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DualRing: Enabling Subtle and Expressive Hand Interaction with
Dual IMU Rings

CHEN LIANG, CHUN YU∗, YUE QIN, YUNTAO WANG, and YUANCHUN SHI, Department of
Computer Science and Technology, Key Laboratory of Pervasive Computing, Ministry of Education, Tsinghua
University, China

Fig. 1. The prototype of DualRing: (a) DualRing is worn on the user’s thumb and index finger; (b)DualRing is composed of
two IMUs and an external high-frequency AC circuit.

We present DualRing, a novel ring-form input device that can capture the state and movement of the user’s hand and fingers.
With two IMU rings attached to the user’s thumb and index finger, DualRing can sense not only the absolute hand gesture
relative to the ground but also the relative pose and movement among hand segments. To enable natural thumb-to-finger
interaction, we develop a high-frequency AC circuit for on-body contact detection. Based on the sensing information of
DualRing, we outline the interaction space and divide it into three sub-spaces: within-hand interaction, hand-to-surface
interaction, and hand-to-object interaction. By analyzing the accuracy and performance of our system, we demonstrate the
informational advantage of DualRing in sensing comprehensive hand gestures compared with single-ring-based solutions.
Through the user study, we discovered the interaction space enabled by DualRing is favored by users for its usability, efficiency,
and novelty.
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1 INTRODUCTION
With the development of input technology, wearable ring-form devices are gaining popularity for their availability
and portability. Equipped with different sensors (e.g., a camera [4], an infrared proximity sensor [20], and an
inertial measurement sensor [27]), smart rings have the potential to capture rich hand and finger information,
and thus are useful in various interaction scenarios such as VR, AR, IoT, and so on.

Compared with glove-like devices [47], nail-mounted devices [5], and touching foils attached on fingers [52, 53],
ring-form devices are more lightweight and flexible and receive better social acceptance [27]. However, confined
by the form factor and size, the sensing capability of a single ring is limited. It only supports a single interaction
modality for the specific application (e.g., classifying a restricted set of gestures [4, 48], detecting a touching-down
event[13, 27], etc.). Since there is always a trade-off between the simplicity of the form design and the sensing
capability, finding a Pareto Optimality to enable rich hand input semantics while being less intrusive is of great
importance.
In this paper, we propose DualRing, a ring-from input device compose of two inertial measurement units

(IMUs) and a high-frequency AC circuit. With two IMU rings fixed to the user’s thumb and index finger, DualRing
can sense rich hand information, including the on-body contact signal, the orientation and pose of the hand, the
relative movement between thumb and fingers, and the inertial features of the hand.

To detect the on-body contact signal, we build an AC circuit to measure the impedance between the thumb and
the index finger by the phase delay relevant value (PDRV). To estimate the orientation and the relative movement
of the thumb and the index finger, we first calculate the rotation matrix of each IMU, then calculate the relative
rotation matrix. The technical difficulty is that the environmental magnetic interference is not negligible. To
solve this problem, we develop a novel approximation method based on least square optimization to optimize
the coordinates mapping. We also delve deep into designing statistical features in the time domain and relative
features between the two IMUs to improve the accuracy of gesture recognition.

DualRing provides rich hand information to support a broad hand interaction space. We outline the interaction
space and divide it into three sub-spaces: within-hand interaction, hand-to-surface interaction, and hand-to-object
interaction. We propose the basic operants and interaction techniques in each subspace, demonstrating the strong
sensing power of DualRing. We conduct an experiment to evaluate the performance of DualRing in recognizing
different sets of gestures, as well as analyzing the salience of different features in different gesture sets. Our user
study shows that users favor the usability, efficiency, and novelty provided by the interaction modalities and
applications of DualRing.
To sum up, our contributions are three-fold:
• We propose and implement DualRing, a novel ring-form input device that can sense rich hand gestures
and motions with a new sensing method hybridizing impedance measurement and dual IMUs.

• We outline the broad interaction space and the sub-spaces enabled by DualRing, showing its versatility for
fine-grained and expressive hand gesture interactions along with applications.

• We show the informativeness and completeness of DualRing’s sensing information compared with a single
IMU ring and evaluate the performance of DualRing recognizing hand gestures through user studies. We
also demonstrate that the interaction techniques enabled by DualRing is favored by users.

In the remainder of our paper, we first review previous work on ring-form devices, on-body sensing techniques,
and hand/finger interaction. Then we illustrate the technical details and implementation of DualRing. We carry
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on to outline the interaction space, dividing it into three sub-spaces, and designing the interaction techniques
in each sub-space. We then conduct an experiment to analyze the recognition performance of DualRing under
different gesture sets, followed by an informal user study to investigate the users’ subjective preference of different
gestures. Finally, we discuss important issues relative to deployment, algorithm optimization, and considerations
in form determination.

2 RELATED WORK
In this section, we present related work as follows: First we summarize the previous exploration on ring-from
devices, including the physical form, the sensing principle, and the design space. Then we present existing sensing
techniques to detect on-body signals. Finally, we review existing methods to enable subtle hand interaction and
full-hand gesture interaction.

2.1 Ring-Form Input Devices
Ring-form input devices are lightweight and portable, suitable for many interaction scenarios. They are often
equipped with different sensors, such as a camera [4], an infrared proximity sensor [20], an inertial measurement
sensor [27], an acoustic sensor [56], an electrical field sensor [48], and so on, for different sensing purposes in
different applications. The sensing information generally includes the movement of fingers [20] and hands[4], the
relative position between hand segments [40], the interaction events on the ring (such as touching and rotating)
[9, 39], etc.

For example, Fukumoto and Suenaga [10] proposed the first interactive full-time wearable ring interface, the
FingerRing, which senses the tapping event of five fingers and enables multi-finger typing on any surface with
finger-worn accelerometers. LightRing [20] consists of an infrared proximity sensor for measuring finger flexion
and a 1-axis gyroscope for measuring finger rotation, enabling 2D pointing input on any surface. ThumbRing [40]
uses 2 IMUs, one connected to the user’s thumb and one fixed to the user’s wrist, to select discrete regions based
on the relative pose. ERing [48], worn on the user’s index finger, measures the difference in the electronic field to
recognize different hand gestures. Ens et al. [9] proposed a hybrid method using the ring surface for touch input
and a camera for finger location detection. TouchRing [39] enables subtle multi-touch input on the ring. Liu et al.
[27] used an index-finger worn IMU ring to capture hand gestures and enable off-the-phone input for the visually
impaired users. Coley et al. [8] investigated how the user can interact with a smart ring by touching or moving it.
However, most existing work on ring-form devices is designed task-specifically, only supporting a single

interaction modality with limited channels of signal input. In our work, we aim to broaden the interaction space
to support both within-hand interaction, hand-to-surface interaction, and hand-to-object interaction with a
compact sensing scheme that can capture rich hand information.

2.2 On-body Sensing Techniques
The human body offers tremendous probabilities for interaction by providing novel input interfaces with self-
bodied feedback. There are two main strategies for prototyping on-body interfaces.
The first strategy is to utilize the physical property of human body to transmit different types of signals [2],

including acoustic signals (sound [15, 26, 51] and ultrasound [26, 31]), mechanical vibrations signals [1, 51], and
electrical signals [34, 43]. Acoustic signals can either propagate above or through the human body. PUB [26]
used an ultrasonic distance measurement unit to detect tapping signals on the arm and to measure the tapping
location. Mujibiya et al. [31] proposed a novel sensing technique based on transdermal low-frequency ultrasound
propagation to enable pressure-aware continuous touch sensing as well as various hand gestures on the human
body. Mechanical vibration signals are mostly generated by contact, collision, and friction among body segments.
Bitey [1] enables input via tooth clicks by a bone-conduction microphone. EarBuddy [51] uses the unmodified
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microphones on commercial wireless earbuds to sense the vibration of tapping and sliding gestures on the face.
Electrical signals incorporate measuring the impedance property of the human body or transmitting an AC signal
or RF signal at a specific frequency. Acti-Touch [58] measures RF signal to detect body contact. Touche [34]
proposed a novel Swept Frequency Capacitive Sensing technique to recognize complex body and hand gestures.
BodyRC [43] sensed different body contact signals and body gestures with distributed high-frequency AC circuit.
The second strategy is to prototype the interface on or into the skin with a certain kind of skin-friendly

material. Holz et al. [17] discussed the important issues for the implanted interface, including the input and
output modality, the communication scheme, and the power supply. DuoSkin [18] introduced an efficient method
for skin interface prototyping using gold leaf, enabling three types of interaction: input, display, and wireless
communication. SkinMarks [44] proposed to install electrodes on human’s body landmarks to detect the passive
and active movements or contacts on those landmarks.
Among these two strategies, the former provides a more natural on-body interface and feedback with less

mental and physical load, while the latter allows the user to model the interface with additional materials, enabling
more interaction possibility. In our work, we adopt the first strategy to provide the most natural interaction
experience to users.

2.3 Subtle Interaction within Hand
Researchers are interested in how subtle the user can perform a hand gesture. Subtle hand gestures mostly
involve 1) subtle relative gestures among fingers [5, 11, 47] (such as the thumb slightly moving on the fingertip
of the index finger, or a micro pinching gesture) and 2) subtle rotation or movement of the hand or certain hand
segments [54].

Previous work has demonstrated the possibility of using pinching gesture for accurate input (e.g., cursor control
[5], text input [47, 52, 53] and drone control [54]). FingerPad [5] enabled subtle touchpad interaction on the tip of
the index finger with a nail-mounted magnetic sensor grid. DigiTouch [47] enabled subtle thumb-to-index-finger
text input with a glove-based input device. TipText [53] and BiTipText [52] explored the feasibility of typing on a
single-handed or two-handed fingertip QWERTY keyboard. Yau et al. [54] studied the capability of controlling a
drone by hand orientation and pinching signal.

Previous work also explored the expressivity of micro hand gestures. FingerInput [37] discussed the complete-
ness and extended the design space of thumb-to-finger micro-gestures. Pyro [11] used a thermal infrared sensor
to capture near-field micro thumb-tip gestures, including drawing different patterns.
Different from previous work, where subtle thumb-to-index gestures were sensed with direct sensors either

placed on the contact skin or fixed to the nails, we are the first to present a ring-form device worn on the proximal
phalanx to enable subtle thumb-to-index gestures, which is of higher preference for users according to previous
research [13].

2.4 Full-Hand Gesture Sensing and Recognition
Accurate hand gesture sensing is essential to enable rich and talented interaction techniques. Previous work on
hand tracking and gesture sensing has researched full-hand gesture sensing solutions with different sensors,
including cameras (RGB [19, 30, 55], IR [3, 46], and depth [36, 50]), EMG sensors [21, 28, 57], capacitive sensors
[6], a millimeter-wave radar [12, 25, 41], magnetic field sensors [7], and electrical field sensors [48].
Among those techniques, vision-based methods were most frequently researched for their strong sensing

capability to capture pixel-wise image data. A number of work has been proposed to detect the precise hand
posture (e.g., the keypoints of the hand) from the raw image that captures the whole unobstructed hand in
an ordinary perspective. These methods, including machine learning methods [30] and statistic-model-based
methods [50] aimed to inference hand postures from the raw image by leveraging the structural constraints of
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the hand [38], the local features from the image [32], and so on. The progress in both sensing algorithms and
hardware leads to the success of commercial hand tracking and gesture recognition systems, including Leap
Motion, Real Sense, and Kinect. Further, hand tracking becomes even harder if the camera is placed on mobile (e.g.,
a smartphone) or wearable (e.g., watches and glasses) devices, resulting in a restricted perspective that merely
captures partial hands. For example, SkinMotion [42] and Back-Hand-Pose [49] proposed to mount the camera
on a watch, looking along the back of the hand, to capture dorsum deformation and recover hand posture from
the dorsum image (with/without optical markers). In other restricted scenarios for specific use, algorithms were
optimzed to meet the need for certain applications. For example, HandSee [55] and Auth+Track [24] detected
near-field and hand-to-phone gestures based on pre-defined features with modified front camera on smartphone.
FaceSight [46] installed a down-looking IR camera on AR glasses to capture hand-to-face gestures by segmenting
and recognizing hands based on face landmarks.
In addition to vision-based solutions, alternative techniques capture physiological or motional features of

the user’s hands and arms salient in hand gestures and motions leveraging wearable or near-hand sensors such
as EMG sensors [21, 28, 57], electromagnetic sensors [7], millimeter-wave radars [12, 25, 41], IMUs [13, 23, 35],
and so on. For example, changes in hand posture cause muscle deformation, thus leading to changes in the
electromyogram signal on arm. Kim et al. [21] and Zhang et al. [57] recognized hand gestures with an EMG
array on the arm while NeuroPose [28] proposed a neural network model to estimate 3D hand posture from
the EMG signals. Electromagnetic sensing offers superior solutions to track absolute 3D position and motion of
electromagnets. Finexus [7] attached electromagnetic probes to each fingertip to track the precise 3D motion of
them. Soli [12, 25, 41] captured high-resolution signals with a near-hand a millimeter-wave radar and fed them
to a neural network to detect both static and dynamic hand gestures.
Sensing methods based on inertial measurement units (IMUs) worth further illustration for their unique

capability to capture micro vibration and subtle changes in attitude. Visual methods easily fail to detect slight,
fast, and obstructed hand movements [13] due to limited resolution and motion blur, and suffer from robustness
against the environment [46] (e.g., light condition). For example, when the user taps on the table with the index
finger, it is hard to distinguish whether there is a contact or not [13], because the finger movement is fast and the
difference between contact and non-contact is slight. Similar issues may occur to the above non-vision techniques.
For example, electromagnetic tracking cannot efficiently detect contact signal (hand-to-hand or hand-to-object),
while the EMG signals could be insignificant in detecting slight gestures. To this point, IMU-based complementary
sensing techniques were widely explored. Gu et al. [13] combined a finger-worn IMU with a head-mounted
camera to detect the touching event as well as the touching location. QwertyRing [14] enabled one finger typing
with an index-finger-worn IMU ring by detecting hand-to-surface touching events and the rotation angles. Shi
et al. [35] proposed an IMU-based method to detect whether the user’s finger keeps contact with a static plane.
Viband [23] recognized hand-to-hand and hand-to-object gestures based on high-frequency bio-acoustic signals
capture by the IMU on a commodity smartwatch as well as enabling encoded vibration signal transmission via
hand contact. Lu et al. [29] recognized hand-to-hand gestures with dual wrist-worn IMUs by measuring their
relative attitude and detecting the synchronous vibration signals.

In our work, DualRing’s uniqueness compared with existing IMU-based methods in sensing full-hand gestures
are: 1) We attach IMUs on the thumb and the index finger, which are representatives of two main segments of
the hand, thus can better represent a hand’s internal posture irrelevant to the ground. 2) Since vibrations of the
thumb and the index finger are sensed independently, fine-grained gestures involving vibrations in different hand
segments can be recognized (e.g., detecting which finger is touching a surface). 3) By hybridizing impedance
measurement and dual IMUs, DualRing has the potential to recognized complex gestures and their combinations
with fused features.
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Fig. 2. System overview. DualRing is composed of two IMUs and a high-frequency AC circuit. By hybridizing the sensors,
DualRing acquires high-level sensing information to support different modalities of upstream interaction.

3 DUALRING: TECHNICAL DETAILS AND IMPLEMENTATION
In this section, we introduce the sensing purposes as well as the technical details of DualRing, including the
hardware setup and the sensing algorithms. We explain how to 1) achieve robust thumb-to-finger contact sensing,
2) calculate the relative attitude while dealing with the environmental magnetic interference, and 3) sense gestures
and hand state in various scenarios based on synchronized IMU features.

3.1 Technical Overview
We first introduce the sensing purposes of DualRing before going into the technical details. The overall workflow
is shown in Figure 2. DualRing is composed of two IMUs rings worn on the user’s thumb and index finger and a
high-frequency AC circuit to measure the impedance between the thumb and the index finger. The AC circuit
detects thumb-to-finger contact information, including whether a thumb-to-finger touch happens and which
finger the thumb is touching. The two IMUs represent the attitudes of the proximal phalanx of the thumb and
the index finger independently. When combing the two attitudes, the relative attitude (represented in rotation
matrix) between the thumb and the index finger can be acquired. With a parameterized approximation, the
relative attitude is mapped to the 2D coordinates on the desired surface (e.g., the tip of the index finger), enabling
a precise cursor mapping. Further, synchronized temporal and statistical features of the two IMUs (including the
individual features and the relative features) can be extracted for gesture classification. We will illustrate the
technical details below.

3.2 Thumb-to-finger Contact Detection
To enable sensitive and accurate thumb-to-finger interaction, we need a robust on-body touch detector. Since the
human body is a good conductor to transmit high frequency AC signal, we build an AC circuit to detect touch
events by measuring the impedance between the thumb and the index finger.
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Fig. 3. Circuit Architecture. The blue dotted line and the red dotted line are two paths for high frequency AC signal
transmission.

3.2.1 Sensing Principles. "Currents with a frequency high enough that wave nature must be taken into account"
[33]. Previous work has proved the human body a good medium for high frequency AC signal transmission [33].
AC signals travel through different segments of the human body connected to a circuit. When a human changes
their body pose, the total impedance of the body changes consequently (mainly due to changes in circuit structure
and circuit component [43]), thus leading to changes in electrical properties of the whole circuit. On-body touch
events can be recognized based on the signal amplitude and the phase delay because on-body touch will form
another connected path in the circuit and change the circuit structure.

3.2.2 Circuit Implementation. We build an impedance measurement circuit to detect contact behavior. To measure
the signal amplitude and the phase delay of the signal passing through the human body, we first created two
synchronized copies of high frequency source signal 𝑠𝑟𝑒 𝑓 and 𝑠𝑚𝑜𝑛 .

Assuming the reference signal is 𝑠𝑟𝑒 𝑓 = 𝐴1𝑐𝑜𝑠 (𝜔𝑡 +𝜙1), and the monitored signal passing through human body
is 𝑠𝑚𝑜𝑛 = 𝐴2𝑐𝑜𝑠 (𝜔𝑡 + 𝜙2). By multiplying the reference signal and the monitored signal, we obtain a signal 𝑆
composed of a high frequency component and a low frequency component.

𝑆 = 𝑠𝑟𝑒 𝑓 ∗ 𝑠𝑚𝑜𝑛 = 𝐴1𝐴2𝑐𝑜𝑠 (𝜔𝑡 + 𝜙1)𝑐𝑜𝑠 (𝜔𝑡 + 𝜙2) =
𝐴1𝐴2

2
(𝑐𝑜𝑠 (2𝜔𝑡 + 𝜙1 + 𝜙2) + 𝑐𝑜𝑠 (𝜙1 − 𝜙2)) (1)

Then we pass 𝑆 through a low pass filter and obtain the phase delay relevant value 𝑃𝐷𝑅𝑉 =
𝐴1𝐴2
2 𝑐𝑜𝑠 (𝜙1 − 𝜙2)

of the reference signal and the monitored signal. By resampling the PDRV, we can obtain the peak amplitude
of the monitored signal 𝐴2 as well as the phase delay 𝜙1 − 𝜙2 of the two signals. In our work, we only use the
signal amplitude to detect contact behavior. When the thumb touches different fingers, changes in the circuit
component will lead to variations in signal amplitude. Therefore, the circuit cannot only detect contact behaviors
but also distinguish which finger the thumb is touching.
The overall circuit architecture is shown in Figure 3.

3.2.3 Hardware Prototype. In our hardware prototype, we use an AD9959 synthesizer (4-channel, 500MHz DDS
with 10-bit DACs) to generate two channels of synchronized 12.5MHz sinusoidal signal. One is used as the
reference signal, while the other (the monitored signal) is transmitted into the body through two electrodes made
of copper tape. As shown in Figure 1, the electrodes are connected to the proximal phalange of the thumb and
the index finger, respectively. We use an AD835 4-quadrant multiplier to multiply the reference signal and the
monitored signal. The output signal is amplified by 10 times with a post-op amplifier. We then connect the output
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Fig. 4. A Sample of the output signal amplitude series of our high frequency AC circuit. Different signal amplitudes represent
different contact states, as shown in different colors.

signal to a simple low pass Pi filter (composed of two 100 pF capacitors and a 100 𝜇𝐻 inductor) to remove the
high frequency components. Finally, we use an Arduino Mega 2560 to sample the amplitude of the filtered signal
at 1 KHz, followed by a 100-frame-width sliding-window mean filter, and output the smoothed signal amplitude
series. An output signal sample is shown in Figure 4. The signal is transmitted to a PC from the Arduino at 1 kHz
through a USB serial port.

3.3 Relative Attitude Estimation
An inspiring motivation to use two 9-axis IMUs for hand pose sensing is that one of the IMUs provides reference
coordinates, thus relative coordinates irrelevant to the ground, which better represent hand pose, can be naturally
calculated from the two IMUs’ data.

3.3.1 Pose Estimation. In our work, the attitude of the two IMUs is represented by Euler angles. Note that integral
of the gyroscope data will result in the accumulative error in calculating the Euler angles, a Kalman filter [45] is
applied to correct the roll and pitch angles (x-axis and y-axis) with the accelerameter and to correct the yaw
angle (z-axis) with the geomagnetometer.

We use the direction cosine matrix [22] (DCM) to represent the attitude, or the rotation from the zero attitude
(shown in Equation 2, 𝜙, 𝜃,𝜓 represent the roll, pitch, and yaw angle respectively, the order is yaw-pitch-roll).

𝐷𝐶𝑀 (𝜙, 𝜃,𝜓 ) =

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 − 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜓 + 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜓
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 + 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜓 − 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜓

−𝑠𝑖𝑛𝜃 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃

 (2)

We denote the DCM of the reference IMU (e.g., the IMU on the index finger)𝑀𝑟 and the DCM of the dominant
IMU (e.g., the IMU on the thumb) 𝑀𝑑 , both of which share the same zero attitude. Then the relative rotation
matrix from the dominant coordinates to the reference coordinates𝑀𝑅 can be represented as:

𝑀𝑅 = 𝑀−1
𝑟 𝑀𝑑 (3)

For any vector 𝑣 = (𝑥0, 𝑦0, 𝑧0)𝑇 in the dominant coordinates,𝑀𝑅𝑣 = 𝑀−1
𝑟 𝑀𝑑𝑣 represents the same vector in the

reference coordinates. Assuming (𝑒1, 𝑒2, 𝑒3) = 𝐼 is the orthonormal base vectors in the dominant coordinates, we
found that (𝑒1′, 𝑒2′, 𝑒3′) = 𝑀𝑅 is the orthonormal base vectors in the reference coordinates. For any vector 𝑣 , it
can be represented as the linear combination of 𝑒1′, 𝑒2′, 𝑒3′. The purpose is to figure out the linear factors that
map𝑀𝑅 to the 2-dimensional orthogonal fingertip coordinates. Let (𝑒𝑖 , 𝑒 𝑗 ) be the base vectors in the target 2-D
coordinates, and 𝑣0 be the orientation vector in the dominant coordinates. Then we can calculate the target (𝑥,𝑦)
by:
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(𝑥,𝑦)𝑇 = (𝑒𝑖 , 𝑒 𝑗 )𝑇𝑀𝑅𝑣0 (4)
By sampling multiple data points, we can fit the undetermined coefficients 𝑒𝑖 , 𝑒 𝑗 , 𝑣0.

3.3.2 Dealing with Magnetic Interference. When the user’s hand is near a strong magnetic field source (e.g., a
laptop or a smartphone). the change in the magnetic field will lead to significant shift and delay in yaw angle
calculation. Therefore, we modified our approximation strategy to fit the scenario, as illustrated below.
Note that (𝑥,𝑦) is not only a quadratic form, but also a linear combination of the coefficients of 𝑀𝑅 with 9

DoFs. To improve the expressivity, we introduce additional parameters and reorganize the parameters into a
simplified unrestricted linear form:

𝑥 =
∑

1≤𝑖, 𝑗≤3
𝑝𝑖, 𝑗𝑚𝑖, 𝑗 , 𝑦 =

∑
1≤𝑖, 𝑗≤3

𝑞𝑖, 𝑗𝑚𝑖, 𝑗 (5)

, where 𝑝𝑖, 𝑗 , 𝑞𝑖, 𝑗 are the undetermined parameters, and𝑚𝑖, 𝑗 are the elements in𝑀𝑅 . With such modification,
the coefficient space is enlarged to 18 DoFs.

We adopt least square optimization with a regulation term to learn the parameters. Instead of directly learning
the absolute coordinates (𝑥,𝑦), we aim to learn the difference, or the relative movement vector (Δ𝑥,Δ𝑦), because
relative movement is better perceived and performed by the user rather than absolute position on the fingertip.
Assuming 𝑆ℎ = {(𝑀1𝑖 , 𝑀2𝑖 ), 𝑖 = 1, 2, · · · , 𝑘} is the set of all the horizontal sampled pairs and 𝑆𝑣 is the set of all
the vertical sampled pairs. (A sampled pair (𝑀1𝑖 , 𝑀2𝑖 ) is the relative DCM of the start point and the end point
calculated from equation 3. A horizontal sample pair means the start point and the end point form a horizontal
base vector (1, 0)𝑇 , while a vertical sample pair is a pair representing a vertical base vector (0, 1)𝑇 .) The objective
loss function for optimization can be represented as:

𝐿 =
∑

(𝑀1,𝑀2) ∈𝑆ℎ

(((
∑

1≤𝑖, 𝑗≤3
𝑝𝑖, 𝑗 (𝑚1𝑖, 𝑗 −𝑚2𝑖, 𝑗 )) − 1)2 + ((

∑
1≤𝑖, 𝑗≤3

𝑞𝑖, 𝑗 (𝑚1𝑖, 𝑗 −𝑚2𝑖, 𝑗 )) − 0)2)+∑
(𝑀1,𝑀2) ∈𝑆𝑣

(((
∑

1≤𝑖, 𝑗≤3
𝑝𝑖, 𝑗 (𝑚1𝑖, 𝑗 −𝑚2𝑖, 𝑗 )) − 0)2 + ((

∑
1≤𝑖, 𝑗≤3

𝑞𝑖, 𝑗 (𝑚1𝑖, 𝑗 −𝑚2𝑖, 𝑗 )) − 1)2)+

𝜆(
∑

1≤𝑖, 𝑗≤3
(𝑝2𝑖, 𝑗 + 𝑞2𝑖, 𝑗 ))

(6)

, where 𝜆( ∑
1≤𝑖, 𝑗≤3

(𝑝2𝑖, 𝑗 + 𝑞2𝑖, 𝑗 )) is a regulation term to prevent overfitting. By minimizing the loss function 𝐿, we

acquire the optimized parameter 𝑝𝑖, 𝑗 , 𝑞𝑖, 𝑗 .

3.3.3 Prototypical Implementation. We used two MPU 9250 (9-axis IMU) for hand pose estimation. Each IMU is
connected to a microcontroller on which a built-in Kalman filter is implemented. The filtered IMU data (3-axis
acceleration, 3-axis gyroscope data, and 3-axis geomagnetic data for each IMU) is transmitted to a PC through
UART (Universal Asynchronous Receiver/Transmitter) at 200Hz (115200 baud rate).
The algorithm pipeline on the PC was implemented in Python. We used the Numpy library for matrix

calculation, and the Scipy library for parameter solving. The data receiving and the data processing processes are
asynchronous. The FPS of the whole pipeline (including data receiving and data processing) is 200.

3.4 Hand Gesture Recognition based on Fused Features
DualRing provides synchronous data from the two IMUs and the AC circuit. To better utilize the multi-source
data in recognizing different hand gestures, we further explore the feature design. We extract two categories of
features from the raw data: the temporal statistical features and the relative and synchronous features among
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IMUs. Let (𝑎𝑐𝑐1, 𝑔𝑦𝑟1, 𝑎𝑛𝑔1,𝑚𝑎𝑔1;𝑎𝑐𝑐2, 𝑔𝑦𝑟2, 𝑎𝑛𝑔2,𝑚𝑎𝑔2) be a data frame 𝑓 consisting of 3-axis acceleration, 3-axis
angular velocity, 3-axis Euler angle and 3-axis geomagnetic field of the two IMUs.

3.4.1 Statistical Features in Time Domain. Temporal and statistical features are important in indicating a process
with salient characteristics in time domain. We first calculate 9 statistical features: mean, standard deviation,
maximum, minimum, energy, skew, kurtosis, zero crossing rate, first-order difference, and then use FFT to calculate
the spectrum of a frame sequence [𝑓1, 𝑓2, · · · , 𝑓𝑁 ] in each dimension (24 dimensions in total). The statistical
features and spectrum is concatenated with the original frame sequence to form a fused feature vector.

3.4.2 Synchronous Features among IMUs. We are also interested in the mutual and relative features generated by
the synchronous data from the two IMUs, including the correlation, the relative attitude and the spectrum of the
differential signal.
(1) Relative attitude and rotation matrix. For each frame, the relative rotation matrix can be represented as

𝐷𝐶𝑀 (𝑎𝑛𝑔1)−1 · 𝐷𝐶𝑀 (𝑎𝑛𝑔2), and calculated from Equation 4. The rotation matrix is then flattened into a
1-dimensional feature vector.

(2) Spectrum of the differential signal. We first normalize the sensor data (acceleration, angular velocity
and geomagnetic field) to the mutual ground coordinates with the attitude. We then calculate the signal
difference between the two IMUs in each dimension and compute the spectrum in each dimension over a
time interval.

(3) Cosine Similarity. For any two vectors 𝑣1, 𝑣2, their cosine similarity is 𝑐𝑜𝑠 (𝑣1, 𝑣2) = 𝑣1 ·𝑣2
|𝑣1 | |𝑣2 | . We compute the

cosine similarity of the two IMUs in time domain in each dimension.

3.4.3 Recognition Algorithm and Implementation. After obtaining the statistical features, the spectra, and the
relative features, we train a random forest classifier (number of estimators = 500, max depth = 10) to recognize
hand gestures. Note that because gestures from different gesture sets have diverse salience over different features,
a feature selection phase is applied before determining the final model.
The feature extraction, feature selection, and model training phases were implemented in Python (Numpy

library for feature extraction, Scipy and Sklearn libraries for feature selection and model training). The FPS of
pre-processing a sample and output the prediction is 30 (9 ms for pre-processing and 24 ms for model prediction)
running on a Intel i7-6700HQ CPU (2.6GHz, 1 thread).

4 DESIGN SPACE AND APPLICATIONS
DualRing provides four unique benefits for sensing hand pose and enhancing hand input. First, dual IMUs can
naturally represent two sets of coordinates - the ground coordinates and the relative coordinates. The ground
coordinates are used to represent gestures relative to the ground, while the relative coordinates represent the
internal gestures of the hand irrelevant to the ground. Second, by incorporating a contact detection circuit,
DualRing can support natural thumb-to-finger touch input. Third, by installing IMUs on both the thumb and the
index finger, DualRing can sense both the interacting hand segments (e.g., the touching finger) as well as the
non-interacting segments, thus has the potential to induce full-hand gestures. Fourth, the micro-vibration of the
thumb and the index finger can be detected independently, from which more complex gestures (e.g., a gripping
gesture) can be recognized. These benefits provide a rich interaction space for ring-based hand interaction. We
divide the design space into: 1) within-hand interaction, 2) hand-to-surface interaction, and 3) hand-to-object
interaction, as outlined in Figure 5.

4.1 Within-hand Interaction
Within-hand interaction mainly incorporates interactions between the thumb and the other four fingers. Since
DualRing provides accurate orientation data of both the thumb and the index finger, as well as the contact
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Fig. 5. Design space: (a) within-hand interaction, (b) hand-to-surface interaction, and (c) hand-to-object interaction.

signal between the thumb and other fingers, it can support various types of primitive thumb-to-finger operants,
including pinching, continuous cursor control, region selection, sliding, and pattern drawing, as shown in Figure
5 (a).

4.1.1 Pinching. Pinching is the most natural within-hand gesture to perform a triggering. With DualRing, the
user can perform a pinching gesture in three states: contact, non-contact and clicking. DualRing classifies the
contact and the non-contact states by the sampled signal amplitude, while recognizing the clicking state by
detecting a pulse in the signal spectrum. Moreover, since DualRing can saliently distinguish which finger is used
for pinching by measuring signal amplitude, it enables the user to perform pinching with different fingers, which
can be used to trigger different functions (Figure 5 (a) 1). In particular, DualRing can distinguish up to three types
of pinching with different fingers: thumb-to-index-finger, thumb-to-middle-finger, and thumb-to- ring-finger.
The amplitude variation of touching the little finger is not salient.

4.1.2 Continuous Cursor Control. DualRing detects the orientation and the movement of both the thumb and
the index finger. With our parameterized approximation method, DualRing can perfectly detects instantaneous
relative movement and map it to 2-dimensional coordinates, enabling accurate 2D continuous cursor control.
Based on the accurate 2D cursor, DualRing can support various applications.

• Finger Pad. One of the direct and most powerful applications is a finger pad, which makes full use of the 2-D
continuous movement information (Figure 5 (a) 2). The user’s index finger is turned into a touchpad using
their thumb to swipe on the index finger to perform a cursor input. With the support of the on-body contact
detection circuit, all input modalities of an ordinary touchpad, including touch-down, clicking, and swiping,
can be perfectly simulated by our fingerpad enabled by DualRing. In addition, the user can choose to enable
multiple fingerpads on different fingers to control multiple sets of cursor (e.g., thumb-to-index-finger pad
to control the movement and thumb-to-middle-finger pad to control the perspective in a video game).

• Finger Slider. The user can slide on the finger with the thumb to provide input to a 1-dimensional slider
(Figure 5 (a) 3, e.g., controlling the brightness or volume). Moreover, the user can assign different slider
functions to different fingers, so that he can control multiple sliders simultaneously.

• Pattern Drawing. Drawing a pattern is also a popular input method to convey rich semantics in a natural
way. The user can map different patterns to the semantically-similar shortcuts. For example, when receiving
a phone call, the user can draw a circle to answer the call, or a cross to reject it. A camera shortcut in AR
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can be awakened by drawing a rectangle. The user can also draw a triangle to trigger "playing" for a music
player (Figure 5 (a) 4)

4.1.3 Absolute Region Selection. Due to the magnetic interference and the delay of Kalman filtering, it is hard
for DualRing to determine accurate absolute coordinates. However, based on the orientation data, DualRing can
detect coarse-grained absolute coordinates, which benefits applications requiring discrete keyboard input. For
example, in an dialing application, the user can put the four fingers together and touch different phalanxes of
different fingers with the thumb, as dialing on a number pad (Figure 5 (a) 5). The user can also naturally type on
the fingers as if typing on a T9 keyboard.

4.1.4 Ray Interaction. DualRing also enables interactions leveraging orientation and movement relative to the
ground. The reference ring (e.g., the ring worn on the index finger) provides ground orientation in real world
(just like a ray), while the thumb can generate discrete (e.g., touching the index finger) or parameterized (e.g.,
altering the thumb-index angle) input. Such interaction scheme is helpful especially in different 3D scenarios
such as VR, AR, and IoT. For example, in a smart classroom, the teacher uses his index finger as a virtual pointer
(Figure 5 (a) 6). The teacher can tap on the index finger with the thumb to switch the pointer mode, or change
the thumb-index angle to zoom in / out. In VR or AR, ray interaction is also effective in pointing and element
operation.

4.2 Hand-to-surface Interaction
When the user is interacting with a planar surface, usage of different hand gestures is a natural and effective way
to express different semantics. Compared with a single index-finger-worn IMU ring, DualRing can sense the state
and the movement of both the touching finger and the non-touching fingers. Therefore, it has the potential to
detect the state of the whole hand and support a wider range of gesture set, as shown in Figure 5 (b).

4.2.1 On-surface Detection. Previous work has shown the feasibility to detect contact between the finger and a
static surface by observing the micro-vibration with a nail-mounted accelerometer[35]. In our work, DualRing
takes advantages of the two independent IMUs, which can sense the micro-vibration of both the thumb and the
index finger respectively, thus has the potential to detect four types of contact: non-contact, index finger contact,
thumb contact and palm contact. The enriched contact types allow for a wider range of interaction design. For
example, in a sketchpad application, the user can turn a normal surface to a sketchpad – the user can use the
index finger as a pen and the thumb as an eraser, while using palm contact gesture to copy and paste. This can
be done by detecting a surface touch / contact signal as a trigger while mapping the independent attitude (or
orientation) of the index finger and the thumb to the 2D coordinates (similar to ray interaction). The user can
also use contact gestures in IoT scenarios, e.g., the lamp turning on when the user is seated and rests his palm on
the desk (Figure 5 (b) 1).

4.2.2 Surface Gestures. DualRing can not only detect static hand state, but also detect dynamic gestures interact-
ing with a surface. The most common hand-to-surface gesture is a tapping gesture. We demonstrate that tapping
with five different fingers results in different features of DualRing’s signal, thus is distinguishable. With such
capability, DualRing enables five-finger tapping input on any surface, supporting a variety of applications such
as any-surface typing (Figure 5 (b) 2), piano playing (Figure 5 (b) 3), and remote control.

4.2.3 Combination of Dominant Gestures and Controlling Gestures. DualRing provides information of both the
touching finger and the non-touching fingers. We define the direct gestures interacting with the plane as dominant
gestures (e.g., touching the surface with the index finger), while the gestures of the non-touching finger are noted
as controlling gestures. By such definition, another intuitive exploration is the combination of the dominant
gestures and the controlling gestures. The controlling gestures can be further divided into discrete gestures
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(e.g., thumb tapping on index finger) and continuous gestures (e.g., thumb sliding on index finger, the angle
between thumb and index finger, etc.). Such combination expands the design space of complex, multi-step, and
multi-parameter gestures. For example, after touching a plane with the index finger, the user can slide backward
with the thumb on the index finger to perform a "copy", while sliding forward to perform a "paste" (Figure 5 (b) 4).

4.3 Hand-to-object Interaction
Another important subspace enabled by DualRing is to interact with different objects in real-life scenarios. The
gripping events and the gestures on the surface can be sensed, allowing the user to interact with ordinary objects,
such as a bottle, a box, or a ball, as shown in Figure 5 (c).

4.3.1 Gripping Recognition. As an extension of detecting contact between the finger and static surfaces, we
envision and demonstrate that the event of gripping an object while holding it in the air can be detected by
DualRing. When the user is gripping a rigid object, the micro-vibration of the gripping fingers are likely to
be synchronized. DualRing can capture the synchronous micro-vibration signals from the accelerameters to
accurately recognize the gripping gestures. DualRing can not only detect whether the user is gripping an object,
but also distinguish the shape of the gripped object by incorporating the orientation data. The gripping information
benefits passive sensing and interaction in IoT and AR scenarios. For example, when the user is gripping and
lifting an object, the information of it will be rendered in the AR glasses in real time (Figure 5 (c) 1, 3).

4.3.2 Interaction on the Object. Once DualRing detects the user is gripping an object, it turns the surface of
the gripped object into an interactive interface. Basic operants such as clicking and sliding are available on the
surface. Combination of the gripping object and on-surface gestures forms a large interaction space. For example,
in a smart home scenario, the user can pick up a box-like object as a remote controller, swiping left / right to
switch TV channels, up / down to control the volume. The user can pick up another bottle-like object, sliding up
/ down to control the brightness of the room(Figure 5 (c) 2).

5 SYSTEM EVALUATION
In this section, we evaluate DualRing’s performance in recognizing different hand gestures in the three sub design
spaces. We demonstrate the informativeness and completeness of DualRing’s sensing information compared with
a single IMU ring.

5.1 Gesture Set
The gesture sets we wanted to evaluate includes:

• Pinching gestures (within-hand). The participant touches the pulp of different fingers (index finger,
middle finger, ring finger, little finger) with the thumb, as shown in Figure 6 (a). 4 classes in total.

• Swiping gestures (within-hand). The participant swipes the thumb on the tip of the index finger in four
directions (up, down, left, and right), as shown in Figure 6 (b). 4 classes in total.

• Touching different finger segments (within-hand). The participant touches different phalanxes (distal
phalanx, middle phalanx, and proximal phalanx) of different fingers (index finger, middle finger, ring finger,
little finger) with the thumb, as shown in Figure 6 (c). 12 classes in total.

• Contact gestures (hand-to-surface). As shown in Figure 6 (d) the participant performs four types of
contact gestures (keeping contact with the plane with different hand segments): non-contact, index finger
contact, thumb contact, and palm contact.

• Tapping gestures (hand-to-surface). The participant performs tapping gestures, as shown in Figure 6
(e), with the pulp of different fingers (non-tapping, thumb, index finger, middle finger, ring finger, and little
finger). 6 classes in total.
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Fig. 6. The gesture sets for system evaluation. (a) Pinching gestures; (b) Swiping gestures; (c) Touching different finger
segments; (d) Contact gestures; (e) Tapping gestures; (f) Gripping gestures.

• Gripping gestures (hand-to-object). The participant first performs a non-gripping gesture, then grips
the following objects in order: box, bottle, mouse, and pen (shown in Figure 6 (f)). 5 classes in total.

5.2 Participants and Apparatus
We recruited 14 participants (8 males, 6 females) from the local campus. The average age was 21.0 (SD=2.04) and
all participants were right-handed. We collect the data with the prototypical system described in Section 3. The
data of the two IMUs and the AC circuit were fetched synchronously by a data collection thread. The sample rate
of the whole system is 200 FPS and the delay between the two IMUs is always within 25 ms (5 frames).

5.3 Data Collection
At the beginning of the study, we instructed the participants to put on the rings properly, helping them to adjust
the tightness so that the rings were neither too loose nor too tight. (Each ring is made with a flexible metal strip.
The participants could adjust the tightness by bending the ends of the metal strip.) The data collection procedure
consisted of 6 sessions. In each session, the participants were asked to collect hand gesture data corresponding to
section 5.1 in order (6 gesture sets, 31 gestures in total).
We devised a graphical interactive program to guide the experiments. At the start of each session, a general

text description was shown to introduce the gestures in the session. In the recording of a specific gesture, the
participants were asked to perform the gesture while pressing the record key. For transient gestures (including
swiping gestures and tapping gestures), the participants were required to perform the gesture while pressing
the key simultaneously. To guide the procedure, a real-time video demonstration was shown on the screen,
accompanied by a counter widget and a countdown widget indicating the remaining tasks and time.
For pinching gestures and region selection gestures, each participant performed each gesture 1 time, each

lasting for 25 seconds. For contact gestures and gripping gestures, each participant performed each gesture 5
times, each lasting for 10 seconds. For tapping gestures and swiping gestures, each participant performed each
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gesture 100 times, each taking 1 second. The whole data collection procedure for each took about 1 hour and
each participant was paid 15 dollars for participation.
It is worth emphasizing that tapping and swiping are transient gestures occurring within 0.5s. We collected

more trials (100) for these transient gestures to collect more diverse synchronized data. For the non-transient
gestures, we collected fewer trials, but each trial lasting for a longer time (e.g, 10s). For the latter, we also required
the participants to move their hand actively within a trial (e.g., rotating the hand, bending and slightly rubbing
the finger) while preserving the performed gesture to enhance the data diversity. We then sampled each trial to
multiple clips as data points. Therefore, we adopted a different number of trials for different types of gestures.

5.4 Results for Individual Datasets
We analyzed the recognition accuracy as well as the signal salience with respect to different gesture sets. For
pinching gestures, we used a nearest neighbor algorithm for classification. For swiping gestures, we used a cosine
similarity measurement for classification. For touching finger segments, contact gestures, tapping gestures, and
gripping gestures, we adopted an random forest classifier as described in Section 3.4.3 and used all the features
from Section 3.4 as feature input.

Table 1. Classification accuracy in different gesture set with different sensor enabled.

Gesture Set Tapping (2 classes) Tapping (6 classes) Gripping Contact

Dual IMU 97.65% (1.14) 82.71% (2.81) 82.35% (4.66) 93.24% (1.51)
Thumb IMU 95.82% (2.40) 59.47% (3.13) 63.92% (3.94) 67.47% (2.22)
Index IMU 96.87% (1.15) 66.53% (2.85) 61.81% (4.42) 62.74% (3.43)

5.4.1 Pinching Gestures. We recognized the pinching gesture only by the AC signal. Since impedance differed on
different participants, we evaluated each participant individually based on their own data. For each participant, we
sampled the first 10% frames (500 frames) for each gesture as the reference amplitudes. Then we classified the test
samples sampled from the remaining frames based on a simple nearest neighbor algorithm. We randomly sampled
(the start frame of each sample is randomly picked) 100 test samples (each sample is composed of 50 frames) from
the remaining 90% frames (4500 frames) for each gesture. We classified each test sample by averaging the sample
amplitudes and calculating the distance from each reference amplitude set of the same participant. The accuracy
of the 4-class classification (non-pinching, index finger, middle finger, and ring finger) was 97.36% (SD=2.83),
while the accuracy of the 5-class classification (the four classes above + little finger) was 91.11% (SD=4.02). The
signal amplitude variation of touching the index finger, the middle finger, the ring finger, and the little finger are
27.39% (SD=5.60), 8.23% (SD=2.52), 3.97% (SD=1.88), 2.57% (SD=1.02), respectively, referenced to the non-pinching
signal amplitude. The amplitude variation of the noise signal is 2.19% (SD=1.13).

5.4.2 Swiping Gestures. We used the AC signal to detect on-body contact and the two IMUs’ data to estimate
swiping direction. We evaluated each participant individually based on their calibration parameters. We first
applied the parameter estimation method described in Section 3.2 to map the Euler angle to the 2-D coordinates
using each participant’s own calibration data. For any swiping vector 𝑣 , we first computed the inner product with
the participant’s orthonormal base vectors 𝑣1 and 𝑣2. Then we classified the vector based on the cosine similarity.
The accuracy of the classification is 99.37%. The average angular errors in the four directions and their deviations
are shown in Table 2.

5.4.3 Touching Different Finger Segments. As we observed, due to structural differences (e.g., the length of
different hand segments) and behavioral differences (e.g., some participants preferring stretching the thumb
while the others preferring bending the fingers to perform a touch) among participants’ hands, fusing the data
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Table 2. The angular errors and the corresponding standard deviations of the swiping gesture in four directions.

Swiping Direction Right Left Down Up

Error 8.13◦ 10.55◦ 13.10◦ 12.32◦
Standard Deviation 4.89◦ 4.52◦ 5.16◦ 5.23◦

from different participants in the training phase would have a bad effect on prediction. For this consideration,
we adopted a within-participant validation process to evaluate the classification accuracy. For each participant,
we uniformly sampled 100 × 12 (classes) = 1200 samples (each sample containing 10 frames). We trained the
random forest model on the temporally foremost 80% data from each gesture (960 samples) and tested it on the
remaining 20% data (120 samples) for individual participants. We got a total accuracy of 89.57% (SD=5.01) without
incorporating the AC signal, and an accuracy of 93.70% (SD=5.26) by incorporating the AC signal.

5.4.4 Contact Gestures. We applied a leave-one-user-out cross-validation process to evaluate the performance of
contact gesture classification. We only used the IMU data for classification, since the variation of the AC signal is
not significant. For each participant, we uniformly sampled 100 samples (each sample containing 80 frames) from
each class (5 classes in total). The classification accuracy with respect to usage of different sensors is shown on
Table 1. We saw a significant accuracy gap between using dual IMUs and dropping one of the IMUs (93.24% v.s.
67.47% / 62.74% at 80 frames). Compared with single IMU, DualRing had the potential to correctly recognize the
contact gestures of the whole hand, though using the thumb-worn or index-finger-worn IMU can recognize the
contact of specific finger to some extent.

5.4.5 Tapping Gestures. For tapping gesture recognition, we evaluated the accuracy of recognizing whether a
tapping was performed (2 classes) as well as the accuracy of further distinguishing which finger is tapping (6
classes) with leave-one-user-out cross-validation. Only the IMU data is used in this session. For each participant,
we preprocessed the data from each trial from each tapping class (100 trials × 5 classes in total). We first figured
out the maximum value of the acceleration (the index of which is 𝑝) as the exact tapping point, then sampled
the frames in the range of (𝑝 − 20, 𝑝 + 20] as the sampled data to ensure the alignment of transient gestures.
We randomly sampled 500 samples (each sample contains 40 frames) from the non-tapping class as well as the
peripheral frames from the tapping classes for 2-class evaluation and sampled 100 samples for 6-class evaluation
to ensure model balance. Table 1 shows the accuracy of tapping classification and finger classification with respect
to usage of different sensors. For the tapping classification, there was no significant improvement using two
IMUs compared with using single IMU, because one IMU is enough to capture the vibration signal from a tapping
attempt. However, DualRing significantly outperformed single IMU in classifying which finger is tapping (82.71%
v.s. 59.47% / 66.53% at 40 frames). From the result, we found that although DualRing only attached IMUs to the
thumb and the index finger, it had the potential to infer the state and movement of the other fingers, yielding a
good classification result.

5.4.6 Gripping Gestures. We evaluate the recognition of gripping gestures with leave-one-out cross-validation.
Only the IMU data is used in this session. For each participant, we uniformly sampled 100 samples (each sample
contains 200 frames) from each class (5 classes in total). The recognition result is shown in Table 1. From the
result, We observed significant accuracy improvement of using dual IMUs compared to using single IMU (82.35%
v.s. 63.92% / 61.81% at 200 frames), demonstrating the informativeness of the data from dual IMUs in sensing
gripping gestures.

5.5 Combination of Different Gesture Sets
As outlined in the interaction space, gestures from different gesture sets can be combined organically to represent
more complex semantics (e.g., a gripping gesture followed by a tapping gesture). Though such a process can be
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Table 3. Ablation Study: Three gesture sets were tested in our ablation study. For each gesture set, we removed specific
features from the input vector, and measure the change in classification accuracy.

Gesture Set - Raw - Stats - Spectrum - Diff Spectrum - Cosine Sim - Orientation

Tapping Gestures (40 frames) +1.50% −0.26% −4.39% −1.13% −1.51% −0.73
Contact Gestures (80 frames) −0.45% −2.78% −4.67% −2.03% −1.38% −0.31%
Gripping Gestures (200 frames) −2.16% −10.42% −4.42% −7.98% −5.76% −6.10%

implemented in a step-wise manner, meaning at each step the model only recognizes gestures from individual
set, we are also interested in how the model performs when combining gestures from different sets.
We conducted an experiment to explore DualRing’s robustness across gesture sets. We merged the "contact

gestures" (hand-to-surface interaction) and the "gripping gestures" (hand-to-object interaction), obtaining a
combined dataset of 8 classes (the "in-air" class is mutual). For each participant, we uniformly sampled 100 samples
(each sample contains 100 frames) from each class (8 classes in total). Results showed that leave-one-user-out
cross-validation (100 frames, dual ring) yield an average accuracy of 79.72% (SD=5.46%), demonstrating our
algorithm’s robustness across different gesture sets.

We conducted another experiment to explore whether a sample from the tapping gesture set (transient) or the
gripping gesture set (non-transient) would lead to a false positive issue. We found samples from the gripping set
have a false positive rate of 2.75% (40 frames, dual ring) in the tapping set (e.g., recognized as tapping); while
samples from the tapping set have a false positive rate of 7.40% (100 frames, dual ring) in the gripping set. The
result showed that a transient gesture set and a non-transient gesture set do not have much interference on each
other, which validates the feasibility of fusing transient gestures and non-transient gestures in recognition.

5.6 Feature Analysis
We conducted a brief ablation study to analyze the salience of different features in different gesture sets. The result
is shown in Table 3. From the results, we concluded that the salience of different features vary in different gesture
sets. For tapping gestures, we observed an increase in accuracy when removing the raw data, probably because the
raw data contained interferential features. Removal of the independent spectra of the two IMUs caused the most
significant decline in tapping gestures. For contact gestures, spectra of the two IMUs is most significant, probably
because the spectrum of each IMU indicates the contact state of the thumb and the index finger respectively. For
gripping gestures, statistical features, spectrum of the differential signal, and orientations had the most significant
effect on performance. Spectrum of the differential signal may indicate the synchronization in micro-vibration
between the two IMUs, while the orientation may represent the gripping gesture.

6 USER STUDY
In this section, we conducted a user study to understand users’ subjective preference and comments on different
hand gestures in our design space (Section 4).

6.1 Participants, Design, and Procedures
The participants of this study were the same as Section 5.2. We chose the same user group as the previous study
to ensure that all participants understood the gesture set well.
We selected 8 representative gestures covering the three sub-spaces of our design space: pinching, finger

cursor, finger sliding, region selection, finger pattern, ray pointing, tapping on a surface, gripping an object.
We developed an interactive program for each gesture, either a real-time visual feedback demo (pinching, ray
pointing, tapping on a surface, and gripping an object) or a simple demonstrative application (finger cursor, finger
sliding, region selection, and finger pattern), as shown in Figure 7, to help participants better understand each
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Fig. 7. Interactive programs for the user study. Left: Real-time visual feedback demos for 1) signal amplitude of pinching and
2) probability distribution of contact gestures, tapping gestures, and gripping gestures. Right: Demonstrative applications for
1) finger cursor, 2) ray pointing, 3) finger pattern, and 4) finger sliding.

gesture. We designed a questionnaire to evaluate each gesture, which contained questions of NASA TLX [16] and
four additional questions about their willingness to use and whether these gestures are easy-to-use, fun-to-use,
and convenient-to-use.
After introducing each gesture to the participants, including how to perform the gesture and the probable

functional mappings of the gesture, we instructed them to perform each gesture correctly and used the gesture to
interact with the corresponding demo. After performing all the gestures and experiencing the interactive demos,
we asked each participant to fill in a questionnaire to rate each gesture in each aspect with a 7-point Likert score.
At last, the participants provided subjective comments of all these gestures through an interview.

6.2 Results
Figure 8 shows the subjective ratings of different gestures in the ten dimensions. Higher score indicates lower
mental demand, lower physical demand, lower temporal demand, higher efficiency, lower effort, lower frustration,
easier to use, more fun to use, more convenient to use, and more willing to use. Results shows that participants
generally enjoyed the 8 interaction techniques enabled by DualRing, with an average willing-to-use rating of 5.0.
Pinching (5.6), finger cursor (4.8), finger sliding (5.9), ray pointing (5.4), surface tapping (5.6), and object gripping
(5.2) were better received by the participants while region selection (3.6) and pattern drawing (3.8) were less
favored. Among all gestures, pinching, finger sliding and surface tapping were most favored by participants for
their lowmental, physical, and temporal demand, their high efficiency, and the easiness and convenience for usage.
Finger cursor was understood as a hard-to-use technique that requires high learning cost, extra concentration,
and massive mental demand, though participants generally believed it could be an efficient, convenient, and fun
gesture for experienced users. Most participants had an inferior rating on region selection and pattern drawing
because the two gestures are regarded hard-to-accomplish, time-demanding and mentally-demanding.

We summarized the interview results and user’s comments based on their understandings regarding different
interaction spaces and gestures.

6.2.1 Thumb-to-Fingertip Gestures. All participants had a common agreement that pinching, finger cursor, finger
sliding, and finger pattern were of the same type of gestures which only involve subtle finger movement, thus
having low physical demand. However, the complexity of these gestures varies, leading to different degree of
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Fig. 8. Subjective ratings of different gestures in different aspects. Higher score indicates lower mental demand, lower
physical demand, lower temporal demand, higher efficiency, lower effort, lower frustration, easier to use, more fun to use,
more convenient to use, and more willing to use.

acceptance. Pinching and finger sliding are the easiest gestures requiring almost no learning cost or concentration,
while having straightforward symbolic meanings (P5). So they were most favored. Finger cursor was regarded as
easy to understand (P1, P2, P10-P12), hard to perfect (P2, P5, P12), and requiring extra concentration(P5, P12).
"Mastering finger cursor gives me a sense of achievement, especially when I am able to control the cursor precisely
with subtle finger movement after becoming an expert," said P1. Finger pattern was generally regarded not as easily
performed as pinching and sliding. But some participants loved it for the rich semantics that a symbolic gesture
can convey. "Assigning an operation with a similar symbolic pattern is easy to memorize. For example, drawing a
right-oriented triangle to trigger play and a rectangle to trigger stop, which is identical with the graphic interface, is
useful," commented P2.

6.2.2 Finger Region. Participants understood it as a gesture where the thumb touches different finger segments.
It received lower acceptance mainly due to the difficulty to perform. P7 said "I have a short thumb, so it is a hard
for me to touch the proximal phalanx of the little finger." The other 4 participants shared a similar problem with
P7. However, they all agreed that if the gesture were constrained to easy-to-reach finger segments, such as the
segments of the index finger and the middle finger, the gesture could become useful.

6.2.3 Hand-to-Surface Gestures. Participants were fascinated by the capability of DualRing to distinguish which
finger touched the surface. P2 said, "Tapping on the table is natural and easy to perform. I can’t wait to imagine the
applications leveraging this gesture, like playing the piano or typing on a ordinary desktop. It is a great pleasure."
Regarding the contact gestures, participants (P2, P4) thought they were closer to unconscious gestures and more
suitable for passive control (e.g., deactivating the AR display when a rested hand is detected).
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Fig. 9. Example application scenarios: (a) smart desk and (b) AR input.

6.2.4 Hand-to-Object Gestures. Participants described it as "an effective way to enhance daily activities". P1 said,
"Gripping is quite a common and frequently-performed gesture. I would like the AR glasses to render information
about an object once it is gripped, like the clock rendering detailed weather information when gripped. With such an
intelligent grip, many things can be done as a grip."

Generally, all gestures were well accepted by a large portion of participants. They remained curious about the
applications supported by these gestures.

7 APPLICATION SCENARIOS
To illustrate the applicability of DualRing, we demonstrate two example scenarios involving different modalities
from the design space, as shown in Figure 9.

7.1 Scenario Description
7.1.1 Smart Desk. The scenario setup, interaction modalities, and gestures are shown in Figure 9 (a). Alice is
working in the office, sitting at a smart desk in which multiple IoT devices are controlled by DualRing in a unified
manner. When she is seated with her palm resting on the desk for 5 seconds, the smart desk system automatically
turns on, illuminating the main screen and enabling DualRing’s gesture control.

During working, Alice follows a unified logic to control desk elements by performing different hand gestures.
When she wants to start a control session, she taps on the tabletop with different fingers to navigate to the
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corresponding element – thumb for screen control, index finger for light control, and middle finger for speaker
control. Then she can perform within-hand gestures, such as pinching and swiping, to control the target device.
When she wants to browse contents among screens, after entering the screen control mode, she turns her index
finger into a touchpad, pinching with the thumb to simulate a click and swiping the thumb on the index finger to
perform fine-grained cursor control. She can also perform a thumb-to-middle-finger pinch to switch the focusing
screen or device. For light control, she performs a thumb-to-index-finger pinch to turn on (off) the light and
slides on the index finger with the thumb to control the brightness. For speaker control, she pinches to start or
pause playing music, slides on the index finger to control the volume, and swipes upward (downward) to switch
to the previous (next) song.
In addition to active device control, Alice can receive passive health-related notifications from the smart

desk taking advantage of DualRing’s sensing capability to capture her hand status and activity. For example, a
notification reminding her to drink water would be displayed on the screen accompanied by a message alarm
when she has not drunk water (or a persistent gripping-bottle gesture has not been detected) for an hour. (The
system is continuously detecting the gripping gestures described in section 5.1 after registration). Similarly, when
she has been gripping the pen or the mouse for an hour, the system would send a notification reminding her to
take a break.
DualRing’s provides two unique benefits in the smart desk scenario. First, the unified control flow enabled

by DualRing allows the user to control multiple devices seamlessly and efficiently using unified within-hand
and hand-to-surface gestures without accessing their physical interfaces. Second, DualRing’s passive activity
monitoring capability plays an important role in daily healthcare, especially for the circumstances where people
spend the entire day working at the desk.

7.1.2 AR Input. The scenario setup, interaction modalities, and gestures are shown in Figure 9 (b). Bob is
controlling an AR interface with DualRing as a general input device which supports three types of control logic -
3D object interaction, embedded 2D UI interaction, and discrete interaction. In the 3D object manipulation APP, he
first performs ray pointing to select a 3D object, then performs either a thumb-to-index pinch to move the object
or a thumb-to-middle pinch to rotate the object. After a thumb-to-index pinch, he can use the ray to re-position the
object, or slide the thumb along the index finger to move the object far or near. If he performs a thumb-to-middle
pinch, he can use the ray to rotate the object. He releases the fingers when finishing manipulation. In the web
browser APP, which is an embedded 2D interface in the 3D scene, he turns his index finger into a touchpad as
described above to control the interface. He can also use discrete gestures to control the APPs which have a
discrete layout (such as a grid or a list), including the home APP and the video player APP. In the home APP, he
performs swiping gestures (in four directions) to navigate to the desired icon and perform a thumb-to-index pinch
to launch the APP or a thumb-to-middle pinch to open the option menu. In the video player APP, he performs a
pinch for start (pause), a right (left) swipe for fast forward (rewind), a upward (downward) swipe for the previous
(next) video, and a continuous swipe after pinch for voice control. He performs a thumb-to-ring pinch to return
to the previous page or the home. In addition, if he is around a horizontal plane (e.g., a desk), he can perform a
tapping gesture for fast navigation (e.g., a thumb tap to the home APP).
Compared with existing AR input methods such as controller (e.g., NReal) and hand gesture (e.g., HoloLens),

DualRing has three unique benefits for AR input. First, DualRing has the potential to support complex interactions,
such as 3D object manipulation and 3D scene modeling which involves multiple sets of coordinates, in a unified
and effective manner. Second, embedded UI interaction (e.g., browsing, chatting, and entering the password) with
DualRing can be accomplished with secret and subtle gestures, which benefits social acceptance and privacy in
public areas. Third, DualRing enables discrete interaction with low attention levels and mental load. For example,
in the commuting scenario, simple gestures in the pocket help to accomplish common functions (e.g., switching
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the music and reading notifications). Benefiting from a compact form and a strong sensing capability, DualRing
has the potential to become an always-available general AR input device supporting multiple types of AR input.

7.2 Issues for Deployment
We discuss how the performance of individual recognition models and methods for different gesture sets and their
combination (section 5) affects the usability of DualRing in the above scenarios. First, we observed that gestures
based on original AC signal (pinching), individual attitude (ray pointing), and relative attitude (finger cursor
and finger swiping), which is detected by determined algorithms instead of machine learning models, generally
have satisfying performance for practical use (e.g., an accuracy of 97.36% for 4-class pinching, an accuracy of
99.37% for swiping). The average angular error for swiping was always within 15◦, showing good usability in
both gesture-based interaction (e.g., swiping in four directions) and cursor-based interaction (e.g., drawing a
vertical line). For more complex gestures leveraging fused features, such as contact, tapping, and gripping, they
could be deployed with certain design considerations for usability in our application scenarios. For example, the
size of the tapping gesture set for the smart desk could be shrunk, avoiding assigning functions to gestures with
confusion (e.g., ring finger and little finger). Further, recognition in our applications was designed sequentially
(e.g, a tapping gesture followed by a swiping gesture in the smart desk scenario) and combined organically
to avoid fusing different gesture sets for better detection accuracy. A label smoothing strategy could also be
adopted on the gripping detection to avoid non-stable detection error. Moreover, our cross-set evaluation (section
5.5) demonstrated the feasibility to recognize different gesture sets simultaneously, enabling our smart desk to
recognize tapping gestures for active control and gripping gesture for passive notification simultaneously. The
usability can be further improved by 1) an optimization of the detection method (e.g., collecting more training
data or using a better recognition model) and 2) a fine-grained interaction design.

8 LIMITATIONS AND DISCUSSION
In this section, we discuss the limitations as well as the potential issues related to the practical adoption and
deployment of DualRing.

8.1 Form Factor
Currently, the on-body touch signal detection in our prototypical implementation is based on an external high
frequency AC circuit, which lacks portability. Replacing the AC modules with an RF signal transmitter and a
receiver could simplify the hardware structure and eliminate the wires while preserving the same sensing principle.
In our work, the two electrodes are distributed separately on the thumb and the index finger, transmitting a 12.5
MHz signal into human body. The electrode material and placement, as well as the signal frequency, are topics
worth further exploration. The two IMUs are currently wired to a PC, which limits the application scenarios.
Using a bluetooth module for data transmission can relieve the wire constraint.

The ultimate form of DualRing we envision is that each ring is functionally symmetric, composed of a wireless
RF signal transmitter, a receiver, and a bluetooth IMU module. The user can combine multiple rings, wearing
them on different fingers to achieve different sensing purposes.

8.2 Interaction Space Design
Currently in our study, all gestures were designed by the authors through a brainstorming interview, mainly
aiming to explore the design spaces and possibilities. From the user study, we found that some of the gestures
and the corresponding interaction techniques needed detailed design and further improvement for practical use.
For example, the touching region division could be more compact (e.g., distinguishing touching the edge or the
center of a phalanx) while avoiding to cover hard-to-reach segments. Adapting dynamic cursor speed or bubble
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cursor may also help to relieve participants as well as improving the efficiency. With better design, interaction
techniques enabled by DualRing may bring better user experiences. In the future, we would recruit more users
of different characteristics (e.g., age, culture, etc.) and conduct a study to evaluate and design each gesture and
the corresponding interaction modality carefully, with special attention towards the balance of complexity and
efficiency.

8.3 Dealing with Environmental Interference
Our current algorithm to detect on-body touch signal is based on a simple threshold method that only monitors
the signal amplitude. However, the AC signal amplitude is affected by the user’s physical state and various
environmental factors such as air humidity, skin humidity, and so on, meaning that careful calibration is required
before each use session. It is worthwhile to develop an algorithm to distinguish whether a change in amplitude is
caused by an on-body touch event based on sequential information or information from other sensors, so that
touch signal can be robustly detected.
Regarding the dual IMUs, as we observed, the magnetic data of them is easily affected by the surrounding

magnetic interference. leading to bias and delay in Euler angle calculation. As a result, accurate estimation of
relative pose is difficult. To solve this problem, a solution is to use signals that are not easily interfered (e.g., GPS)
as reference signals.

8.4 Why DualRing?
Another important question to discuss is why we chose to use two IMUs and fixing them to the thumb and the
index finger for gesture sensing. First, relative movement among hand segments, including the deliberately-
performed gestures and the unconscious micro-vibration, can only be sensed with at least two sensors attached
to different segments. Second, the thumb and the index finger are representatives of two main segments of the
hand. When performing a common hand gesture, the index finger often drives the movement of the other three
fingers. For example, when gripping an object, a person would unconsciously grip the object with the thumb
and the index finger, while assisting with the other fingers. Based on these considerations, we believe the sensor
installation of DualRing can provide comprehensive information for hand gesture estimation, which is also
proven in our experiments.

9 CONCLUSION
We present DualRing, a novel ring-form device to sense rich hand information and enable a large interaction
space. DualRing is composed of two IMU rings and a high frequency AC circuit. The two rings are worn on the
user’s thumb and index finger to sense the orientation and the movement of hand segments. The AC circuit is
designed to detect on-body contact signal by measuring the impedance between the thumb and the index finger.
We devise an algorithm to calculate the absolute and relative orientation of the thumb and the index finger, the
thumb-to-finger contact signal, and various features among the two IMUs. Based on the rich sensing information,
we enlarge the design space of ring-based hand interaction, and redivided it into three sub-spaces. By conducting
an experiment to evaluate DualRing’s performance in different gesture sets, we demonstrate the comprehensive
sensing capability of DualRing compared with single-IMU-based solutions. Through a user study, we demonstrate
that the interaction spaces and techniques enabled by DualRing are generally well accepted by users. We believe
DualRing will inspire the exploration of ring-based hand gesture sensing technology to enable more expressive
and more efficient hand interaction.
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