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ABSTRACT
Face orientation can often indicate users’ intended interaction tar-
get. In this paper, we propose FaceOri, a novel face tracking tech-
nique based on acoustic ranging using earphones. FaceOri can
leverage the speaker on a commodity device to emit an ultrasonic
chirp, which is picked up by the set of microphones on the user’s
earphone, and then processed to calculate the distance from each
microphone to the device. These measurements are used to derive
the user’s face orientation and distance with respect to the device.
We conduct a ground truth comparison and user study to evaluate
FaceOri’s performance. The results show that the system can de-
termine whether the user orients to the device at a 93.5% accuracy
within a 1.5 meters range. Furthermore, FaceOri can continuously
track user’s head orientation with a median absolute error of 10.9
mm in the distance, 3.7◦ in yaw, and 5.8◦ in pitch. FaceOri can
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allow for convenient hands-free control of devices and produce
more intelligent context-aware interactions.

CCS CONCEPTS
•Human-centered computing→ Interaction techniques; Sound-
based input / output.
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1 INTRODUCTION
Earphones are one of the most ubiquitous wireless accessories. As
a greater number of smartphones continue to drop the earphone
jack, the popularity of these mobile audio devices continues to
grow. With the earphones’ cord getting cut, the input microphone
has now migrated from a placement inline with the cable to a
position at each of the user’s ears. While most headsets leverage
the microphone to take calls and, more recently, to enable the active
noise cancellation (ANC) functionality, we find that this unique
placement of these sensors can be used to unlock a broader range
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Figure 1: FaceOri tracks user’s face orientation towards the
device with acoustic ranging using microphones in an ear-
phone.

of context-aware interactions when the earphone is transformed
into a spatial input device via ultrasonic ranging.

In particular, users tend to orient their heads toward their in-
tended interaction targets [49]. To recognize user interaction inten-
tion, researchers have leveraged eye-gaze or head tracking by using
dedicated devices [12, 24] or by using an external camera [8, 10, 34].
These methods apply vision-based gaze or head tracking, which
carry privacy concerns [22], and require the user to be in the field
of view of the front-facing camera.

Enabling a device to detect this intention precisely and naturally
can simplify user interface flow, enable hands-free interaction, and
adapt interfaces to the context of use. For example, smartphones
can detect users’ proximity and face orientation toward the device
to turn on the screen and allow them to read their notifications in
a hand-free manner. Additionally, a system can accurately classify
whether a user’s head is oriented toward a specific device. This
device-specific binary attention detector can be used to drive context-
aware experiences. In this way, devices can adapt the layout and
format of visual content based on whether the user is looking
at them. Lastly, with continuous tracking of user proximity and
face orientation, an additional set of applications including activity
tracking and head gesture recognition can be realized.

We propose FaceOri, a novel interaction technique that lever-
ages the built-in set of microphones found in almost all modern
active noise canceling (ANC) earphones to infer the user’s spatial
location and head orientation with respect to a smartphone, laptop,
smart speaker, or other devices with a built-in speaker. FaceOri
works as follows: the computing device (e.g., a smartphone) emits
an inaudible, ultrasonic sound from its speaker, and the embedded
microphones on the earphone receive the sound. FaceOri calculates
the time-of-arrival to estimate the distance from each microphone
to the device even when the head occludes direct line-of-sight or
introduces the Doppler effect. FaceOri uses these measurements
to estimate 2-degree-of-freedom (DoF) face orientation — pitch
and yaw — and 1-DoF distance measurement with respect to the
device (Fig. 1). The user evaluation demonstrates 93.5% accuracy
in binarized attention detection and dynamic continuous tracking
performance to be 10.9 mm in the distance, 3.7◦ in yaw, and 5.8◦ in
pitch, which significantly outperforms the baseline acoustic rang-
ing method (CAT [32]: 42.0 mm, 11.0◦, and 11.6◦) on our collected

dataset. These outputs enable many hands-free device interactions,
including convenient wake-up of the devices, attentive user inter-
faces, and fitness tracking. To our best knowledge, we are the first to
benchmark the head orientation tracking performance with acous-
tic ranging methods using build-in microphones in commodity
ANC earphones. In this paper, we offer three main contributions:

(1) A spatial input technique that applies ultrasonic ranging to
enable continuous head orientation and distance tracking
with respect to a device with a speaker using a built-in set
of microphones in the commodity ANC earphone.

(2) An end-to-end system characterization and user evaluation
demonstrate FaceOri’s high dynamic performance in contin-
uous tracking and binarized attention detection.

(3) An exploration of the application space afforded by Face-
Ori with prototypes of selected demonstrative experiences,
showcasing the applicability of the proposed approach.

2 RELATEDWORK
FaceOri employs acoustic ranging to track the earphone’s position
relative to a device with a speaker (e.g., phone), enabling natural
and precise face orientation based interactions. In this section, we
first position this paper with respect to the attentive user interface
literature. We then review the related works on acoustic ranging
with a focus on mobile systems.

2.1 Attentive User Interfaces
Attentive user interfaces have been proposed as a natural user in-
terface concept, sensitive to the user’s focus of attention [46, 53].
Gaze pointing, as one of the important input modalities, has tra-
ditionally used dedicated camera-based eye tracking technology
to identify which object a person is looking at [12, 13, 24, 55]. Re-
searchers have explored gaze-aware solutions that enable users to
start conversations with software agents [39, 47], select applica-
tions on computers [19, 43, 54], and control home appliances [31]
by looking to the targets. However, these techniques require users
to wear intrusive gaze trackers or environments to be instrumented
with dedicated cameras, limiting these methods’ ubiquity.

Face orientation can also be used as a proxy for the user’s at-
tention [4, 16, 23, 39, 49, 50, 61, 62]. Therefore, prior research has
explored tracking users’ face orientation to infer their focus to-
ward targets within graphical user interfaces [29, 44], user au-
thentication [27], smart home appliances [18, 20, 45], VR and AR
targets [6, 11, 25, 62], wearable computing [7] and assistive inter-
faces [30]. In industry, several different smartphone applications
have been released that incorporate face tracking via the front-
facing camera for experiences like Animoji, Memoji, and face fil-
ters [3, 14, 48]. Recent works have adopted RGB [1, 8, 17] or depth
camera [5, 34] to accurately track the user’s head pose or gaze.
These methods apply vision-based gaze or head tracking, which
carry privacy concerns [22], and require the user to be in the field of
view of the front-facing camera. As a result, they would be incom-
patible for devices without a camera, such as smartwatches [51] or
smart speakers.

There have also been related works on face orientation detection
that use microphone arrays distributed around the room to predict
the direction of the user’s voice [2, 36, 37, 63]. Although these
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voice-based face orientation detection methods are wearable-free,
they require users to speak to the targets. Instead, FaceOri can
continuously track the user’s face orientation and relative distance
without the requirement of speaking. Thus, FaceOri can benefit a
wider range of interaction scenarios (e.g., working environment).
Further, FaceOri has the potential to achieve higher degrees of
freedom and face orientation detection performance.

2.2 Background on Acoustic Ranging
Acoustic signals have been studied extensively for various tracking
applications. Traditionally, acoustic tracking systems are based on
the Doppler effect, which calculates the frequency shift to infer a
moving object’s speed, and thus distance [15, 21]. AAMouse [64]
uses the frequency shifts of transmitted signals to enable accurate
device tracking and achieves a median error of 1.4 cm. Another
set of acoustic tracking systems performs auto-correlation to de-
termine the travel time (and thus distance) between the speaker
and the microphone [38, 40], achieving centimeter-level accuracy.
Phase-based methods treat received signals as phase-modulated
signals and analyze phase changes to obtain fine-grained distance
information [57, 65], achieving a mean distance error of 1.3 cm in
3D space. EarphoneTrack [9] adopts the speaker in the earphone
as the transmitter for acoustic ranging. It utilizes the leakage sig-
nal from the earphone’s speaker to the microphone as a reference
signal to calculate the distance from the earphone to the connected
device.

Most similar to our work, acoustic ranging via Frequency Modu-
lated Continuous Wave (FMCW) was proposed for high-precision
distance estimation. CAT [32] proposed a distributed FMCW tech-
nique to accurately estimate the absolute distance between a trans-
mitter and a receiver. It further combines IMU measurements to
achievemm-level tracking performance. Based onCAT,MilliSonic [56]
utilizes the phase information in the demodulated FMCW signal
to compute distances and further refine the tracking accuracy. The
paper prototypes a 4-microphone array setup and achieves 2.6 mm
median 3D tracking accuracy for smartphones. DroneTrack [33]
applies MUltiple SIgnal Classification (MUSIC) for solving the mul-
tipath and strong noise issues, achieving 2-3 cm distance median
error and 1◦-3◦ orientation median error.

However, these acoustic ranging methods rely on a direct line-
of-sight (LOS) and low moving speed between the speaker and
the microphone, limiting the applicability of the approaches to our
face orientation application. In our scenario, the head occludes the
direct path from the microphone to the device speaker, resulting in
a severe non-LOS issue. Further, the quick head movement intro-
duces a significant Doppler effect. These issues significantly damage
the tracking performance. Inspired by advanced techniques in the
FMCW radar research field [28, 35, 58], we extended CAT [32] with
optimization approaches, including adopting the triangular modu-
lated chirp signal to reduce the Doppler effect [35], and applying
an advanced filtering method to increase the signal-to-noise-ratio
(SNR) [28, 41, 58]. To our best knowledge, we are the first to intro-
duce acoustic ranging for head orientation to a practical usage setup
– commodity ANC earphone and a smart device and benchmark its
performance.

3 METHOD
FaceOri tracks head distance and head orientation in relation to
a device to feed smarter device interactions, using the following
two-step process. As Fig. 2A shows, a set of distance measure-
ments from the device speaker to the earphone microphones are
produced via FMCW acoustic ranging, requiring a low-effort cali-
bration procedure (described below). Second, these distances are
fed to a geometric model to continuously calculate the face orienta-
tion (both yaw and pitch) with respect to the speaker. Separately,
to enable context-aware applications that only require informa-
tion on whether the user’s face orients to the device or not (bina-
rized attention detection), we employ a binary classifier on a set of
acoustic features (Fig. 2B). Notably, binarized attention detection is
calibration-free. We describe the methods and algorithms below.

3.1 Acoustic Ranging Using FMCW
3.1.1 CAT Acoustic Ranging. This section provides a brief review
of the fundamental aspects of CAT [32] for our method. The speaker
emits a chirp signal whose frequency changes linearly with time,
𝑓 (𝑡) = 𝑓0 + 𝐵

𝑇
𝑡 , where 𝐵 is the frequency bandwidth and 𝑇 is

the sweep time. By integrating the frequency, we can express the
transmitted signal in time domain as 𝑦𝑡 (𝑡) = 𝐴0𝑐𝑜𝑠 (2𝜋 𝑓0𝑡 + 𝜋 𝐵

𝑇
𝑡2).

After some time delay 𝑡𝑑 , the microphone receives the signal as
𝑦𝑟 (𝑡) = 𝐴1𝑐𝑜𝑠 (2𝜋 𝑓0 (𝑡 − 𝑡𝑑 ) ± 𝜋 𝐵

𝑇
(𝑡 − 𝑡𝑑 )2). By mixing the received

signal with the transmitted signal and applying a low pass filter,
we obtain following signal:

𝑦𝑚 =
𝐴0𝐴1
2

𝑐𝑜𝑠 (2𝜋 𝐵
𝑇
𝑡𝑑𝑡 + 2𝜋 𝑓0𝑡𝑑 − 𝜋

𝐵

𝑇
𝑡2
𝑑
) (1)

The time delay 𝑡𝑑 can be calculated with the frequency and
phase from the mixed signal 𝑦𝑚 . FMCW-based ranging methods
with shared transmitter and receiver clock can directly calculate the
peak at 𝑓 𝑑𝑝 = 𝐵

𝑇
𝑡𝑑 in the frequency domain. From the peak frequency

𝑓 𝑑𝑝 , one can estimate the delay time and thus the distance. However,
with a common problem of distributed FMCW systems [32, 33, 56],
FaceOri has a separate transmitter (device speaker) and receiver
(earphone microphone) with unsynchronized clocks. Therefore,
FaceOri requires a calibration procedure to establish a reference
position with the peak frequency of 𝑓 0𝑝 , and the detail is described
in Sec.3.1.2. The distance between the speaker and microphone can
be calculated with the following equation, where 𝑐 is the speed of
sound.

𝐷 = 𝑐
(𝑓 𝑑𝑝 − 𝑓 0𝑝 )𝑇

𝐵
(2)

3.1.2 Calibration. The calibration procedure is required for head
tracking but not mandatory for binarized attention detection. Refer-
ring to MilliSonic [56], we require the user to place the left ANC
microphone against the speaker with around a 2 mm gap for a
couple of seconds (4 seconds are sufficient based on our evalua-
tion in Sec. 5.3.4). Therefore, FaceOri can 1) establish a reference
position with the peak frequency of 𝑓 0𝑝 ; 2) perform an approxima-
tion synchronization by correlating the received signals with the
original one; 3) handle the continuous clock time drift between
the transmitter and the receiver by applying the linear curve fit-
ting solution [32, 56]. We acknowledge that this procedure limits
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Figure 2: FaceOri can enable continuous head position and
orientation tracking (A) with FMCW-based acoustic ranging
or binarized attention classification without calibration (B).

the convenience of using FaceOri in the real-world application.
Alternative calibration methods are discussed in Sec. 7.1.

3.1.3 Optimizations for missing LOS and the Doppler effect. Related
acoustic ranging works [9, 32, 56] assume that there is a direct prop-
agation path from the speaker to the microphone. However, since
the microphones are located on the side of the head, minimal head
shifts can cause the microphones to be occluded from the speaker.
This loss of line-of-sight (LOS) significantly degrades the signal-
to-noise ratio (SNR). It distorts the peaks (𝑓 𝑑𝑝 ) in the frequency
domain, resulting in multiple peaks or the direct path peak merg-
ing with anomalous nearby peaks. Further, the quick head motion
can introduce a significant Doppler effect. These issues can signifi-
cantly degrade the tracking performance. Therefore, we developed
and applied optimizations to the existing method to better support
our application scenarios. Inspired by advanced techniques in the
FMCW radar research field [28, 35, 58], we extended CAT [32] with
optimization approaches to solve the non-LOS and Doppler effect
issues. FaceOri adopts an inaudible triangular modulated chirp sig-
nal to reduce the Doppler effect. Our implementation adopted an
up-chirp from 17.5 kHz (𝑓0) to 23.5 kHz (𝑓1) followed by a down-
chirp to 17.5 kHz with a total sweep time of 42.7 ms (2048/48000).
FaceOri further averages the two parts of measurements at different
edges of the triangular pattern [41]. Therefore, FaceOri can achieve
a more accurate distance estimation despite the frequency shift
caused by the Doppler frequency, as prior works [35, 66] explained.
To further increase the SNR, FaceOri adopts a non-coherent inte-
gration method [28] by averaging the intermediate FFTs from a
small set of recent frames (2 frames in our implementation).

To get the correct peak corresponding to the direct path, we
used the Constant False Alarm Rate (CFAR) adaptive thresholding
algorithm [41, 59] on the FFT values of the mixed signal — 𝑦𝑚 . The
algorithm combines the following heuristics: 1) an early and high
peak that is closest to the previous peak is selected corresponding
to the direct peak due to the continuous change in the distance; 2)
when a sudden peak shift appear in one microphone channel but
not the others, indicating a loss-track event, a fallback algorithm is
utilized to predict the peak frequency from recent historical frames
(5 frames in our implementation) through interpolation.

3.2 Yaw and Pitch Estimation
The FMCW-based acoustic ranging technique provides three dis-
tances between the speaker and the earphones’ three microphones.
Two microphones used for active noise cancellation (ANC) sit at
a similar elevation at the top of the earcup (see Fig. 4). A single
speech microphone sits at a lower elevation on the right earcup. By
comparing distances between the left and right ANC microphones
from the speaker, yaw can be calculated. By comparing distances
between the right ANC microphone and the speech microphone,
the pitch can be calculated.

The yaw and pitch angles are calculated as angles between the
face orientation vector and the vector from the center of the head
to the speaker location. The mic-speaker distances form triangles
in the transverse (top view, see Fig. 3A) and sagittal (side view, see
Fig. 3B) plane of the head. In each, the triangle’s altitude is aligned
with the face orientation vector, and the triangle’s median is aligned
with the vector between the head center and speaker. We refer to
the distance from the speaker to the left ANC microphone as 𝑑𝑙 ,
the right ANC microphone as 𝑑𝑟 , and the right speech microphone
as 𝑑𝑠 . The distance between the left and right ANC microphones
is 𝑑𝑒 , which can be measured manually or set by an average value
across users. The distance between the right speech microphone
and the right ANC microphone is 𝑑𝑏 , a known quantity. To explain
our method, we will detail how the yaw angle is calculated. A
similar approach is employed for pitch estimation. The length of
the median line (𝑑𝑚) is calculated as:

𝑑𝑚 =

√︃
2𝑑𝑙 2 + 2𝑑𝑟 2 − 𝑑𝑒

2

2
(3)

and the angle between the median line and the base line of the
triangle (𝛼) defines yaw (𝜑) as follows:

𝛼 = arccos(
𝑑𝑚

2 + 1
2𝑑𝑒

2 − 𝑑𝑟
2

𝑑𝑚𝑑𝑒
) (4)

𝜑 = 𝛼 − 90◦ (5)

The same approach can be used to calculate pitch (𝜃 ), by replacing
the triangle formed by 𝑑𝑟 ,𝑑𝑠 , and 𝑑𝑏 with the one formed by 𝑑𝑙 ,𝑑𝑟 ,
and 𝑑𝑒 . Therefore, we can obtain both the yaw (𝜑) and pitch (𝜃 )
angles of the user’s face towards the speaker. This is achieved by
subtracting the current angle with the known initial angle (𝜃0),
since the speech microphone is slightly skewed off in vertical from
the right ANC microphone in the earphone design (Sec. 4).
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Figure 3: FaceOri estimates face orientation towards the
sound source by calculating the angle between the median
line and the altitude line.

3.3 Binarized Attention Detection
FaceOri requires a calibration procedure for continuous face track-
ing. However, we present an alternative binarized attention classifi-
cation method that detects whether the user is looking at the device
without any calibration. This binarized detection can still be useful
in various scenarios, including attentive user interfaces [31, 39, 47].
As Fig.2B shows, we first applied a bandpass filter with a frequency
range of 17.5 kHz to 23.5 kHz to the audio signals from the three
microphones. We evenly divided the frequency range into 20 bands.
In each band, we can obtain the level difference (LD), which is the
amplitude level ratio of audio signals from two microphones. We
obtained 20 × 3 = 60 LD features among three microphones. We
also adopted 3 time difference features between the microphones.
Each time difference feature is the frequency gap between the peaks
(𝑓 𝑑𝑝 ) in the frequency domain of the mixed signals from two micro-
phones. Using the 63 features (Fig. 2B), FaceOri can detect whether
the user is looking at the device by training a binary classifier. In
our implementation, we adopted the supported vector machine
(SVM, RBF kernel, C = 1.0) as the binary classifier.

4 IMPLEMENTATION
4.1 FaceOri Hardware
4.1.1 Headphone Prototype. Modern ANC earphones share a simi-
lar design in the microphone placement [42] as Fig. 4 shows. Two
microphones are located at the top of the earcups for collecting
environmental noises. A speech microphone or microphone array
sits at a lower elevation on one earcup. We adopted MPOW H19 1

for evaluation. Further, we demonstrated FaceOri’s applications
using Hush earphone by 233621 2, Sony WF-1000XM3 3, and ANC
earbud — Sony WH-1000XM3 4 without an extra speech micro-
phone. To obtain the high-resolution raw acoustic stream, we wired
out two feed-forward ANC microphones and the speech micro-
phone with 3.5mm TRS plugins. The plugins were connected to a
Zoom H6 5 audio interface via VXLR to a 3.5 mm audio adapter.
Zoom H6 supports up to 6 synchronized channels of real-time au-
dio streaming through USB. Therefore, the audio signals from the
three microphones on the earphone were streamed by the Zoom
H6 to a Thinkpad X1 carbon laptop (CPU: i7-10710U, 6 cores, 1.1
GHz, RAM: 16GB, Storage: 512GB), which ran the audio signal
1https://www.xmpow.com/products/mpow-h19-hybrid-noise-cancelling-
headphones
2https://www.233621.com/
3https://www.sony.com.sg/electronics/truly-wireless/wf-1000xm3
4https://www.sony.com.sg/electronics/headband-headphones/wh-1000xm3
5https://zoomcorp.com/en/us/handheld-recorders/handheld-recorders/h6-audio-
recorder/

processing algorithms in real-time. The sampling rate and the bit
depth were set to 48 kHz and 16 bits. To further compare FaceOri’s
performance to the inertial measurement unit (IMU) based solu-
tion, we adopted the MPU-9250 6 IMU module, which has a 3-axis
accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer. The
data was streamed to the laptop with an Arduino Uno using the I2C
protocol. The laptop read the IMU data with the same sampling rate
— 23.4 frames per second (fps). To avoid the effect of the speaker
magnet, we mounted the IMU module to the top of the earphone.
Before each measurement, we calibrated the magnetometer inside
the IMU by drawing the∞ shape in the air.

Figure 4: FaceOri’s earphone hardware has a commodity ear-
phone hardware (MPOWH19 for demonstration), an MPU-
9250 IMU, an audio interface, and a laptop to process the
audio signal.

4.1.2 Audio Transmitter. A common device with a speaker capable
of generating inaudible ultrasonic sound (e.g., above 17 kHz) can be
adopted as an audio transmitter. During our evaluation, a Samsung
Galaxy S21 Ultra smartphone (256GB storage, 12GB RAM) with
stereo speakers was adopted as the audio transmitter. Further, we
demonstrated FaceOri’s applications using Thinkpad X1 Carbon
laptop ( Intel i7-10710U CPU, 16G RAM, 512G storage), Mi Watch
(8GB storage, 1GB RAM), and Huawei Matepad PRO (10.8 inches,
256 GB storage). We generated a one-hour mono-channel audio
file with continuous triangular chirp signals modulated signals (see
Sec. 3.1.3). Then, the transmitter played the audio file from only
one speaker using the HibyMusic 7 application, which supports the
sampling rate and bit depth at 48 kHz and 16 bits, respectively.

4.2 FaceOri Software
We implemented FaceOri (see Sec. 3.1) using Python on the Thinkpad
X1 Carbon laptop. As Fig. 5 shows, we used PyAudio 8 to read the
triple-channel raw audio signal from the Zoom H6 audio interface.
All the raw audio data was stored for further offline analysis. The
calibration module was launched when the user clicked the calibra-
tion button on the user interface. FaceOri requires two parameters
to be calibrated that are (1) the distance between the two ANC mi-
crophones (𝑑𝑒 ) when the user wears the earphone (see Sec. 3.2), and
(2) the reference origin for precise acoustic ranging (see Sec. 3.1.2).
Then we pressed the Calibrate button on the launch user interface
and kept the two devices still for a 10-seconds duration. Notably,

6https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/
7https://store.hiby.com/
8https://pypi.org/project/PyAudio/



CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA Yuntao Wang, et al.

10 seconds are redundant for later evaluation (Sec. 5.3.4). Once the
"Start" button is pressed, FaceOri software displays the distance,
yaw, and pitch values onto the launch user interface in real-time.
Further, another interface popped up showing the measured dis-
tance curves with the three channels of the audio signal as Fig. 10C
shows.

Figure 5: FaceOri software’s key components.

5 EVALUATION
In this section, we describe the in-lab user evaluation study to
benchmark FaceOri’s performance of distance, orientation tracking,
and binarized attention detection when the user is at different
positions in relation to the device.

5.1 Participant and Apparatus
We recruited 12 participants (7 females, 5 males) with an average
age of 22.5 (SD = 3.4). Each had previously used earphones and
smartphones. The experiment was conducted in a room with the
size of 4 by 3 meters. To obtain the ground truth positions, we
utilized the OptiTrack motion capture system (10 Prime 17 cameras)
with its coordinate calibrated. The tracking markers were located
at the phone’s front speaker, which was located next to the front
camera, and each microphone location on the earphone. In this
evaluation study, we used a Samsung Galaxy S21 Ultra smartphone
as our sound transmitter and MPOW H19 earphone as our receiver.
A tripod with adjustable height was used to hold the phone at
different heights.

5.2 Experiment Design and Procedure
Each participant was informed about the purpose and the proce-
dure of the experiment. An experimenter assisted each participant

in putting on the earphone and then measured the approximate
distance between the left and right ANC microphones with a ruler.
The experimenter conducted the calibration by placing the smart-
phone’s speaker to the left ANC microphone of the earphone for 10
seconds. To understand the effect of relative position on FaceOri’s
distance and orientation tracking accuracy, we created a 3D grid
of test positions in front of the smartphone. With the smartphone
located at the origin (0,0) in the top view, three rows of grids were
located at 50 cm, 100 cm, and 150 cm away from (0,0) in the 𝑦 di-
rection. The three columns of grids were located at -50 cm, 0 cm,
and 50 cm away from (0,0) in 𝑥 . We chose the maximum tracking
distance to be around 160 cm — (150, -50) or (150, 50) — because we
targeted FaceOri’s usage scenarios within the range of a personal
workspace. We tested three speaker heights: 80 cm, 120 cm, and 160
cm away from the floor. The participant adjusted the seated chair’s
height to a comfortable position. Therefore, the relative heights of
the smartphone with respect to the earphone are different across
the participants. During the user study, the lab noise levels ranged
between 54.3 dBA to 62.7 dBA with a server running and people
talking.

Each participant finished three head movement sessions at each
3D grid point. Each head movement session consisted of 6 sub-
tasks: 1) look at the smartphone’s speaker for 5 seconds, called the
neutral state; 2) move forward and backward for 3 times; 3) rotate
the head in the yaw direction for 3 times to the maximum range
and return to the neutral state; 4) tilt the head in the pitch direction
for 3 times to the maximum range and then return to the neutral
state; 5) draw the zigzag shape from top left to the bottom right
with 2 folds; and 6) randomly move the head for 3 seconds. The
order of the 2D grids was randomized under each height condition.
We re-calibrated FaceOri when we collected the data at a different
height. Therefore, we conducted three calibrations in total. Each
participant received a 20 USD gift card for their effort and time (40
minutes).

5.3 Results
Same as CAT [32] and MilliSonic [56], the deviation of FaceOri’s
measurements (distance, yaw, and pitch) follow non-Gaussian dis-
tributions, the median absolute error (MedAE) is a better measure
compared to the mean absolute error (MAE). Therefore, we re-
port FaceOri’s tracking performance using the MedAE and the
interquartile range (IQR). Nonetheless, we also derive MAE in the

Table 1: The tracking performance within 9 grids. Each value group A/B/C indicates performance when the smartphone is
placed on the height of 80/120/160 cm. Distance (mm), Yaw (◦), Pitch (◦).

Y/X -50 cm 0 cm 50 cm
MedAE IQR MedAE IQR MedAE IQR

Distance 12.9/9.5/5.4 19.2/14.7/7.8 7.9/4.1/3.4 13.9/8.1/6.3 10.1/6.6/4.6 27.3/13.2/8.5
50 cm Yaw 4.7/4.9/2.0 7.8/8.2/2.6 3.7/1.7/1.5 5.9/3.2/2.6 5.7/3.9/2.0 11.9/8.0/3.5

Pitch 6.2/4.2/3.1 10.0/5.4/3.8 8.9/3.4/2.8 15.9/6.0/4.5 9.7/5.7/4.1 18.8/8.8/7.3
Distance 16.5/11.0/7.4 21.1/12.7/10.7 14.6/12.4/9.2 22.8/14.6/12.5 13.4/10.4/10.8 23.0/16.1/20.7

100 cm Yaw 3.7/3.0/2.3 6.4/4.0/3.6 5.8/4.1/3.1 9.5/5.7/3.8 4.8/4.9/3.9 11.7/7.0/8.5
Pitch 6.3/4.5/3.6 9.5/6.0/5.4 6.7/6.6/4.9 12.5/9.1/6.7 8.4/6.5/7.4 13.5/9.8/13.9

Distance 24.5/17.4/14.6 29.8/19.6/25.0 19.4/11.2/10.6 55.1/17.7/22.3 19.6/15.5/13.1 41.5/29.5/23.8
150 cm Yaw 4.7/3.7/4.0 10.8/6.4/6.7 6.6/5.0/3.9 14.9/8.9/6.9 5.5/6.6/4.5 12.0/13.4/11.5

Pitch 9.3/7.3/6.7 15.0/11.9/10.7 9.8/8.3/6.3 15.1/12.2/10.3 8.3/7.5/8.2 13.6/11.9/14.4
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discussion to compare against camera-based methods [1, 52] in
literature. The ground truth distance and orientation of a user’s
face towards the device were calculated as described in Sec. 3.2
using coordinates of the tracker attached to the microphones and
the speaker in the OptiTrack system. We utilized Aligned Rank
Transform Factorial ANOVA for within-subject non-parametric
statistical analysis (𝑝 < 0.05) with Wilcoxon signed-rank test for
post-hoc analysis (𝑝 < 0.05).

We summarize results in Table 1. The table shows the MedAE
and IQR of distance in millimeters, yaw in degrees, and pitch in
degrees when the smartphone’s speaker was placed at the height
of 80, 120, and 160 cm. Each cell of the 3 × 3 cell represents one
grid during the experiment (see Sec. 5.2).

5.3.1 Distance Tracking Accuracy. Results show that FaceOri can
continuously track the distance from the user’s head to the smart-
phone with a MedAE of 10.9 mm and an IQR of 18.8 mm. Statistical
analysis shows that there are significant effects of 2D location (grid)
(𝐹 (8,253100) = 1260, 𝑝 < 0.001) and height (𝐹 (2,253106) = 3115, 𝑝 <

0.001) on the distance tracking performance. Fig. 6 and post-hoc
pairwise tests show that FaceOri can achieve a better distance
tracking performance when the user is closer to the smartphone
(𝑝 < 0.01) and in the center column of grids (𝑝 < 0.01). Results
show that FaceOri can achieve the best performance when the
smartphone was placed at height of 160 cm (𝑝 < 0.001).
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Figure 6: The median absolute error (mm) of the distance
at different relative positions (cm) between the smartphone
and the earphone.

5.3.2 Head Orientation Tracking Accuracy. Results show that Face-
Ori can continuously track the user’s head orientation with respect
to the smartphone. The MedAE and IQR of the yaw angle were 3.7◦
and 6.8◦ and those of the pitch angle were 5.8◦ and 10.0◦. Results
also show that the yaw range among all participants was from
-81.1◦ (s.d. = 10.1) to 76.9◦ (s.d. = 9.1), the pitch range was from
-87.8◦ (s.d. = 6.3) to 84.3◦ (s.d. = 9.9). The maximum, MedAE, and
IQR of head orientation speed of the yaw angle were 250.9 ◦/s, 185.6
◦/s, and 33.2 ◦/s and those of the pitch angle were 185.6 ◦/s, 13.6 ◦/s,
and 44.1 ◦/s. These results can be helpful references for experience
development.

We further evaluated the effect of the relative position of the
user’s head with respect to the smartphone on the orientation track-
ing performance. Statistical analysis shows that there are signifi-
cant effects of 2D location (grid) on the yaw (𝐹 (8,234813) = 745, 𝑝 <

0.001) and the pitch (𝐹 (8,226907) = 730, 𝑝 < 0.001) tracking perfor-
mance. Fig. 7 and post-hoc pairwise tests show that FaceOri can
achieve a better tracking performance when the user is closer to
the smartphone and in the center column of grids (𝑝 < 0.01) in

general. Further, there are significant effects of height on the yaw
(𝐹 (2,234819) = 1056, 𝑝 < 0.001) and the pitch tracking performance
(𝐹 (2,226913) = 390, 𝑝 < 0.001). Again, FaceOri can achieve a better
performance when the smartphone was placed at height of 160 cm
(𝑝 < 0.05) as compared to the other heights. Further, we observed
a significant effect of the relative height (𝑝 < .01) of the earphone
to the smartphone’s speaker but not the absolute sitting height of
the participant (𝑝 = 0.07) on the tracking performance.
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Figure 7: The median absolute errors of the yaw (left) and
pitch (right) angles with different relative position (cm) be-
tween the smartphone and the earphone.

5.3.3 Binarized Attention Classification Accuracy. Using the track-
ers on the smartphone, we labeled the smartphone’s margin as a rec-
tangle in the OptiTrack coordinate space. We regarded the ground
truth of orienting to the device as the vector of the user’s head in-
tersecting with this rectangle. When evaluated on the performance
through leave-one-out cross-user validation for the look-or-not bi-
nary classification, FaceOri can achieve an average classification
accuracy of 93.5% across users ( s.d.= 2.5%). The calculation latency
is within 42 ms.

5.3.4 Effect of Setup Configuration. During the user study, the ex-
perimenter measured the distance between two ANC microphones
(𝑑𝑒 in Fig. 3) manually. Results show that the mean absolute error
of the measurement with a ruler is 3.4 mm against OptiTrack. But
choosing which one from these two measuring methods has no
significant effect (p = 0.33) on the yaw tracking performance. Fur-
ther, when setting 𝑑𝑒 to an fixed distance of 235 mm (considering
human’s head breadth 155 mm 9 + extra earcup depth 40 mm ×
2), FaceOri was still able to achieve a satisfying performance that
the MedAE in yaw direction increases by only 1% without a sig-
nificant difference (𝑝 = 0.1). Therefore, there is no evidence that it
is necessary to manually measure the distance between two ANC
microphones.

We applied a redundant clock-sync calibration duration — 10
seconds. Since we recorded all the data from the study, we reran
our method with a 4-second calibration duration, resulting in only
a 3% increment in the median absolute error across all angles and
distances, adequate for a whole experiment session of 15 minutes.

9https://en.wikipedia.org/wiki/Human_head
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Our evaluation environment had a background noise from 54.3
dBA to 62.7 dBA with a server running and people talking, indi-
cating the robustness of ultrasonic ranging against noise, which
aligns with the result from MilliSonic [56].

5.3.5 Comparison with CAT Baseline Method. We evaluated the
effectiveness of our optimization method mentioned in Sec. 3.1.3 to
overcome the issues introduced by the head motion. We compared
our method to the baseline CAT acoustic ranging method [32].
Results show that our method (10.9 mm in the distance, 3.7° in yaw,
and 5.8° in pitch) significantly outperforms CAT (42.0 mm, 11.0° and
11.6°) on our collected dataset (𝑝 < 0.001 for all cases). Here, we
define a dropped frame with the feature of a large distance offset
away from the ground truth (37.6 mm as our threshold - 2.0× 𝐼𝑄𝑅).
Fig. 8 shows the dropped frame rate along with the ground-truth
yaw (left figure) and the pitch (right figure) angle. Results show
that our method can effectively decrease the dropped frame rate
with an average rate of 14.8% versus 52.8% (CAT method). Head
rotation of a larger amplitude in yaw or pitch angles results in more
dropped frames. This demonstrates that our method is more robust
against the non-LOS and Doppler effect introduced by the head
motion. Further, the large spread of the head orientation angle and
speed also indicate FaceOri’s robustness against noises introduced
by the head motions.
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Figure 8: FaceOri has less dropped frames compared with
CAT acoustic tracking method [32].

5.3.6 Comparison with IMU-Based Head Orientation Tracking Solu-
tions. To compare the performance of FaceOri and the IMU-based
solution (MPU-9250 with Arduino code 10), we performed calibra-
tion to the IMU by aligning its initial yaw and pitch angle with
the OptiTrack coordinate system. Results show that IMU-based
solution can continuously track the user’s head orientation with
a MedAE of 17.2◦ (IQR = 330.4) in yaw, and 4.9◦ (IQR = 10.8) in
pitch. The pitch tracking performance is significantly better than
FaceOri (𝑝 < 0.001). However, we observed significant yaw drift, a
well-studied problem in IMU tracking [26], even with the reference
calibration provided by the magnetometer. Therefore, the IMU-
based solution is insufficient for our applications, which require
more accurate yaw estimation.

There are additional functionality limitations regarding to the
IMU-based solution. The IMU tracks it orientation relative to the
inertial world reference frame rather than the mobile device refer-
ence frame as FaceOri does. Modern earphones with IMUs do not
contain the magnetometer due to the speaker’s strong magnet. Fur-
ther, IMU cannot provide accurate absolute distance to the mobile
device (>20 cm error with calibration [60]).

5.3.7 Comparison with Camera-Based Head Orientation Tracking
Solutions. To compare with camera-based solutions in the literature,
we measure FaceOri’s performance with a mean absolute error of
8.3◦ in yaw and 9.6◦ in pitch. This is comparable with cutting-edge
RGB camera-based technique, which can track head orientation
with MAE of 7.6◦ in both yaw and pitch [1]. Further, RGBD-based
methods (ARKit) achieved higher performance — 1.8 mm in the
distance, 0.9◦ in yaw, and 0.7◦ in pitch [52]. However, FaceOri has
advantages in a wider field of view, preserving visual privacy, and
has the potential to support the interaction with devices without
cameras (e.g., smartwatch). FaceOri can be complementary to the
vision-based method regarding usage scenario, power consumption,
privacy, etc.

5.3.8 Sensor Fusion of FaceOri and IMU. To further reduce the
power consumption during real-world deployment, we can adopt a
sensor fusion method by combining FaceOri and the IMU if avail-
able. FaceOri can calibrate the IMU every certain amount of time
𝑇𝑐𝑎𝑙 . Therefore, we can track the yaw and pitch angles with higher
accuracy than the IMU-based solution but consume less power than
the sole ultrasonic-ranging-based solution. Since the IMU already
achieved a better tracking performance in pitch than FaceOri, we
evaluated the sensor fusion method on the yaw angle. We ran the
FaceOri for 0.5 seconds to establish an accurate yaw angle and dis-
tance. Then we tested the effect of 𝑇𝑐𝑎𝑙 (in second) on the tracking
performance in yaw. Results show that the sensor fusion method
can achieve a MedAE of 5.1◦ (IQR = 14.2◦), 7.0◦ (IQR = 20.0◦), and
9.7◦ (IQR = 21.5◦) when 𝑇𝑐𝑎𝑙 = 1, 3, 5 seconds.

6 APPLICATIONS
FaceOri provides three outputs as a user interacts with a particular
computing device: distance measurement, binarized attention detec-
tion, and continuous orientation tracking. These metrics can be used
individually or in conjunction to enable and enhance applications.

10https://github.com/hideakitai/MPU9250
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6.1 Activity and Gesture Sensing
The head distance and orientation measurements can be used to
analyze user activity or capture explicit user input. We prototyped
an exercise smartwatch application that can count the number of
exercise repetitions that a user performs by analyzing the periodic-
ity of the distance measurement provided by FaceOri (Fig. 9). We
used the Sony WH-1000XM3 earbud as the receiver and the Mi
Watch as the transmitter in this application.

Figure 9: FaceOri can track and count the exercise activities
with a smartwatch as the audio transmitter and an ANC
earbud as the receiver. (A) (B) User does push-ups. (C) The
distances between two ears and the speaker when user does
a push-up. (D) Confusion matrix of the four classifications
(push-up, body twist, touching shoulder, and bird dog).

To evaluate the feasibility of FaceOri in activity recognition, we
conducted a recognition evaluation for this application. Participants
were asked to perform four activities: push-up, body twist, touch-
ing shoulder with contralateral hand (arm for abbreviation), and
bird dog for 3 rounds with 5 repetitions per round. We manually
segmented the dual-channel raw audio signal and aligned data to
the length of 160 by interpolation. We chose 7 features for each
frame: the distance between two microphones and smartwatch,
the first derivative of two distances, the level difference between
two microphones, and whether the signals of two channels lose
track. Using SVM (RBF kernel, C = 1.0) to classify each exercise
activity, FaceOri can achieve an average accuracy of 90.9% using
leave-one-out cross-user validation.

The continuous orientation tracking metric could also be used to
enable gesture input. By analyzing oscillations in pitch and yaw,
"yes" and "no" head shake gestures can be recognized. Finally, con-
tinuous orientation tracking could drive a selector or pointer for
accessible interfaces where a user may lack muscle control below
the neck.

6.2 Context-aware and Attentive User Interfaces
Real-time data on user position can be used to drive smarter, more
context-aware interfaces. Distance measurement can be used to lock
a phone or laptop or dim the screen when the user moves beyond
a certain distance threshold away from the device (Fig. 10). We

implemented this example on a Thinkpad X1 Carbon laptop. The
distance threshold was set to 1.5 meters.

Figure 10: FaceOri dims the device when the user moves
beyond a certain distance threshold away from the device.
(A)(B) The User walks away from the laptop and the screen
is dimmed. (C) FaceOri measures distances from the laptop
speaker to the three microphones in the earphone.

Binarized attention detection can help ease switching between
multiple tasks or points of interest. For example, as a user follows
a recipe video on their laptop, the video can automatically pause
as the user turns to the stove or cutting board and resume when
they return their attention to the screen. In Fig. 11, a user can
provide input to their smartphone device even if they are otherwise
preoccupied and unable to easily perform touch input.

Figure 11: FaceOri can light up the smartphone and open to
the message application when the user is unable to easily
perform touch input. (A) The user is washing her hands. (B)
When a message comes, (C) the user turns her head towards
the phone to wake it up, and then the detailed message is dis-
played. (D) FaceOri measures distances from the smartphone
speaker to the three microphones in the earphone.

6.3 Attentive Detection from Multiple Devices
FaceOri can be used to detect when users direct their intention
toward a specific device. By orienting toward a smart speaker, a
user can issue a command without requiring a keyword. Finally,
we prototype a demonstrative application that applies FaceOri’s
binarized attention detection in a simple multi-device scenario. As
a user looks between two laptops, the keyboard and the mouse
pair automatically to the laptop that the user watches (Fig. 12). To
implement this application, the devices share a central server and
time-multiplex their transmitted chirps.

We implemented the multi-device application on two Thinkpad
X1 Carbon laptops. We used a third laptop as the proxy to 1) trans-
fer the mouse and keyboard inputs to the two Thinkpad laptops;
2) run the FaceOri algorithm to recognize which device the user
orients to. These three laptops were connected through WiFi. The
proxy coordinated the two Thinkpad laptops to let them emit the
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Figure 12: The mouse and keyboard can pair to the device
that the user faces towards automatically. (A)(B) The user
switched her attention between two laptops. (C) FaceOri mea-
sures distances from each laptop speaker to the three micro-
phones in the earphone. (D) The time-multiplex approach
for the multi-device application.

ultrasonic chirp signal alternately, 0.5 seconds for each. Therefore,
the proxy knew which device was emitting the sound and then
performed the binarized attention detection to detect which device
the user orients to. The first two seconds are skipped due to the
delay of speakers and echoes. The time-multiplex approach caused
a delay during recognition, but there was no evidence that it would
influence the tracking performance.

7 DISCUSSION AND FUTUREWORK
This paper proposes FaceOri, a novel end-to-end head position
and orientation tracking system based on acoustic ranging using
existing microphones in commodity earphones. Due to its high
tracking performance, FaceOri can support a wide range of novel
interaction applications. In this section, we discuss the findings,
limitations, and avenues for future work.

7.1 Alternative Calibration Methods
The biggest limitation of FaceOri is the requirement of calibra-
tion (Sec. 3.1.2). During our evaluation, to enable accurate contin-
uous acoustic ranging, FaceOri synchronizes the transmitter and
receivers by holding one of the microphones to the speaker ev-
ery session. However, existing work found that the calibration is
only required once in each battery circle [9]. Therefore, the per-
session calibration is not necessary. We would expect future work
to validate a per-battery-circle calibration method.

To make the calibration procedure more user friendly, future
work could explore using the front-facing RGB or RGBD camera
on a device (if available) to establish the reference point and syn-
chronize the clocks of the device and the wireless earphone. Fur-
ther, calibration can be completely side-stepped if the earphone

is connected to the transmitter via Bluetooth 5.0 or other wire-
less channels method with time synchronization protocol; thus, a
sufficiently synchronized clock can be established. Future work
can explore combining ultrasonic ranging with synchronization
provided over these channels, avoiding calibration and additional
complexity for drift compensation. A heuristic can be applied for
a quick calibration procedure for applications requiring absolute
distance but not requiring high accuracy. For example, the user can
be instructed to hold their phone out at arm’s length, and the origin
can be set by substituting the average human arm length.

Notably, binarized attention detection requires no calibration
and can be useful in various applications. Further, applications that
use only a relative distance (such as the exercise application in Fig.
9) do not necessarily require calibration.

7.2 Deployment and Generalizability
We developed and evaluated FaceOri using the existing hardware
in commodity earphones and mobilephones. To clarify, our test
hardware is a proof-of-concept to evaluate our end-to-end face
orientation and distance tracking system. In our implementation,
we wired the built-in ANC microphones to an off-board laptop
to host the signal processing program. However, modern ANC
earphones have on-device processors. For instance, Sony 1000XM3
has a CSR8675 chip with DSP (120 MHz, 48kHz audio sampling
rate) and MCU (80 MHz). We believe the proposed algorithms can
be deployed on the micro-controller in the future for real-world
applications.

We evaluated FaceOri’s performance with only one type of ear-
phone and one type of smartphone. However, we observed that
ANC earphones adopt a common design in microphone placement
as the tested one. Further, many newer models of earphones possess
an extensive array of distributed microphones (e.g., Apple AirPods
Max and the Bose 700). These characteristics can further improve
the performance and increase the degrees of freedom. We expect fu-
ture work to investigate FaceOri’s generalizability across earphone
models.

To further improve robustness and performance for real-world
deployment, we would expect future work to further evaluate the
effect of ambient noise on FaceOri’s performance in various mobile
scenarios. Meanwhile, future work can explore a more compre-
hensive sensor fusion method using the absolute (in device-frame)
orientation provided by FaceOri with the relative (with respect to
an inertial reference frame) information supplied by the IMU.

7.3 Supporting Multiple Devices
In section 6.2, we briefly demonstrated a possible time-multiplexed
solution to support multiple audio transmission devices, allowing
FaceOri to enable richer multi-device applications. However, this
method assumes that all transmitters and the receivers can com-
municate via an additional channel (e.g., WiFi). We expect future
work to explore other audio-only solutions to enable multiple de-
vice applications, such as using a frequency or phase-modulated
chirp signal to provide unique device identification. Further, future
work can adopt existing wireless multi-transmitter communication
methods such as frequency hopping or code-multiplexing.
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8 CONCLUSION
In this work, we have presented FaceOri, a novel spatial input tech-
nique using ultrasonic ranging. FaceOri leverages the microphones
found in typical active noise cancellation (ANC) earphones to glean
user head proximity and orientation with respect to a computing
device that emit an inaudible chirp from its speaker. Through a user
study, we evaluated FaceOri’s performance for continuous head
position and orientation tracking, and binarized attention detection.
We explored and demonstrated how FaceOri can be used to capture
user activity and gestural input, and enable more context-aware
interactions. As the number and type of computing devices con-
tinue to proliferate, techniques like FaceOri can help to make our
interaction experiences more human-centered.
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