participants (13 male, 7 female) with an
average age of 31.5 years (s.d. = 8.2). Because of the COVID-
19 pandemic, the study was executed in participants’ own
homes and instructions were delivered remotely by researchers
to maintain social distancing. Hardware was disinfected before
and after being sent to each participant. The remote nature
of the study introduced real-world noise into our dataset,
as nearby appliances and cohabitants contributed extraneous

Zhttps://www.sony.ca/en/electronics/truly- wireless/wf- 1000xm3

TABLE I
THE NUMBER OF ONE-SECOND SEGMENTS FOR EACH SOUND IN OUR
SLEEP SOUND DATASET.

Class Sub-Class Recorded | Post-
Augmentation
[ Environment] Background sound [ 813 [ 1,626 |
Front-to-back quietly 1,003 1,003
Grindin Side-to-side quietly 1,687 1,687
Teeth g Front-to-back normally 1,821 1,821
Side-to-side normally 1,748 1,748
Clenching teeth 984 984
[ Swallowing | Swallowing [ 689 [ 2,058
. Speaking normally 1,679 1,679
Speaking Murmuring 1,480 1,480
Through nose normally 1,523 1,523
Breathin Through mouth normally 1,055 1,055
2 ["Through nose quietly 1476 T.476
Through mouth quietly 1,785 1,785
Throat Coughing 1,140 1,140
Sounds Clearing throat 1,821 1,821
[ Snoring [ Snoring [ 505 [ 1,497
Moving legs 177 354
Body Moving arms 366 732
Motion Flipping over 653 1,296
Re-positioning 634 1,268

noise to recordings. The uncontrolled nature of our data
collection procedure introduced significant variability into our
dataset, which simultaneously increased the realism of our
dataset and presented challenges to accurate audio classifica-
tion.

Participants were asked to lay in their own bed to better
recreate how the sounds would be made during sleep. When
applicable, participants were provided with instructions de-
tailing how some of the sounds should be performed. For
example, participants were asked to read a standard paragraph
for all the recordings related to speech. Some of the sounds in
Table I are discrete events (e.g., cough), while others are more
continuous (e.g., speech and breathing). This nuance made it
challenging to generate a dataset that was balanced in terms
of instances and duration. As a result, we asked participants
to record themselves making each sound for a fixed duration
between 15-60 seconds depending on a variety of factors. For
example, participants were asked to speak for 60 seconds and
to cough for 30 seconds — the latter being shorter since it is
difficult to cough repeatedly. Participants were encouraged to
take breaks between recordings and were allowed to skip any
activities that led to discomfort.

C. Pre-Processing

Mel-frequency cepstrum coefficients (MFCCs) and the
short-time Fourier transform (STFT) are the most common
audio feature-extraction techniques used in deep learning audio
classification systems. MFCCs are better suited for speech
data [18], which only comprises a subset of our dataset. As
a result, we extracted STFT features and normalized them
with linear scaling. Since our audio events did not have
uniform length, we generated our dataset by splitting our
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Interior Mic

Exterior Mic

Fig. 1. Spectrograms showing a single respiratory cycle (inspiration and
exhalation) as recorded by the (left) exterior and (right) interior microphones.

audio recordings into one-second sliding windows with 16.7%
overlap (1/6" of a second).

Despite our efforts to collect an equal number of one-
second windows for each sound type, we ended up with
an imbalanced dataset. We ameliorated this issue using data
augmentation [19], [20]. We synthetically generated new audio
examples of underrepresented classes using the following
audio data augmentation techniques [21]:

o Time stretching: Adjusting the length of an audio sample
while maintaining pitch

« Pitch shifting: Adjusting the pitch of an audio sample
without changing its length

o Background noise: Adding background noise, or mixing
generated noise with a sample

To mitigate overreliance on data augmentation, we also em-
ployed random undersampling on the over-represented classes
to balance the training set. In the end, each training fold of
our models had no more than 1,750 samples of each sound.

D. Classification Model

Although standard 2D CNNs and recurrent network archi-
tectures have been used to great effect in processing spec-
trogram data [22], they can be computationally intensive and
thus of limited utility in mobile and embedded systems. We
propose a CNN-variant that leverages a modified temporal
shift module (TSM) [7], which was designed by Lin et al.
to reduce the computational intensity of video processing
networks that rely on 3D convolutional layers. TSM layers
replace 3D convolutions with 2D convolutions and shift data
along the filter dimension in order to make data from adjacent
timesteps consumable by 2D convolution (Fig. 2). Because
TSM layers only shift the location of data according to a
hyperparameter, they do not require any additional learnable
parameters and therefore significantly decrease computational
overhead. That being said, TSM layers do not provide the same
exchange of temporal information as a higher dimensional
convolution.

The modified TSM layers we use for audio data, originally
applied to audio super resolution [23], operate on the output
from an initial 2D convolution and return a 3D tensor with
frequency bin, time point, and convolutional filter dimensions.
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Fig. 2. A visualization illustrating the use of temporal shifting in the TSM
module (visualization taken from Lin et al. [7]).
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Fig. 3. The network architecture we use for our final evaluation. There are
three 2D convolutional layers followed by max pooling. The first two layers
are shifted by a modified TSM layer. The network is completed with a fully
connected layer.

The TSM iterates over the filter dimension and shifts some
filters along the time dimension, effectively aligning frequency
content from adjacent timesteps across filters. In this way,
1D convolutions oriented along the frequency dimension are
able to consume information from different time steps, which
in turn enables them to embed temporal information. Fig. 3
shows the CNN architecture we use in our final evaluation,
including the modified TSM layers that follow some of the
convolutional layers.

III. RESULTS

In this section, we compare our lightweight classifier to
a set of baseline CNNs with varied depth and structure to
investigate the tradeoff between accuracy and computational
efficiency. The set of baseline models include the following
four configurations:

o Tiny CNN: 3 convolution layers, 32—-64 filters per layer

o Very Small CNN: 4 convolutional layers, 32—-64 filters
per layer

o Small CNN: 5 convolutional layers, 64 filters per layer

e Medium CNN: 7 convolutional layers, 64 filters per layer

All models were trained with the Adam optimizer to minimize
categorical cross-entropy loss. The models were trained for
300 epochs at a batch size of 128 using TensorFlow 2.4.1
and an NVIDIA GeForce GTX 980Ti GPU. Random selection
search was employed to tune hyperparameters. To demonstrate
that our approach generalizes across participants, we trained
and tested our models using 5-fold cross-validation such that
all of a given participant’s data was kept in the same fold; no
synthetic data generated using data augmentation was included
in any of the test sets.
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TABLE II
EXPERIMENTAL RESULTS FOR CLASSIFIER ACCURACY AND
COMPUTATIONAL EFFICIENCY

Type Acc. F1 Params | Size FLOPs
Tiny Modified TSM | 88.1% | 0.815 | 19.9k 83 kB 10.8M
Modified TSM 91.0% | 0.845 | 54.8k 236 kB | 30.8M
Tiny CNN 87.3% | 0.816 | 55.0k 214 kB | 69.2M
Very Small CNN 89.4% | 0.836 | 187.1k 731 kB | 921.9M
Small CNN 89.7% | 0.843 | 411.5k 1607kB | 4.7B
Medium CNN 88.3% | 0.831 | 845.6k 3338kB | 9.7B

Environment U] 0.17 0.0 0.0 0.0

Grinding 0.0 0.0 0.0
Swallowing ~ 0.02 0.0 0.02

- Speaking 0.0 0.01 0.0
é Breathing ~ 0.01 0.0 0.0
g Cough/Clear 0.0 0.01 0.02

Snoring 0.0 0.0 0.0 0.02 0.26 0.01 0.01
Movement 0.0 0.06 0.01 0.02 0.16 0.02 0.04 m
< 2 2 2 2 g 2 =
£ g z = £ o 5 £
S £ S 3 ] = & 2
a o
£ 0] % & & %» g
it 38
Ground Truth

Fig. 4. A confusion matrix showing the modified TSM classifier’s accuracy
across classes.

We measured the classification performance of the models
using both accuracy and F1 score to account for the uneven
distribution of our dataset. We also measured the computa-
tional efficiency of the models according to the number of
learned parameters, memory footprint, and number of floating-
point operations (FLOPs) they required. The overall results of
these experiments are shown in Table II.

A. Performance

All the models achieved a cross-validated accuracy be-
tween 87.3% and 91.0%. Our proposed classifier achieved the
highest accuracy (91.0%) and F1 score (0.845). Comparisons
with previous literature are difficult because of differences in
sensors and classification targets; nevertheless, the accuracy
numbers seen in those works rarely exceed 90% [24], [25].
The discrepancy between accuracy and F1 score for all the
models we tested suggests that many of the classification
errors were concentrated in underrepresented classes. The
proposed model’s confusion matrix, shown in Fig. 4, confirms
this observation. It shows that classification errors were con-
centrated in four classes: environment (no activity), snoring,
movement, and swallowing. Environmental noise was often
confused with breathing. Although participants were asked to
breathe particularly lightly while gathering the environment
recordings, this result was not unexpected since some of them
were still quiet enough to pick up on unconscious breathing
sounds.

Snoring was sometimes confused with breathing, which can
be attributed to the fact that subtle snoring sounds similar to

regular breathing. Movement was also confused with move-
ment in cases when people breathed between or over move-
ment noises. Swallowing was correctly classified only 63%
of the time, with those errors almost entirely being classified
as teeth grinding. Upon reviewing the audio, we found that
swallowing events were often preceded by a gathering of saliva
in the mouth, manifesting as a series of rapid “pops” and
“clicks” that resemble teeth grinding noises.

We hypothesize that the high error rate in the swallowing
class can be addressed in one of two ways. First, gathering
more examples of swallowing may improve our model’s ac-
curacy since it was one of the most underrepresented classes in
our dataset. Second, we hypothesize that the gathering of saliva
before swallowing may have been somewhat exaggerated since
participants were asked to swallow on command; providing
participants with liquid to moisten their mouths may make
the swallowing sounds more natural.

B. Computational Efficiency

Edge devices like smartphones and earbuds are becoming
increasingly capable of running deep learning models locally.
The Qualcomm QCC51443 is a chip comparable to the ones
embedded in ANC-enabled earbuds. It includes 448 kb of data
memory and external flash storage (Q-SPI), which is sufficient
for both our modified TSM network and spectral input data.
Although smaller neural networks tend to perform worse than
larger ones in classification tasks [26], being able to perform
prediction on a chip like the QCC5144 can ameliorate some
of the privacy concerns associated with transmitting private
audio to a central service.

The difference in F1 score between our largest and smallest
CNN baselines was about 0.03, yet the smallest model had
6.5% of the parameters and required less than 1% of the
FLOPs needed for the largest model. Our proposed model
outperformed the best performing baseline CNN while only
requiring 13% of the parameters and 0.7% of the FLOPs.

IV. RELATED WORK
A. Sleep Monitoring

The literature has explored various ubiquitous sensing
modalities, form factors, and target symptoms for assessing
sleep quality. One of the most basic modalities that people
have leveraged for sleep detection is actigraphy, which relies
on body movement that is detectable by an accelerometer.
For example, Natale et al. [3] demonstrated that a smartphone
placed near a person’s pillow was just as good at estimating
total sleep duration as a wrist-worn actigraph. Breathing is
another characteristic of sleep that has been monitored via
ubiquitous sensing. While sleep clinics rely on uncomfortable
chest-straps to directly measure the expansion and contraction
of the chest, researchers have shown that it is possible to mea-
sure breathing rate non-invasively by detecting perturbations in
wireless signals [5], [27]. By tracking the rate and consistency
in a person’s breathing, many of these works also attempt to

3https://www.qualcomm.com/products/qec5 144
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estimate sleep stages and sleep quality. Researchers have even
looked at behavioral predictors of a person’s sleep quality. Min
et al. [28] and Chen et al. [29] both leverage smartphone app
usage data and battery consumption among other data sources
(e.g., ambient light and sound levels) to predict characteristics
of sleep.

Meanwhile, microphones embedded in smartphones, smart-
watches, and smartspeakers have been used to capture and pro-
cess sounds associated with sleep. Beyond using overall sound
level as a feature for sleep detection [28], some researchers
have analyzed audio to identify breathing and snoring. For
example, Ren et al. [30] recorded audio from a bedside
smartphone and simultaneously applied signal processing to
infer a person’s breathing rate and machine learning to detect
notable sleep events like snoring and coughing. In contrast to
such work, our system leverages ANC-enabled earbuds for
audio recording, which has a couple of advantages. First,
the internal microphone is able to detect sounds that are
internal to the body (e.g., teeth grinding, swallowing) and
would be difficult to hear from a distant microphone. Second,
earbuds make it trivial to identify who is making the sound
when multiple people share the same bed since the internal
microphone is directed towards the source and is somewhat
shielded from other sounds.

B. Audio Event Classification

Audio events classification has been used to great effect in
ubiquitous computing applications. One of the most popular
domains for audio recognition entails human activity recogni-
tion in the home [31], [32], relying on the fact that activities
can generate unique noises depending on their typical locations
and the appliances that they require. These approaches have
also been generalized to urban areas, relying on sounds like
car horns and construction for inference [33], [34].

Audio has also been analyzed to identify both external
and internal body sounds relevant to clinical assessments,
with respiratory health being one of the more prominent
topics. Researchers have used portable microphones for cough
detection [35]-[37] and classification [38]-[40]. For example,
Laguarta et al. [38] recently demonstrated that it is possible
to discriminate normal coughs from coughs produced by
patients with COVID-19. It should be noted that such works
have examined both naturally produced and forced coughs.
Rahman et al. [41] demonstrated that a contact microphone
pressed against one’s throat can be used to not only capture
cough sounds, but also internal body sounds like swallowing
and chewing that would enable food journaling applications.
As mentioned earlier, the most relevant use of audio event
classification to our own work comes from efforts like those
of Ren et al. [30], who processed audio to track external
sleep sounds like heavy breathing and snoring. Our work
expands upon this literature by examining internal body sounds
associated with sleep and captured through an underexplored
modality — earbuds.

V. DISCUSSION AND CONCLUSION

Our research demonstrates the potential utility of ANC-
enabled earbuds for recording and classifying acoustic sleep
events. We were able to achieve strong accuracy using a
lightweight CNN with a modified TSM, which is notable since
our model could be deployed on a paired mobile device or the
earbuds themselves. We now briefly describe the limitations of
our current work and the potential for future improvements.

First, we did not explore the full gamut of sounds that
can be recorded by earbuds during sleep. We conducted our
data collection efforts within participants’ homes so that the
resulting audio would include varied background noises, yet
the possibility of concurrent sounds can expand beyond that.
Future work could explore whether our classification approach
is robust to confounding audio generated by the earbuds
themselves, such as sounds from audiobooks or music. Sleep
sounds can also overlap (e.g., coughing while moving in bed),
so a new classification approach may be needed to separate
superimposed audio signals.

Our work is also limited because we evaluated our system
on voluntarily produced sounds. This approach has been used
to validate other ubiquitous computing applications involving
audio event classification [16], [17], [41], yet voluntary and
reflex sounds are known to have different characteristics [42].
We plan to expand upon our preliminary findings by collecting
more ecologically valid data during clinical polysomnography
sessions. This would not only give us access to natural sleep
sounds during sleep, but also provide access to additional
sensor data streams (e.g., EEG, EKG) that would allow us
to automate some components of the annotation process.
We then hope to deploy our system in such studies for
sleep sound classification, which would provide clinicians
with an additional source of information as they diagnose
patients’ sleep issues. Our ability to integrate our system into
clinical practice will be contingent on criteria beyond high
classification accuracy. First, we will need to confirm that the
voluntary sounds collected during our study are comparable
to natural sounds made during sleep. Second, since we will
want the earbuds to be wireless and powered for an entire
night, we will need to be able to process and classify sounds
in real-time to avoid costs associated with data storage or
transmission. The modified TSM made it possible for us to
significantly reduce the computational intensity and size of
our deep learning model, but there are also latency and power
costs associated with generating audio spectrograms used as
input to that model; future work would need to explore how
those computational costs impact real-time processing. Lastly,
the earbuds’ form factor should be comfortable and not impact
how people sleep, especially when they visit a sleep clinic
seeking a medical diagnosis.
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