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A B S T R A C T   

Cough event detection is the foundation of any measurement associated with cough, one of the primary 
symptoms of pulmonary illnesses. This paper proposes HearCough, which enables continuous cough event 
detection on edge computing hearables, by leveraging always-on active noise cancellation (ANC) microphones in 
commodity hearables. Specifically, we proposed a lightweight end-to-end neural network model — Tiny- 
COUNET and its transfer learning based traning method. When evaluated on our acted cough event dataset, 
Tiny-COUNET achieved equivalent detection performance but required significantly less computational re-
sources and storage space than cutting-edge cough event detection methods. Then we implemented HearCough 
by quantifying and deploying the pre-trained Tiny-COUNET to a popular micro-controller in consumer hearables. 
Lastly, we evaluated that HearCough is effective and reliable for continuous cough event detection through a 
field study with 8 patients. HearCough achieved 2 Hz cough event detection with an accuracy of 90.0% and an 
F1-score of 89.5% by consuming an additional 5.2 mW power. We envision HearCough as a low-cost add-on for 
future hearables to enable continuous cough detection and pulmonary health monitoring.   

1. Introduction 

Pulmonary diseases are among the most prevalent classes of human 
health problems and a significant cause of mortality worldwide [1]. 
Cough is one of the most common and prominent symptoms associated 
with many pulmonary diseases, such as COPD, asthma, and tuberculosis. 
Automatically analyzing the coughing behavior can help diagnose the 
pulmonary health conditions and indicate the improvement or deterio-
ration during treatment [3–5]. The key to achieve this is to capture and 
monitor the cough continuously [2,4,6–8,11,12]. 

The prevalence of ubiquitous computing enables new opportunities 
for cough monitoring. Specifically, earphones have become one of the 
most ubiquitous wireless accessories [13]. Modern earphones often go 
beyond being just audio listening devices, offering an expanding suite of 
sensors and micro-controllers with computational capability. Recent 
inventions and adoptions of active noise cancellation (ANC), a technique 

that utilize microphones to pick up environmental noises and the 
speaker to generate anti-phase acoustic signals for noise reduction, en-
ables a more enjoyable listening experience2. These ANC microphones, 
which come with embedded computational units, provide a unique 
opportunity for edge intelligence. More importantly, these microphones 
are designed to be continuously working in the background, which 
brings the possibility of continuous health monitoring [34]. We envision 
opportunities for pulmonary health assessment using these edge 
computing ubiquitous earphones. 

Using ubiquitous earphones for cough detection has advantages over 
other sensing solutions. Compared to smartphones [10,14], which are 
often put into enclosed places such as pockets or bags, earphones have 
much less obfuscated noise. Compared to smart speakers [9] that are 
located at certain places in the environment, earphones are wearable 
and can better capture users’ cough sounds regardless of their location. 
Further, the earphone is close to the user’s mouth; thus, it can capture 
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clear coughing sounds. 
Among all cough-related measurements, cough event detection is 

fundamental. Therefore, our goal is to enable effective, reliable, and 
privacy-safe continuous cough event detection method on edge 
computing ubiquitous earphones. In this paper, we present HearCough, 
a technique that repurposes always-on ANC microphones in the ubiq-
uitous hearable hardware for continuous cough monitoring in daily 
scenarios. Our method is entirely on-advice, running on the computing 
unit in the earphone instead of processing the privacy-sensitive audio 
signal off the device (e.g., on the cloud). Despite the rich literature on 
cough detection [4–10,15–17], we are the first to validate the possibility 
of audio-based continuous cough detection using consumer hearables by 
finishing deployment of our detection model on hardware of consumer 
hearables and evaluating its effectiveness and reliability.. To achieve 
this purpose, we first proposed a lightweight end-to-end deep learning 
model - Tiny-COUNET that adopts a one-dimensional convolution neu-
ral network architecture and requires no pre-processing. As Fig. 1 shows, 
we adopted transfer learning to train Tiny-COUNET on public sound 
event dataset with a series of data augmentation methods. Then we 
evaluated Tiny-COUNET’s performance on our evaluation dataset with 
acted cough and non-cough sounds, which were collected using the ANC 
microphones in two modern earphone form factors - earbud and head-
phone. Results indicate that Tiny-COUNET achieves an equivalent 
detection performance compared with the existing cutting-edge cough 
event detection methods — FluSense [9] and DeepCough [8]. However, 
Tiny-COUNET requires significantly less computational resources and 
spaces. Furthermore, Tiny-COUNET only requires microphones that are 
available on all ANC earphones. Then we implemented a HearCough 
wearable prototype using the existing ANC microphone in commodity 
earphones and a popular earphone micro-controller — BES2300YP. We 
quantized and deployed the pre-trained Tiny-COUNET to the micro- 
controller to build the continuous cough event detector. 

Finally, we evaluated HearCough’s effectiveness and reliability using 
cough sound data collected from a field study with 8 patients. As a result, 
it achieves a detection accuracy of 90.0% and an F1-score of 89.5% by 
consuming an additional 5.2 mW power. To our best knowledge, 
HearCough is the first work that validates the possibility of audio-based 
continuous cough detection using ubiquitous earphones. We envision 
HearCough to be a low-cost add-on for future hearables to enable 
continuous cough detection and pulmonary health monitoring. 

This paper’s main contributions have three folds. 
1. We present a lightweight end-to-end deep learning model — Tiny- 

COUNET with its training method for continuous cough sound event 
detection. With a minimal requirement on storage space of 480 kB and 
computational requirement of 16.2M FLOPS, Tiny-COUNET can detect 
the cough event with an accuracy of 89.7% and an F-1 score of 89.9% on 
our collected acted cough dataset. 

2. We present HearCough, a technique that enables continuous 
cough events detection using the built-in always-on ANC microphones in 
edge computing hearables. We prototyped HearCough wearable hard-
ware with the existing ANC microphone in commodity earphones and a 
micro-controller — BES2300YP, on which the pre-trained Tiny-COUNET 

is deployed. 
3. We evaluated HearCough’s effectiveness and reliability on cough 

sound dataset from a field study with 8 patients. Results show that 
HearCough can realize cough event detection every 0.5 seconds at an 
accuracy of 90.0% and an F1-score of 89.5% by consuming an additional 
power of 5.2 mW. 

2. Tiny-COUNET: An End-to-End deep learning model for cough 
detection 

In this section, we present our end-to-end deep learning models for 
cough event detection, named Tiny-COUNET and its variants. These 
variants differ in input sizes, requiring varying computational resources. 
Finally, we present the training dataset that combines multiple open- 
access sound event datasets and the transfer learning procedure. 

2.1. Tiny-COUNET 

Tiny-COUNET is an end-to-end deep learning model designed to 
deploy on embedded processing units such as ARM M4F. The architec-
ture was inspired by the work of Abdoli et al. [18] and VGG [19]. Tiny- 
COUNET takes a raw audio stream as input and outputs the probability 
of the existence of cough sound events. Tiny-COUNET learns a wave 
representation of inputs when processed through the network. The 
network architecture is shown in Fig. 2. 

The base architecture of Tiny-COUNET consists of one input layer, 
four convolution blocks, and three fully connected layers. Each convo-
lution block has two convolution layers, followed by a pooling layer and 
dropout with one- dimensional convolution filters. Tiny-COUNET’s last 
convolution block adopts a global average pooling layer that averages 
the 64 filters into a one-dimensional array. This global average pooling 
layer generates constant output size, regardless of the input size. 
Therefore, it allows experimenting with variable sampling rates and 
time window length while keeping the model architecture intact. 
Although the global average pooling layer comes at the cost of losing 
positional encoding of learned abstract features, it generates a smaller 
number of outputs compared to flattening the output of the last 
convolution layer. Thus it requires a smaller weight matrix when con-
nected with the fully connected layer. Tiny-COUNET has 70 thousand 
parameters that require 480 kB storage with 16-bit integer data format 
at an 11.0 kHz sampling rate. The low computational needs and small 
buffer size enable the model to be deployed to an ARM M4F (230 MHz) 
micro-controller. 

We designed Tiny-COUNET to be end-to-end for the following three 
reasons. 1) Audio spectrum [9,15,16] or short-time Fourier transform 
(STFT) [8] based deep learning methods require more parameters thus 
more computational resources. 2) Pre-processing for extracting spec-
trogram or other features (e.g., Mel-frequency cepstrum coefficients 
(MFCC) [20]) requires significant computational load. 3) End-to-end 
deep learning methods take raw audio signals as input; thus, do not 
miss any vital information. 

Fig. 1. Overview of HearCough.  
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2.2. Input size 

Each frame’s input size, consisting of an array of audio samples, 
equals the time duration by the sampling rate by the bit depth. Notably, 
a smaller input size can significantly reduce the size of the intermediate 
maps in the deep neural network, making it easier to be deployed on the 
microcontroller. We present the reasons for parameterizing the time 
duration per frame, sampling rate, and bit depth below. 

2.2.1. Time duration per frame 
The statistical analysis of cough audio samples shows that the indi-

vidual cough instance was between 0.15 seconds to 0.4 seconds, with an 
average of 0.32 seconds. Although continuous cough sessions can last 
over 10 seconds, the cough event detector can repeatedly pass the whole 
session through a moving window. Our pre-study results show that a 
time duration that is longer than 0.5 seconds did not affect the cough 
event detection performance significantly, while a time duration shorter 
than 0.4 seconds deteriorated the performance. We observed consistent 
results across different sampling rates. Therefore, we adopted the time 
duration per frame as 0.5 seconds. 

2.2.2. Sampling rate 
A lower sampling rate decreases the input size but suffers from losing 

the high-frequency information. We evaluated the effects of 5 sampling 
rate parameters, including 44.1 kHz, 32 kHz, 22 kHz, 16 kHz, and 11 
kHz. 

2.2.3. Bit depth 
CMSIS-NN [21] optimized 16-bit-integer based neurons and opera-

tions for deep learning on ARM M4F series of micro-controllers. Further, 
same bit-depth was used in the literature [8,9], thus we adopted 16-bit 
as the bit depth. 

2.3. Tiny-COUNET training 

We adopted transfer learning to train Tiny-COUNET and its variants 
to increase the robustness against irrelative sound events. As shown in 
Fig. 1, we first trained a 42-classes sound event classifier using the Tiny- 
COUNET with multiple open-access sound event datasets. Then we 
applied transfer learning to the trained Tiny-COUNET for binary cough 
event detection. We fine-tuned the model with open access cough sound 
dataset and a portion of our acted cough dataset during the transfer 
learning procedure. Below, we describe the training dataset, data 
augmentation, the training procedure. 

2.4. Training dataset 

We collected the following multi-class sound event and binary cough 
event datasets to train the Tiny-COUNET.   

• Multi-class Sound Event Dataset. 42 sound event classes were 
selected from online open-access sound event datasets to train the 
general-purpose sound event classifier. These sound event dataset 
includes ESC-50 [22] and a subset of the Freesound [23] for 
FSDKaggle2018 [24] audio-tagging competition. Specifically, 36 
classes were chosen from ESC-50, and 41 classes were chosen from 
Freesound. These sound events are selected from different categories 
including natural sound, musical instrument sound, animal sound, 
human sound, transportation sound, etc., including most of the non- 
cough sound events in users’ life. The full list of sound events are: 
thunder, wind, water drops, tearing, sneezing, writing, finger snap-
ping, fart, keyboard typing, cough, laughter, guitar, snare drum, 
bass/drum, double bass, flute, clarinet, harmonica, oboe, saxophone, 
trumpet, violin, piano, tambourine, burping/eructation, bus, drawer 
opening/closing, firework, gunshot, keys jangling, microwave, scis-
sor, shatter, telephone, vacuum cleaner, dog barking, bird chirping, 
door knocking, cowbell, meow, squeak, and no sound. The dataset 
consists of a total of 18 hours (2 hours from the ESC-50 and 16 hours 
from the Freesound) of mono-channel audio, with a sampling rate of 
44.1 kHz and bit-depth of 32-bit. The data was equally distributed 
across different sound event classes with a 10% variance in time 
duration. The dataset consists of a total of 18-hours (2 h from the 
ESC-50 and 16 h from the Freesound) of mono-channel audio, with a 
sampling rate of 44.1 kHz and bit-depth of 32-bit. The data was 
equally distributed across different sound event classes with a 10% 
variance in time duration.  

• Binary Cough Sound Event Dataset. This binary cough sound event 
dataset is constructed from Audio-set [25], ESC-50, and Freesound. 
All the audio samples are mono-channel with a sampling rate of 44.1 
kHz and a bit-depth of 32-bits. In total, we collected 12,000 cough 
audio samples that last for 6042 seconds (1.68 hours). 

2.5. Data augmentation 

We applied data augmentation methods to the training dataset to 
expand its size and reduce the model’s susceptibility to environmental 
factors. The data augmentation consisted of four stages, which are 1) 
standard audio data augmentation, 2) environmental noise augmenta-
tion, 3) audio mixup, and 4) data formatting and random selection. The 
data augmentation procedure is shown in Fig. 3. 

Fig. 2. Tiny-COUNET architecture.  
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2.5.1. Standard audio data augmentations 
Standard audio data augmentation approaches included 1) gain 

adjustment (x0.5 to x2), 2) time shift (− 0.15 to 0.15 seconds), 3) pitch 
shift (x0.5 to x2), 4) speed adjustment (x0.5 to x2), and 5) random 
masking by making 0–10% of random points zero. These adjustments 
are applied with a 50% probability each to preserve some originality. 

2.5.2. Environmental noise augmentation 
The environmental noise augmentation included: 
1) mixing background noise from various environmental settings and 

2) adding additive white Gaussian noise to simulate possible electro-
magnetic device interference. The augmentation was also applied with a 
random 50% probability. 

Specifically, the background noises included sounds from the 
Audioset and environmental sound classification (ESC) [22] dataset. The 
selected environmental sounds included mundane event sounds, natural 
sounds, and daily scenario sounds. Machine simulated Gaussian noise3 

was added but maintained a minimum signal–noise ratio (SNR) of 25 dB. 

2.5.3. Audio mixup 
We applied audio mixup to improve the model’s generalizability by 

diversifying the training distribution. The audio mixup simulates a 
scenario where multiple sounds are generated together (e.g., the sound 
of cough and whistle simultaneously). Given two audio samples, xa from 
class A and xb from class B, we generated a mixup sample xm as λxa + (1- 
λ)xb, where λ ∈ [0.7, 1]. We considered xm belonging to class A since λ >
0.5. We randomly applied the audio mixup to 50% of the training data 
with a random λ value. 

2.5.4. Data formatting and random selection 
Since Tiny-COUNET and its variants require different input sizes, we 

re- sampled the source audio to match each model’s parameter, 
including sampling rate and bit depth (e.g., then-chip deployed Tiny- 
COUNET model requires a sampling rate of 11.0 kHz and a bit-depth 
of 16 bits. As the dataset has a range of audio lengths, random offset 
and trimming were employed to select the required audio clip length. 
Finally, we normalized all audio samples. 

2.6. Training procedure 

The training procedure has two stages. We firstly trained a general- 
purpose classifier on the multi-class sound event dataset with data 

augmentation. We then applied transfer learning and fine-tuned the 
trained model for cough event detection. Below we describe each stage 
with details. 

2.6.1. Training model for general-purpose sound event classification 
We firstly modified Tiny-COUNET for multi-class sound event clas-

sification. This is achieved by replacing the last fully connected layer 
(FC < 1 > ) with a 42-node fully connected layer (FC < 42 > ) and 
changing the Sigmoid activation function to Softmax. Then we trained 
the model on a multi-class sound event dataset after data augmentation 
till convergence. The data augmentation workflow was running in real- 
time for each epoch. Tiny-COUNET were trained using a batch size of 64. 
As the Tiny-COUNET variants had a varied number of parameters, and 
we experimented with five different sampling rates of audio samples, the 
training time and amount of epoch to reach model convergence varied 
based on task complexity. For instance, Tiny-COUNET (0.5 s@11.0 kHz) 
was trained with a batch size of 64, and it took 2830 epochs to reach the 
convergence. 

2.6.2. Applying the transfer learning for cough event detection 
We firstly replaced back the converged model’s last fully connected 

layer — FC < 42 > to FC < 1>, and the activation function — Softmax to 
Sigmoid. Then we trained the last two fully connected layers of the 
model mentioned above till convergence on the binary cough sound 
event dataset (see section 2.4). Finally, we fine-tuned the entire network 
at a lower learning rate (1e-4 to 1e-5). The data augmentation workflow 
was running in real-time for each epoch. Similar to the training model 
for general-purpose sound event classification, the complexity of the 
model and variety of sampling rates resulted into a varied number of 
epochs to reach convergence for each combination of model and sam-
pling rate. For instance, Tiny-COUNET (0.5 s@11.0 kHz) was retrained 
with a batch size of 64. Each batch contains 32 cough and non-cough 
sound samples. Each epoch includes 375 batches. Tiny-COUNET took 
1500 epochs to reach the convergence. 

3. Tiny-COUNET evaluation and result 

This section presents the data collection hardware, the collected 
evaluation dataset with cough and non-cough sounds, the evaluation 
procedure, and the major results. 

3.1. Evaluation dataset 

We present the hardware and the user study to collect real-scenario 
audio samples using built-in ANC microphones in commodity hearables. 
The acted cough audio samples and random non-cough sound events 

Fig. 3. Data Augmentation Flow.  

3 https://medium.com/analytics-vidhya/adding-noise-to-audio-clips- 
5d8cee24ccb8 
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were used as the dataset to evaluate the machine learning model 
described in section 2. 

3.1.1. Data collection hardware 
Figure 4 shows the hardware setup we deployed for our data 

collection. It has one SONY WF-1000XM3 true wireless stereo (TWS) 
ANC earbud4 and one SONY WH-1000XM4 wireless ANC headphone5. 
We collected the raw audio signals from four microphones by wiring the 
raw audio signal directly from the always-on ANC microphones, as Fig. 4 
shows. The four microphones include: 

1) the left outer-ear-cup feed-forward microphone of the SONY WH- 
1000XM4 headphone (Fig. 4A); 1) the left inner-ear-cup feedback 
microphone of the SONY WH-1000XM4 headphone (Fig. 4B); 3) the 
right inner-ear feedback microphone of the SONY WF-1000XM3 earbud 
(Fig. 4C); 4) the right outer-ear feed-forward microphone of the SONY 
WF-1000XM3 earbud (Fig. 4D). The four aforementioned sound sources 
were simultaneously recorded with a Zoom multi-track handy recorder 
(model H6)6. All the microphones were powered by the handy recorder 
with VXLR to 3.5 mm converters. We set the Zoom H6 recorder’s sam-
pling rate at 96 kHz and resolution at 24 bits. The gain values of all 
channels were set to 5 out of 10. For each recording session, the Zoom 
H6 recorder generates one audio file in WAV format for each input 
channel with all files time-synchronized. Further, We utilized a noise 
meter (Smart Sense AR824) to measure the environmental noise level7. 

3.1.2. Acted cough sound event collection 
We first conducted a user study to collect acted cough sound event 

dataset under various background noises. The study was approved by 
the Institutional Review Board (IRB). All participants agreed to open- 
source their cough sound data for public research purposes. 

3.1.2.1. Participants. We recruited 20 participants with an average age 
of 21.3 (s.d. = 2.6) from a local university. None of them had respiratory 
disease. 

3.1.2.2. User study design and procedure. Here we define the data 
collection on each participant as one trial. Each trial has three conditions 
in different environments, including a quiet room (43 dB), a sidewalk of 
the street (64 dB), and a noisy canteen (75 dB) during rush hours. We 
recorded two sessions of acted cough events under each condition. 
During each session, participants coughed 10 times. 

Firstly, participants were informed of the user study’s purpose and 
procedure. All participants signed a data open-source agreement since 
they all agreed to do so during recruitment. Then they wore the hard-
ware and practiced multiple times in the quiet room. Through the whole 
user study, each participant wore the SONY WH-1000XM4 headphone 

on the right side and the SONY WF- 1000XM3 earbud on the left side, as 
Fig. 5 shows. After the practice, the experimenter guided each partici-
pant to record two sessions of cough data under each environmental 
condition. We followed the order of the quiet room, the sidewalk, and 
then the noisy canteen. 

3.1.3. Non-cough sound event collection 
To further evaluate our method’s false-positive performance, the 

experimenter wore the hardware and went to 13 different locations for 
data collection of random non-cough sound events. These locations 
include a subway train (96 dB), a pedestrian street (78 dB), two offices 
(58 dB and 46 dB), two bus stops (90 dB and 84 dB), a moving car (76 
dB), two households (49 dB and 52 dB), two shopping malls (69 dB and 
77 dB), and two canteens (69 dB and 72 dB). The experiment recorded 
various actions, including standing still (5032.71 s), walking (4312.26 s) 
and speaking (5253.72 s). Specifically, we recorded more speaking 
events due to its similarity with cough events [10]. We recorded 2 min of 
audio data in each location, resulting 2 × 13 × 3 = 78 minutes audio 
recordings from each microphone. 

3.1.4. Acted cough sound event dataset 
In total, we collected 20 participants × 4 microphones × 6 sessions 

× 10 cough samples = 4800 cough audio samples under various back-
ground noises. We manually labeled and segmented cough events. The 
dataset collected two types of cough: single cough and continuous 
cough. On average, each single cough lasts for 0.37 seconds (s.d. = 0.12) 
and each continuous cough lasts for 0.79 seconds (s.d. = 0.30). We 
obtained 3050 single cough events and 1750 continuous cough events, 
respectively. 

3.2. Evaluation and result 

We present and compare Tiny-COUNET’s performance against 
existing baseline cough event detection methods. We also analyze the 
effect of sampling rate (input size) to the detection performance. All 
machine learning models were implemented and trained using 
TensorFlow8. 

3.2.1. Baselines 
We selected and re-implemented two existing cutting-edge cough 

event detection methods as baselines. Both Tiny-COUNET and these two 
baselines were trained and evaluated on the same training and valida-
tion dataset for a fair comparison. We also selected two cough event 
detection methods based on earbuds platforms. In total, we compared 
Tiny-COUNET with four baselines. 

Fig. 4. The hardware setup and the location illustration of the four ANC mi-
crophones. This figure was recreated using product pictures from official 
website and 52Audio. 

Fig. 5. Each user wore the earbud on the left ear and the earphone on the right 
ear during the user study. 

4 https://www.sony.com/electronics/truly-wireless/wf-1000xm3  
5 https://www.sony.com/electronics/headband-headphones/wh-1000xm4  
6 https://zoomcorp.com/en/us/handheld-recorders/handheld-recorders/h6/  
7 http://www.52audio.com/ 8 https://www.tensorflow.org/ 
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(1) FluSense [9]. FluSense is a convolution neural network (CNN) 
that enables accurate cough event and cough type detection. It 
adopted two-dimensional CNN on the spectrogram extracted 
from the raw audio stream. We adopted a 1-second window 
duration according to the original paper. We also adopted a 
sampling rate of 8 kHz according to the original paper.  

(2) DeepCough [8]. Similar with FlueSense, DeepCough adopted 
CNN architecture on the STFT + MFCC features extracted from 
the raw audio for cough event detection. Specifically, we used a 
superior version of the DeepCough by running it on a 320 ms 
audio clip with a 64 ms moving window.  

(3) CoughBuddy [16]. CoughBuddy adopted a sensor-fusion method 
usingsignals from both the microphone and the inertial mea-
surement unit (IMU). It utilized feature-based classification al-
gorithms and dynamic time warping (DTW) for cough detection. 
We did not re-implemented this work because of the vague of the 
specific audio algorithms. Nevertheless, the work was worth 
comparison since they were designed for earphones.  

(4) CoughTrigger [15]. CoughTrigger utilizes a lower-power- 
conception IMU in earbuds as a cough detection activator using 
a multi-center classifier (MCC) to trigger the microphone for 
audio signal processing and classification. We selected this 
method as one of our baselines for the same reason as our se-
lection of CoughBuddy. 

3.2.2. Evaluation metrics 
Aiming to produce a micro-controller deployable solution, we 

consider the following threefold evaluation metrics: 1) detection per-
formance, 2) size of parameters and intermediate variables, and 3) 
inference latency. The detection performance is directly related to the 
effectiveness and reliability, while second and third evaluation metrics 
correlate with the usability and adaptability of the micro-controller. 
Below we describe each metric in detail.  

• Detection performance. We used overall accuracy, specificity, 
sensitivity, and F-1 score as standard performance metrics. 

• Size of parameters and intermediate variables. The edge com-
puter unit has limited onboard storage that stores the model and the 
temporary inputs and outputs at each layer. Thus we measured the 
size of model parameters and intermediate variables as one metric.  

• Inference latency. The inference latency has to be less than the 
inference window’s duration to facilitate the continuous cough event 
detection. The complexity of the model and the clock rate of the 
computing unit directly impacts the latency. Thus, we measured and 
compared the computing latency among different machine learning 
models. 

3.2.3. Results and findings 
In this evaluation, all machine learning models were implemented 

and trained on a workstation with Intel Xeon E5-2670 Octa-Core CPU, 
64 GB RAM, and 12 GB NVIDIA Titan X GPU. We present the results and 
major findings below. 

Tiny-COUNET is effective for cough event detection. As shown in 
Table 1, Tiny-COUNET with a sampling rate below 16.0 kHz achieves 
comparable detection performance when compared to the baseline 
methods. However, Tiny-COUNET has significantly less requirement in 
computing resources and storage space. Meanwhile, Tiny- COUNET 
yields the lowest computing latency. Compared with CoughBuddy and 
CoughTrigger, Tiny-COUNET has less requirement for input data since 
multi-modal data is not available on the majority of earbuds platforms. 

Worth mentioning, the two baselines — Flusense and DeepCough — 
require additional computing resources to calculate the spectrogram and 
short-time Fourier transform (STFT), respectively. Since these pre- 
processing steps vary depending upon the implementation, Table 1 ex-
cludes the related computational complexity. Since Tiny-COUNET is 
end-to-end, it does not require any pre- processing. Therefore, Tiny- 

COUNET is more efficient and suitable for on-chip deployment 
compared to the baselines. 

A sampling rate at 22 kHz is sufficient for cough event detection. 
A higher sampling rate benefits the recognition performance since it 
provides more high-frequency features. However, we observed a slight 
decrease (0.3%) in detection performance when down-sampling the 
audio from 44.1 kHz to 22.05 kHz. Then a distinct decrease in the 
detection performance happens when the sampling rate is below 16 kHz. 
Thus, a sampling rate at 22 kHz is sufficient for Tiny-COUNET to achieve 
accurate cough event detection. 

Tiny-COUNET (0.5 s@11.0 kHz) is the best fit for the on-chip 
deployment. Considering the detection performance, the computa-
tional need, and the latency, Tiny-COUNET (0.5 s@11.0 kHz) is more 
compatible with the micro-controllers with only hundreds of MHz of 
clock speed and ultra-low storage capacity (e.g., hundreds of kB). 
Therefore, in section 4, we adopted Tiny-COUNET (0.5 s@11.0 kHz) for 
quantization and on-chip deployment. 

4. HearCough: Continuous cough event detection on hearables 

This section presents the key components of HearCough, including 
the hardware prototype and the on-chip deployment of the Tiny- 
COUNET. 

4.1. HearCough wearable prototype 

e deployed our model on a popular micro-controller — BES2300YP 
by the Bestechnic9. It was adopted by many popular true wireless stereo 
(TWS) earphones, such as JBL FREE II, Samsung Galaxy Buds Live, and 
Huawei FreeBuds 2 Pro. It has dual ARM-Cortex M4F processors with up 
to 300 MHz CPU, 992 kB SRAM, and 4 MB flash storage. We only use one 
single processor in this work since the other processor runs the Bluetooth 
stack and digital signal processing (DSP) related algorithms. Further, the 
SRAM is shared by the two processors. The Bluetooth and the operating 
system take more than 400 kB of the SRAM. To prevent the memory 
overflow, we limited the SRAM space usage for the machine learning 
model to be around 500 kB. Fig. 6C shows the development board that 
run the pre-trained Tiny-COUNET (0.5 s@11 kHz) for cough sound 
event detection and evaluation. The board is powered at 5 V. The three 
analog microphone ports include two for active noise cancellation and 
one for speech audio collection. During the evaluation, the audio sam-
ples were streamed onto the on-chip SRAM using an TF card (8 GB) 
through SPI protocol. The data collection wearable is a necklace pendant 
with its hardware as shown in Fig. 6B. Inside the wearable prototype, we 
designed a printed circuit board (PCB) with the BES2300YP micro- 
controller that records the audio signal from the analog microphone, 
as shown in Fig. 6C. The audio signal is streamed to another PCB with 
the TF card. The wearable prototype is powered with a 130 mAh Li-Po 
battery that can continuously record for 6 h. It starts the recording 
when the switch is ON and stops when the switch is OFF. The audio is in 
WAV format, with the sampling rate at 48 kHz and encoding depth at 16 
bits. We adopted an always-on feed-forward microphone in a Bose 
Quietcomfort 20 earbud10 as Fig. 6D shows. This is to evaluate the 
scalability of HearCough to different microphone hardware in com-
modity hearables. 

4.2. On-chip model quantization, deployment and optimization 

In our implementation, we adopted the Tiny-COUNET with 0.5 s @ 
11025 Hz input size for on-chip deployment. This is because only the 
Tiny- COUNET with the parameters mentioned above (480 kB) can run 
on the micro-controller due to the space limit of around 500 kB. We 
adopted a moving window strategy to store the input audio stream on 

9 http://www.bestechnic.com/Home/Index/index/lan_type/2 
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the SRAM. Therefore, HearCough requires 2 window duration of data 
stored on the SRAM, resulting in an extra space overhead of 11 (kHz) ×
16 (bit depth) / 8 (bits per Byte) × 1 (second) = 22 kB. Therefore, the 
continuous cough event detection algorithm on the BES2300YP micro- 
controller consumes 480 kB + 22 kB = 502 kB SRAM space in total. 

The pre-trained Tiny-COUNET’s weights and activations were stored 
in a 32-bit float data format. Since the ARM-M4F chip-set does not 
support float-point arithmetic, the model must be quantized before 
deployment. Therefore, we transformed the Tiny-COUNET using CMSIS- 
NN [21] compiler. We firstly converted the floating-point values to 
fixed-point, considering the compatibility and computational efficiency. 
Specifically, we adopted a 16-bit integer data format to avoid significant 
accuracy reduction. Therefore, all weights and activations were quan-
tized symmetrically around zero with power-of-two scaling using the 
bitwise shifting function in the CMSIS-NN kernel. All the layers and 
functions of Tiny-COUNET are available in the CMSIS-NN library. We 
further optimized the deployed Tiny-COUNET by identifying the most 
suitable implementations in different versions of CMSIS-NN kernels 
depending on the values of the layer dimensions. 

Finally, we built the HearCough prototype by deploying the Tiny- 
COUNET on the BES2300YP micro-controller using the Keil MDK10 

software development environment. Thus HearCough can continuously 
detect the cough sound event in the background. To further lower the 
computing load and power consumption, we added an additional 
screening method with an adaptive threshold. The threshold is set to be 
twice the average amplitude of the last 5 s of audios. Therefore, Hear-
Cough activates the Tiny-COUNET for cough event detection only when 
the average amplitude of the current 0.5-second audio clip is above the 
threshold. 

5. HearCough evaluation and result on cough data from patients 

This section describes the field study for further evaluating Hear-
Cough’s performance on continuous cough event detection with actual 
patients, including the study design, study procedure and the evaluation 

results. 

5.1. Participants 

We recruited 8 patients who suffered from pharyngitis (P1, P5, P6, 
P7), bronchitis (P2, P3), allergy (P8), or fever (P4). They have an 
average age of 31.0 (s.d. = 11.9). We recruited all the participants from a 
local hospital. They coughed in daily routine with different counts and 
frequencies. All participants were tested negative for the Covid-19. The 
field study was approved by the Institutional Review Board (IRB). 

5.2. Study design and procedure 

We first introduced the purpose and the device of the study to the 
participants. Participants randomly picked one device for either left or 
right ear. We asked participants to wear the device while performing 
daily routine tasks for 5 hours. Therefore, for each participant, we ob-
tained 5 hours of recording data. Finally, we conducted a quick follow- 
up interview. 

5.3. Data labeling 

We collected 5 × 8 = 40 hours audio recordings. We first applied a 
threshold to filter out irrelevant sound events such as quiet room, As a 
result, 17.03 hours of audio recordings were left. Then we sampled all 
recording files into 20-second audio clips. Then we recruited 12 raters 
into 4 groups to identify and segment cough events in all the audio clips. 
Raters in the same group process the same audio clip set (4.25 hours). 
We consider an audio clip valid as at least 2 out of 3 raters labeled as 
positive. In total, we collected 2713 cough audio event samples. There 
are 2041 single cough events and 336 continuous cough events. The 
single cough events have an average duration of 0.38 (s.d. = 0.32) 
seconds. The continuous cough events average time duration of 1.03 (s. 
d. = 1.41) seconds. Continuous cough events were segmented into 
multiple single cough events for the evaluation. 

Table 1 
Evaluation results of different models with various input size. Acc., Rec., Spec., and F1 represent Accuracy, Recall (Sensitivity), Specificity, and F1-Score.  

Model Input Size Flops (M) Space (kB)* Acc. Sen. Spec. F1 Latency (ms) 

Tiny-COUNET 0.5 s @ 44.1 kHz  64.9 1514  92.9%  93.2%  92.6% 92.9% 16.8 ± 4.2 
Tiny-COUNET 0.5 s @ 32.0 kHz  47.0 1136  92.5%  91.4%  93.7% 92.6% 11.1 ± 1.8 
Tiny-COUNET 0.5 s @ 22.05 kHz  32.5 824  92.7%  93.6%  91.9% 92.6% 8.0 ± 1.7 
Tiny-COUNET 0.5 s @ 16.0 kHz  23.5 636  91.3%  90.4%  92.2% 91.4% 6.5 ± 1.2 
Tiny-COUNET 0.5 s @ 11.0 kHz  16.2 480  89.7%  88.3%  91.1% 89.9% 5.2 ± 0.1 
FluSense+ 1.0 s @ 8.0 kHz  56.4 882  87.2%  87.7%  86.7% 87.1% 7.0 ± 2.5 
DeepCough+ 0.32 s @ 16.0 kHz  10.0 1200  91.7%  89.2%  94.5% 91.9% 10.0 ± 3.3 
CoughBuddy# —  — —  88.8%  83.0%  91.3% 83.2% — 
CoughTrigger# —  — —  73.0%  82.0%  55.0% —% — 

* The space includes model parameters and intermediate variables in 16-bit integer data format. 
+ We exclude the requirement in computational resources and storage space for pre-processing. 
# We exclude the metrics uncertain from the original paperworks for models we did not re-implement. 

Fig. 6. The data collection wearable and hardware in the field study. A: The patient wore the necklace hardware during the field study. B: The necklace prototype for 
collecting cough sound events. C: The printed circuit boards and wiring for the HearCough prototype. D: The feed-forward microphone’s location in the earbud. 

10 https://www2.keil.com/mdk5 
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5.4. Results and findings 

We further fine-tuned the pre-trained Tiny-COUNET with our 
collected acted cough and non-cough dataset (section 3.1.2) with data 
augmentation methods in section 2.5. We splited the acted cough and 
non-cough dataset into training set and validation set, using early 
stopping strategy to avoid overfitting. We re-trained Tiny-COUNET for 
400 epochs, which is around the early stopping point. This is to further 
increase Tiny-COUNET’s performance on cough event detection. Then 
we deployed the re-trained Tiny-COUNET with the steps presented in 
section 4. Finally, we evaluated its performance using the cough sound 
data and non-cough sound data from real patients under various con-
ditions. We balanced this data by randomly choosing an equal amount of 
non-cough sound audios. We describe our major results and findings 
below. 

5.4.1. Detection Performance and Error Analysis 
Results show that HearCough achieved 90.0% accuracy, 85.2% 

sensitivity, 94.8% specificity, and 89.5% F1-score on the cough sound 
dataset from the real patients. We believe that the transfer learning 
presented in section 2.6 has a significant contribution to HearCough’s 
high performance. Therefore, Tiny-COUNET learned the features from 
the cough sound and features from a comprehensive set of non-cough 
sound events. 

In order to further analyse the performance, we exported the false- 
recognized samples and recruited 3 experienced raters different from 
12 raters in 5.3. In aggregate, 246 false-positive samples and 422 false- 
negative samples are exported and analysed by the raters. 

An analysis of the false-positive samples in the dataset reveals that 
coughs are most often confused for ambient noise with burst (61%, such 
as plate crushing) and for speech actions (31%). The remaining 8% of 
false positives are indeed cough samples but not cognizant by the raters. 
The reason for recognizing noise with burst as cough may derive from 
the similarity of the pattern, both of which start with silence followed 
with a burst sound. Speech actions are erroneously recognized due to its 
similarity with cough [10]. 

Among the false-negative samples, 50% of the sounds are indeed 
cough sounds but with little volume, most of which are considered 
similar to the ambient noise with burst by our raters. 23% of the samples 
are coughs with extremely high volume, which may be falsely taken as 
wind due to the similarity of the sonic boom and incessant high volume 
featured by both sounds. 17% of the sounds are falsely labeled as cough 
before in 5.3, among which 7% are not coughs and 10% are inhalation 
phase sounds before cough. Throat clear actions takes up for 10%. 

Our model has a lower performance on cough-like sounds (such as 
speech sounds and ambient noise with burst) may derive from the 
shallowness of our CNN model, which limits the model’s ability to 
extract more essential features and distinguish more subtle differences 
between similar sounds. 

There is space to improve HearCough’s performance further. 
Without the fine-tuning procedure using our acted cough dataset, the 
quantized Tiny-COUNET achieved 78.5% accuracy, 72.2% sensitivity, 
84.8% specificity, and 77.0% F1-score. Therefore, the fine-tuning pro-
cedure can significantly increase the detection performance. Tiny- 
COUNET has a lower detection performance when compared with re-
sults on the acted cough dataset. We believe in the following two 
reasons.  

1) Although recorded in various scenarios, the acted cough dataset did 
not cover a wide range of background noises as the collected dataset 
from this field study.  

2) Tiny-COUNET was trained using public datasets using different 
recording devices but not the ANC microphones in the earphones. 
Different microphones and their locations can significantly affect the 
detection performance. We believe that we can further improve Tiny- 

COUNET’s performance using an incremental learning strategy after 
deployment. 

5.4.2. Hardware Power Consumption and Scalability 
The average power consumption of the BES2300YP development 

board was 65.1 mW without running the Tiny-COUNET. The average 
power consumption increases to 70.3 mW while Tiny-COUNET runs for 
continuous cough event detection. Thus the Tiny-COUNET consumes an 
additional — 5.2 mW power, only 8% of the original power consump-
tion. HearCough can work across hearable devices. In this paper, we re- 
trained HearCough dataset collected by Sony WF-1000XM3 and Sony 
WH-1000XM4. Then we evaluated HearCough’s performance on dataset 
collected by Bose QC 20. Results show that HearCough can work across 
devices despite the ANC microphone’s specs. 

5.4.3. Preliminary Analysis on the Cough Behavior 
Results show that the 8 patients coughed an average of 339.12 (s.d. 

= 350.28) times during the 5 hours recording. According to the user 
survey, participants perceived an average cough amount of 103.75 (s.d. 
= 82.62) times. There is a significant difference (Z = 2.1, p = 0.03) 
between the perceived and actual amount of coughs when using Wil-
coxon signed-rank test for the significance analysis. This indicates that 
human’s recall of their cough amount is inaccurate. Fig. 7 shows the 
number of coughs per 15 min by the time of all participants. We noticed 
that different patients with different diseases have different coughing 
behavior. For example, patients who suffer from pharyngitis (P5 - P7) 
coughed the most after their meals and gradually coughed less. How-
ever, the patient (P4) with fever suffered from a severe cough continu-
ously within the 5 hours. 

6. Discussion 

In this section, we discuss our major findings, design recommenda-
tions, limitations, and future work. 

6.1. Edge intelligence on consumer hearables 

Earphones have become one of the most ubiquitous devices after 
smartphones. Embedded with more sensing techniques and computa-
tional resources, we foresee many opportunities to make these ubiqui-
tous hearable devices intelligent for health purposes for four reasons. 1) 
These ubiquitous hearables have many sensors (e.g., microphone, mo-
tion sensor, and proximate sensor) that are ready to capture rich phys-
iological signals. 2) The hearable devices are located on our heads thus 
can provide a large amount of biometric information from the respira-
tory [26], cardiac [27–31], and nerve [32] systems. 3) The computa-
tional power of the micro-controller in modern earphones is becoming 
stronger, supporting many machine learning-based intelligent applica-
tions. 4) Current wireless earphones with the BLE protocol can support 
firmware updates over the air, making application deployment to 
earphones easy. 

6.2. Developing deep learning techniques on Micro-controllers 

Despite potential applications for developing deep learning tech-
niques on micro-controllers, additional deployment constraints other 
than accuracy including storage space, computational resource, infer-
ence latency, and power consumption need to be considered. Therefore, 
we comprehensively investigated the model’s architecture, size, and 
input for deployability during the design phase. Further, since the micro- 
controller is limited in computational resources, we design Tiny- 
COUNET and its variants as end-to-end; thus, HearCough requires no 
computationally intensive pre-processing methods. 

There is a trade-off between detection performance and deploy-
ability in enabling machine learning based applications on edge devices 
as demonstrated in our paper. Although the Tiny-COUNET (0.5 s@11 
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kHz) did not have the highest detection performance, it achieved a fair 
accuracy on the cough dataset collected in the field study with real 
patients. However, it has the minimum requirements on the storage 
space, computational resources, and power. We believe that HearCough 
can be further improved by applying the incremental learning as we did 
in section 5 using the data collected after deployment. 

The input of the deep learning model has a significant effect on 
deployability and real-time capability. As Table 1 shows, a larger stream 
of input would provide more information for inference but can signifi-
cantly increase the model size. Thus it requires more storage space and 
computational resources, making the detection method less deployable. 
In our implementation, HearCough adopted Tiny-COUNET with 0.5-sec-
ond input window duration at 11.0 kHz sampling rate. Therefore, 
HearCough can detect the existence of a cough event every 0.5 s. Our 
method can handle different input sizes thanks to the convolutional 
layers in the Tiny-COUNET. Thus, to further lower the computational 
resources needed or increase the real-time capability, one can leverage a 
smaller input window duration or lower sampling rate, with the cost of 
lower detection performance. For example, the 0.33-second window size 
will decrease the performance by around 2% on average. 

6.3. Unique opportunities of the Always-on active noise cancellation 
Microphones 

HearCough utilizes the ANC microphones in the earphones for cough 
event detection. These microphones were designed to be always-on. 
Therefore, HearCough starts to work once users put on the earphones. 
Further, it will not consume extra power from the sensors except for 
running the detector on the micro-controller. With an increasingly 
powerful computing unit deployed on hearables, we believe that the 
built-in always-on ANC microphones can open more new opportunities 
for edge computing or ubiquitous computing. Worth mentioning, 
HearCough uses the outer-ear feed-forward microphone rather than the 
in-ear feedback microphone because the feedback microphone will pick 
up audios (e.g., music) as large noises from the speaker. 

6.4. Continuous cough monitoring for health management 

Continuous cough event detection can enable cough frequency 
monitoring, valuable for respiratory and otolaryngological health. 
Healthy people usually cough twice per hour while patients cough 43 
times on average per hour [33]. In our field study, patients coughed 
more than 60 times per hour. Quantitative analysis shows that people 
recalled a significantly lower number of their coughs. Indicating the low 
credibility of people’s recall memory on their cough behavior, not to 
mention cough frequency analysis. Therefore, HearCough can be 

valuable for people to be aware of their coughing behavior and health 
status. Using ubiquitous earphones for cough event detection has ad-
vantages over other sensing solutions, including smartphones [10,14] or 
smart speakers [9]. The earphone is close to the user’s mouth; thus, it 
can capture clear coughing sounds. Further, earphones can provide 
more long-term monitoring capability since they are wearable. 

6.5. Limitations and future work 

This paper explored the feasibility and evaluated the performance of 
deploying a deep learning cough event detector on a popular computing 
unit available in many commodity hearables. However, we have not 
designed a prototype with all components working together. We leave 
this for future work. Further, continuously listening for intermittent 
cough events is computationally powerconsuming. If we can filter out 
potential cough events and only run inference on these filtered events, 
the power efficiency could be improved. One potential way to achieve 
this is through filtering the input stream for coughing-induced sudden 
bursts of power. For instance, a DSP-based algorithm can filter out non- 
cough events and wake the model only for potential cough events. 

Currently, HearCough can only detect the cough sound event, which 
is the foundation of any cough measurements. Although cough event 
detection alone can be used for self-health management, cough type 
detection will also help medical diagnostics. We expect future work to 
explore on-chip machine learning based on cough type detection. 
Further, we expect future work to explore how the segmented cough 
audio samples and the statistical analysis can help medical experts with 
diagnostics or therapeutic evaluation. 

7. Conclusion 

We present HearCough, a technique that enables the always-on 
active noise cancellation microphones in commodity hearables for 
continuous cough event detection. We first proposed a lightweight end- 
to-end deep learning model — Tiny-COUNET and its transfer learning 
based training approach with data augmentation methods. When eval-
uated on our collected acted cough event dataset using a 0.5-second 
window and a sampling rate of 11 kHz, Tiny-COUNET achieved an ac-
curacy of 89.7% and an F1-score of 89.9%. It also required significantly 
less computational resources (16.2 MFlops) and spaces (480 kB) than 
cutting-edge cough event detection methods. We further implemented 
HearCough by quantizing and deploying the pre-trained Tiny-COUNET 
to a popular micro- controller — BES2300YP in modern earphones. 
Finally, we proved HearCough’s effectiveness and reliability using a 
field study with eight patients. Results show that HearCough achieved 
continuous cough event detection with an accuracy of 90.0% and an F1- 

Fig. 7. Each patient’s cough counts every 15 min along with the time (P1 - top left figure, P8 - bottom right figure).  

Y. Wang et al.                                                                                                                                                                                                                                   



Methods 205 (2022) 53–62

62

score of 89.5% by consuming an additional 5.2 mW power. To the best of 
our knowledge, this work is the first to validate the possibility of audio- 
based continuous cough event detection using the hardware in con-
sumer hearables. We envision HearCough as a low-cost add-on for future 
hearables to enable continuous cough detection and pulmonary health 
monitoring. 
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