Five papers accepted by ACM MM 2023
Title:DecenterNet: Bottom-Up Human Pose Estimation Via Decentralized Pose Representation
Abstract:Multi-person pose estimation in crowded scenes remains a very challenging task. This paper finds that most previous methods fail to estimate or group visible keypoints in crowded scenes rather than reasoning invisible keypoints. We thus categorize the crowded scenes into entanglement and occlusion based on the visibility of human parts and observe that entanglement is a significant problem in crowded scenes. With this observation, we propose DecenterNet, an end-to-end deep architecture to perform robust and efficient pose estimation in crowded scenes. Within DecenterNet, we introduce a decentralized pose representation that uses all visible keypoints as the root points to represent human poses, which is more robust in the entanglement area. We also propose a decoupled pose assessment mechanism, which introduces a location map to adaptively select optimal poses in the offset map. In addition, we have constructed a new dataset named SkatingPose, containing more entangled scenes. The proposed DecenterNet surpasses the best method on SkatingPose by 1.8 AP. Furthermore, DecenterNet obtains 71.2 AP and 71.4 AP on the COCO and CrowdPose datasets, respectively, demonstrating the superiority of our method. We will release our source code, trained models, and dataset to facilitate further studies in this research direction. Our code and dataset are available in https://github.com/InvertedForest/DecenterNet.
Title:Versatile Face Animator: Driving Arbitrary 3D Facial Avatar in RGBD Space
Abstract:Creating realistic 3D facial animation is crucial for various applications in the movie production and gaming industry, especially with the burgeoning demand in the metaverse. However, prevalent methods such as blendshape-based approaches and facial rigging techniques are time-consuming, labor-intensive, and lack standardized configurations, making facial animation production challenging and costly. In this paper, we propose a novel self-supervised framework, Versatile Face Animator, which combines facial motion capture with motion retargeting in an end-to-end manner, eliminating the need for blendshapes or rigs. Our method has the following two main characteristics: 1) we propose an RGBD animation module to learn facial motion from raw RGBD videos by hierarchical motion dictionaries and animate RGBD images rendered from 3D facial mesh coarse-to-fine, enabling facial animation on arbitrary 3D characters regardless of their topology, textures, blendshapes, and rigs; and 2) we introduce a mesh retarget module to utilize RGBD animation to create 3D facial animation by manipulating facial mesh with controller transformations, which are estimated from dense optical flow fields and blended together with geodesic-distance-based weights. Comprehensive experiments demonstrate the effectiveness of our proposed framework in generating impressive 3D facial animation results, highlighting its potential as a promising solution for the cost-effective and efficient production of facial animation in the metaverse.
Title:Semantics2Hands: Transferring Hand Motion Semantics between Avatars
Abstract:Human hands, the primary means of non-verbal communication, convey intricate semantics in various scenarios. Due to the high sensitivity of individuals to hand motions, even minor errors in hand motions can significantly impact the user experience. Real applications often involve multiple avatars with varying hand shapes, highlighting the importance of maintaining the intricate semantics of hand motions across the avatars. Therefore, this paper aims to transfer the hand motion semantics between diverse avatars based on their respective hand models. To address this problem, we introduce a novel anatomy-based semantic matrix (ASM) that encodes the semantics of hand motions. The ASM quantifies the positions of the palm and other joints relative to the local frame of the corresponding joint, enabling precise retargeting of hand motions. Subsequently, we obtain a mapping function from the source ASM to the target hand joint rotations by employing an anatomy-based semantics reconstruction network (ASRN). We train the ASRN using a semi-supervised learning strategy on the Mixamo and InterHand2.6M datasets. We evaluate our method in intra-domain and cross-domain hand motion retargeting tasks. The qualitative and quantitative results demonstrate the significant superiority of our ASRN over the state-of-the-arts. Code available at https://github.com/abcyzj/Semantics2Hand.
Title:Speech-Driven 3D Face Animation with Composite and Regional Facial Movements
Abstract:Speech-driven 3D face animation poses significant challenges due to the intricacy and variability inherent in human facial movements. This paper emphasizes the importance of considering both the composite and regional natures of facial movements in speech-driven 3D face animation. The composite nature pertains to how speech-independent factors globally modulate speech-driven facial movements along the temporal dimension. Meanwhile, the regional nature alludes to the notion that facial movements are not globally correlated but are actuated by local musculature along the spatial dimension. It is thus indispensable to incorporate both natures for engendering vivid animation. To address the composite nature, we introduce an adaptive modulation module that employs arbitrary facial movements to dynamically adjust speech-driven facial movements across frames on a global scale. To accommodate the regional nature, our approach ensures that each constituent of the facial features for every frame focuses on the local spatial movements of 3D faces. Moreover, we present a non-autoregressive backbone for translating audio to 3D facial movements, which maintains high-frequency nuances of facial movements and facilitates efficient inference. Comprehensive experiments and user studies demonstrate that our method surpasses contemporary state-of-the-art approaches both qualitatively and quantitatively.
Title:Single-Stage Multi-human Parsing via Point Sets and Center-based Offsets
Abstract:This work studies the multi-human parsing problem. Existing methods, either following top-down or bottom-up two-stage paradigms, usually involve expensive computational costs. We instead present a high-performance Single-stage Multi-human Parsing (SMP) deep architecture that decouples the multi-human parsing problem into two fine-grained sub-problems,i.e., locating the human body and parts. SMP leverages the point features in the barycenter positions to obtain their segmentation and then generates a series of offsets from the barycenter of the human body to the barycenters of parts, thus performing human body and parts matching without the grouping process. Within the SMP architecture, we propose a Refined Feature Retain module to extract the global feature of instances through generated mask attention and a Mask of Interest Reclassify module as a trainable plug-in module to refine the classification results with the predicted segmentation. Extensive experiments on the MHPv2.0 dataset demonstrate the best effectiveness and efficiency of the proposed method, surpassing the state-of-the-art method by 2.1% in AP50p, 1.0% in APvolpsup>, and 1.2% in PCP50. Moreover, SMP also achieves superior performance in DensePose-COCO, verifying generalization of the model. In particular, the proposed method requires fewer training epochs and a less complex model architecture. Our codes are released in https://github.com/cjm-sfw/SMP.