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Figure 1: (a) An infrared camera fixed on the nose bridge of an AR glasses looking downward. (b) The space around the user’s
lower face can be captured by the camera in high resolution. (c) An image captured by the camera.

ABSTRACT
Wepresent FaceSight, a computer vision-based hand-to-face gesture
sensing technique for AR glasses. FaceSight fixes an infrared camera
onto the bridge of AR glasses to provide extra sensing capability of
the lower face and hand behaviors.We obtained 21 hand-to-face ges-
tures and demonstrated the potential interaction benefits through
five AR applications. We designed and implemented an algorithm
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pipeline that segments facial regions, detects hand-face contact (f1
score: 98.36%), and trains convolutional neural network (CNN) mod-
els to classify the hand-to-face gestures. The input features include
gesture recognition, nose deformation estimation, and continuous
fingertip movement. Our algorithm achieves classification accuracy
of all gestures at 83.06%, proved by the data of 10 users. Due to the
compact form factor and rich gestures, we recognize FaceSight as a
practical solution to augment input capability of AR glasses in the
future.
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1 INTRODUCTION
Hand-to-face gesture (e.g., tapping the cheek) interaction inherits the ben-
efits of always-available, haptic, proprioceptive on-body input [9, 11, 13],
which are also intuitive and easy to learn because of the semantic connec-
tions between facial parts to interaction tasks. [27, 50]. Face provides not
only large space for interaction that benefits users in transferring touch-
screen interaction to hand-to-face gesture (e.g., panning and zooming [41]),
but also tactile feedback that can facilitate eyes-free interaction [54]. In this
research, we focus on hand-to-face interaction on AR glasses, since they
are head-worn devices that involve contact with face. Moreover, AR glasses
have embedded cameras and other sensors, which have incomparable po-
tential to sense hand gestures performed on the face. To our knowledge,
prior research mainly explored electrical or audio signals to sense hand-to-
face gestures [19, 29, 48–50]. However, the gestures that can be sensed via
these sensing technologies are limited to simple and discrete gestures. More
diverse and continuous gestures are needed to support the rich AR glasses
interaction.

To fill this gap, we propose FaceSight, a computer vision-based sensing
technique leveraging a downward-looking infrared camera fixed on the
bridge of a pair of AR glasses to capture a user’s lower face (Figure 1).
The camera has six infrared lights around the camera lens as active light
source. This novel placement and configuration of the camera brings three
benefits. First, the user’s face and the hand can be captured in high resolution
images so that we can detect rich and subtle hand-to-face gestures. Second,
by adjusting the luminous intensity of the infrared light source, we can
illuminate only the foreground (the nose, cheeks, and the hands) with
the background almost dark. This not only simplifies the computer vision
process but also mitigates the privacy concerns of capturing the surrounding
environment. Third, attaching a camera to the bridge of the AR glasses
promises a compact form factor, which is crucial for the design of wearable
devices and practical use.

In this paper, our contributions are three-folds:
First, we designed FaceSight, a novel camera-based sensing technique to

enable hand-to-face interaction on AR glasses. FaceSight can sense a rich
set of hand-to-face gestures with one single camera in a compact and social
acceptable form factor.

Second, we presented a rich set of twenty-one hand-to-face gestures,
with ten gestures being novel and not depicted in the prior literature.We also
developed five example AR applications to demonstrate potential interaction
techniques, which were highly accepted by users.

Third, we designed and implemented an algorithm pipeline to detect
hand-face contact and recognize hand-to-face gestures.

2 RELATEDWORK
The rapid advances in sensing technology and the current strong compu-
tational power in small and mobile devices have led to the emergence of
on-body interaction [12], a new interaction modality where the human body
was used as the input surface to better support always-available interaction
for mobile computing [40]. Many researchers have explored this rich inter-
action space by designing and recognizing hand gestures on and around
different body parts, such as palm [4, 9–11, 36, 44], arms [13, 15, 17, 33, 42],
leg [23], face [29, 41, 49], nose [19, 35, 56], ear [16, 22, 30, 45], and even the
hair [6]. Among the various on-body interaction techniques, hand-to-face
interaction is one important interaction modality for AR glasses control [41].
In this section, we introduce prior works on sensing technology for hand-
to-face interaction, as well as the different camera deployment methods on
HMDs.

2.1 Hand-to-Face Interaction
2.1.1 Studies on Hand-to-Face Interaction Design. Prior research has ex-
plored the design space of hand-to-face interaction. Serrano et al. [41] first
demonstrated the potential of hand-to-face interaction to support every-
day mobile tasks on head-mounted displays (HMDs). They conducted a
guessability study to elicit suitable hand-to-face gestures from 14 users.
They found the cheeks and forehead to be good interaction surfaces. Lee et
al. [18] also conducted an elicitation study to derive design guidelines for
social acceptable hand-to-face input. They suggested that the input areas
away from the center of the face (e.g., ear, neck) may be appropriate for
hand-to-face interaction designs, and small and discrete gestures (e.g., tap)
were preferred than big movements with all five fingers.

2.1.2 Sensing Technology for Hand-to-Face Interaction. Researchers have
created different sensing technology to support hand-to-face interaction.
One approach was to detect the deformation of a user’s face to recognize
gestures. For example, Itchy Nose [19] used the electrooculography (EOG)
sensors on J!ns Meme glasses to recognize five different hand-to-nose ges-
tures, such as pushing and rubbing nose. EOG sensors were embedded in
the left and right nose pads, so that the system could identify the hand-to-
nose gestures by recognizing the different signal patterns caused by the
nose deformation. Some researchers also used optical sensors to recognize
face deformation. For example, CheekInput [49] attached several photo-
reflective sensors on the HMD to recognize face-pulling gestures based on
how the facial skin was deformed. FaceRubbing [29] used similar sensors
on smartglasses, allowing a user to rub her face at different locations to
generate different input. All these technologies only recognized gestures
that generated obvious face deformation, which could raise fatigue and
social acceptance issues [41]. More subtle gestures, such as swiping on the
face, could not be recognized with these technologies.

Some prior work also used sound-based sensing techniques to recognize
hand-to-face gestures. PrivateTalk [50] detected a whisper gesture (i.e., a
person covers her mouth with her hand) by comparing voice data received
by two earphones when the user is speaking. This gesture was interpreted
as a wake-up command to automatically activate voice input. Moreover,
EarBuddy [48] used an earphone to capture the sound when a user’s finger
touched her face, thus recognizing different hand-to-face gestures, including
tapping, double-tapping, and swiping. However, the number and type of
gestures that can be recognized by sound-based sensing are still limited. For
example, they only recognized discrete gestures, such as tap and double-tap.
More complex gestures that involved continuous control (e.g., slider) were
not supported.

As opposed to most prior sensing technology, advances in camera de-
vices and computer vision technology had presented a unique opportunity
to recognize more complex hand-to-face gestures to support richer interac-
tion. However, little work has used camera-based technology to conduct
the recognition. Only recently, Loorak et al. [24] created a technology that
recognized a user’s touch gestures on her face with the front-facing camera
on a smartphone. However, the gestures were only limited to tapping on
different locations on the user’s face and were only designed to support
smartphone interaction. To our knowledge, our research was the first to
build camera-based technology to recognize complex hand-to-face gestures
to support AR glasses interaction. The hand-to-face gesture set we could
recognize was the biggest among all existing hand-to-face interaction re-
search.

2.2 Camera Deployment Methods on HMDs
Camera has always been an important input sensor for mobile devices,
such as smartphone [21, 55], watch [53] and glasses [7]. More and more
smartglasses have embedded cameras to not only capture user’s current
activity [3] or emotion states [32] but also recognize hand gestures as input
(e.g., Microsoft HoloLens). Besides the built-in cameras on HMDs, recent
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Figure 2: A wide-angle infrared camera is mounted on the frame of AR glasses, such as (a) EpsonMoverio BT-300 and (b) Nreal
Light AR glasses, with different camera placement to capture a user’s face.

research has added extra cameras to HMDs to capture more information
from the user. For example,𝑀𝑜2𝑐𝑎𝑝2 [47] installed a fisheye camera on a
hat, looking down to capture a user’s body poses. Rhodin et al. [38] built
EgoCap, a motion-capture system that had two fisheye cameras extending
from a virtual reality (VR) HMD to the front of the user’s face. The cam-
eras faced down to capture the user’s body. xR-EgoPose [43] also added a
down-forward looking fisheye camera to an HMD to capture a user’s body.
However, none of the prior work captured information from the user’s face.
Mecap [1] was a system that could capture both the user’s body gestures and
mouth states. It attached a pair of hemi-spherical mirrors to the front of a
Google Cardboard and used the smartphone’s rare-facing camera to capture
the user’s body and facial information reflected in the mirrors. While the
system could recognize users’ mouth states, the detailed facial information
it captured was still limited because the mirrors had to be put at a relatively
far distance from the user’s face to capture the user’s full body.

Besides capturing a user’s full body, some research has focused on adding
cameras to only capture the user’s face. For example, EgoFace [7] attached
an RGB camera to the user’s eyeglass frame to capture her right lateral face,
so that the system could recognize the user’s mouth movements and facial
expressions. Li et al. [20] extended an RGB-D camera from a VR HMD to the
front of the user’s face to capture her mouth region. Moreover, Olszewski
et al. [34] attached a monocular to the bottom of a VR HMD to capture
the user’s mouth movements and used an IR camera inside of the HMD to
capture the user’s eye movements. With this camera setup and computer
vision algorithms, the system captured subtle details of the user’s facial
expressions to support compelling speech animation in VR.

Most prior work deployed the camera in an intrusive way by extending
the camera to the front of the user’s face. While these camera deployment
methods can be used for VR applications, they are not suitable for AR
glasses that are designed to be used on-the-go in public places. Unlike prior
research, our work presented a practical approach to camera deployment
by attaching a downward-looking, wide-angle infrared camera to the AR
glasses. With this setup, close-up and high resolution images of users’ lower
face (nose to chin area) can be captured to recognize diverse and accurate
hand-to-face gestures to support rich AR glasses interaction.

3 FACESIGHT HARDWARE
3.1 Proof-of-Concept Prototype
The idea of FaceSight is to mount a video camera on the nose bridge of AR
glasses, as shown in figure 2. The key requirement of the add-on camera is
that it should promise the compactness of the form factor, which is critical
for wearable devices in practical scenarios. In this paper, we use Nreal Light

Figure 3: The field of view of the camera and the interaction
space.

Figure 4: The high contrast between face and background,
and the effects of setting (a) higher or (b) lower lighting
power to the camera.

AR glasses [8] as our proof-of-concept prototype. It adopts an advanced
optical module, has high rendering quality and wide FoV, which is beneficial
to user experience. The Nreal Light AR glasses adopts a distributed system
that is configured to distribute projection and processing functionalities
among the eyewear glasses and computing unit. The eyewear glasses has a
field of view of approximately 52◦ diagonally, and the weight is 88 grams.
The operating system of the computing unit is Android 8.0, on which we
can build customized applications. The two devices are connected through
a USB-C cable.

We mounted a wide-angle camera (resolution: 1920 × 1080, FoV: 150◦
diagonally, streaming video at 30 FPS through USB cable) on the AR glasses,
which looked downward to capture users’ lower face. Figure 3 depicts the
interaction space of FaceSight. The vertical FoV of camera is 63◦, while the
horizontal FoV is 125◦. Such a wide FoV enables the camera to capture the
users’ nose, cheek, chin, mouth, and all hand behaviors on and around the
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Figure 5: The 21 hand-to-face gestures proposed in this paper. Asterisks mark novel hand-to-face gestures that have not been
described in prior works about hand-to-face gestural input.

face. We 3D printed a mount to hold the camera module, with a hook to
fix on the device. The camera and 3D printed mount together increased
around 25 grams to the AR glasses. We prepared three 3D printed mounts
with different parameters to treat various users. These mounts were able to
capture the user’s face appropriately in a pilot study (N=15).

3.2 Camera Illumination and Sensing
The camera module is based on 850-nanometer infrared illumination and
sensing. It has six infrared light bulbs around the camera lens, which pro-
vides active illumination source to enable FaceSight to work properly even
in a completely dark environment. More importantly, the active infrared
illumination warrants stable image quality, by adjusting the lighting power
of the light bulbs and exposure value of the camera via commercial webcam
software or specific computer vision API, we can illuminate only the face
area while keeping the background (such as the chest and objects in the
surrounding environment) almost dark. Figure 4 illustrates the image effects
of setting different lighting powers to the camera. This illumination adjust-
ment not only eases the computer-vision problem, making the recognition
algorithm efficient and robust, but also reduces potential privacy concerns
of capturing the users’ surrounding environment.

4 HAND-TO-FACE GESTURE INTERACTION
In this section, we explore the design space of hand-to-face gesture in-
teraction that can be supported by FaceSight. We analyze the potential
feature dimensions in the design space and build a gesture set leveraging
the findings. The gesture set contains twenty-one hand-to-face gestures,
including seven hand-to-cheek gestures, six hand-to-nose gestures, four
hand-to-mouth gestures, and four hand-to-chin gestures. Figure 5 asterisk

marks the novel gestures that have not been described in any prior research
about the hand-to-face gestural input. Such a large hand-to-face gesture set
not only enriches input methods to AR glasses, but also has the potential
to improve the interaction efficiency and user experience. We discuss the
detailed feature dimensions and their potential usages below.

4.1 Touch Location
Distinguishing the touch points on different locations or landmarks on the
face is a first feature dimension of the design space for hand-to-face gesture
interaction. Locating the touch point can be achieved by computer vision
methods [14, 46]. Thanks to the unique camera placement, FaceSight can
capture most areas of the lower face, including the cheek, nose, chin, and
mouth. Some facial parts also have several sub-areas: the cheek has the left
and right sides, the nose has the nose tip, and the left and right nose wings,
while the mouth has the left and right mouth corner, and the middle point.
Compared with the other areas of face (e.g., forehead), these facial areas are
where people touch more frequently, as well as the most preferred to use
[27]. One restriction is that area on or around the ears are unavailable for
interaction because of limited camera FoV.

4.2 Tapping and Swiping
Tapping and swiping are the most common input methods on the modern
touchscreen [5], thus transferring them to hand-to-face gestures requires
little learning effort of users. Besides, considering different types of tapping
including single click, double click, and long touch (i.e., stay for several
seconds) [39] can further enlarge the gesture set.

The smooth surface of the cheek and chin is well-suited for fingertip
swiping to complete panning or zooming tasks. We finally formed three
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Figure 6: The steps of FaceSight for recognizing hand-to-face gestures.

swiping gestures. The first one is hand swiping vertically on one side of
cheek. Two hands with two cheek sides enable the control of different scroll
bars in this manner, such as a volume bar and a brightness bar on two sides.
The second one is both hands swiping vertically on two sides of the cheek
simultaneously, and the third one is one hand swiping horizontally on the
chin.

4.3 Symbolic Hand Gesture
Camera sensing techniques also have the potential to recognize symbolic
gestures. Associated with the face location, some gestures possess spe-
cific semantic implication that leads to high intuitiveness and learnability
[25–27]. For example, the gesture of "making a phone call" is used to au-
tomatically launch the contacts applications; the gesture of "covering the
mouth" can be used to activate voice input [50]; the "shush" gesture can
mute an application or the device. This can lessen the time consuming of
finding target applications or accessing a specific element.

4.4 Nose Deformation as Input
As shown in figure 4, the video camera is immediately above the nose, so
that a user’s nose can be captured by the camera in high resolution. It is
possible to detect slight deformation of the nose when it is pushed or nipped
by fingers. The deformation can be used as continuous input signal to enable
novel nose-based input techniques. For example, one can control a scroll-bar
by pushing the nose or using different levels of pushing pressure to trigger
different functions. We proposed two different pressures of nose-pushing
gestures, one is a gentle pushing with rare deformation, and the other one
is a rude pushing that will deform the nose obviously.

4.5 Hand Identity
Thanks to the symmetrical camera view, FaceSight also has the capability
to determine the identity of touching hands, which can further increase
the interaction expressivity and also provide more solutions for the design
of the gesture set. For example, one can use the right hand to manipulate
virtual objects, and use the left hand to switch tools or modes. In figure 5,
all gestures were described from the right-handed perspective, we added
two left-handed tapping gestures on the cheek to illustrate this concept.

4.6 Number of Touching Fingers
Multi-finger interaction is also a widely used interaction technique on the
modern touchscreen, including such gestures into the design of hand-to-face
gestures set is an intuitive choice in our exploration. we showed examples
of using two fingers (index finger and middle finger) tapping on the chin,
and using thumb and index finger to nip the nose.

5 THE RECOGNITION ALGORITHM
In this section, we describe our algorithm pipeline to recognize the set of
hand-to-face gestures in FaceSight, we then evaluate the detection accuracy
and computing efficiency.

Figure 7: Example results of our segmentation approach
while a user touch the right cheek. (a) input image, (b) hand,
(c) nose, (d) mouth, (e) left cheek, and (f) right cheek.

5.1 The Algorithm Pipeline
Figure 6 illustrates our recognition pipeline step by step. Given a gray-scale
input image captured from the infrared camera, we first segment the hand,
nose, mouth, left and right cheeks by applying a number of brightness
features. Then, we conduct a four-stage algorithm to detect hand-to-face
gestures: 1) Detection of touch contact. 2) Recognizing the location (nose,
mouth, chin, left cheek, or right cheek) if we detect a touch in stage 1.
3) Using a convolutional neural network (CNN) model to classify hand
posture performed on that location. The CNN model is trained for each
location separately. 4) If a classified gesture belongs to the categories of
nose pushing and cheek or chin tapping, we further conduct stage 4, running
corresponding algorithms to determine the required interaction parameters,
like estimating the nose deformation or locating fingertips for swiping
inputs. We describe each step in the pipeline below.

5.1.1 Facial Region (and Hand) Segmentation. Thanks to FaceSight’s unique
camera and illumination setup, there is a high contrast between the back-
ground (the chest or further objects) and foreground (the face and touching
hands) (Fig. 4). We firstly apply brightness thresholds to eliminate the back-
ground accurately. To extract the hand, we take advantage of the fact that
the facial region is static in the image, while a hand is moving that will
cause noticeable brightness changes. Specifically, we use the current frame
to subtract a background frame (i.e., an image contains only the face) to
achieve it. To segment nose and mouth, we leverage the features and empir-
ical parameters: 1) The directional change of intensity between targets and
surrounding pixels; 2) Nose is always located in the middle of the image
as well as connects to the bottom (from the camera view); 3) Mouth must
be above the nose and below the top of the face (from the camera view); 4)
Nose possesses higher brightness due to its proximity to the camera and
lighting bulbs. Finally, we determine the left and right cheeks by computing
the remaining pixels (input image without background, hand, nose, and
mouth). Using these features, we could effectively segment the user’s hand,
nose, mouth, left cheek, and right cheek, as shown in figure 7.

5.1.2 Stage 1: Detection of Touch Contact. For hand-to-face gesture interac-
tion, it is essential to determine when the hand/finger contacts the face. In
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a 2D image, a straightforward method is to determine whether two objects
(hand, face) are overlapped. However, if one’s target is the nose, a touch will
falsely recall as the fingertip must first contact the face before getting to
the nose. To address this issue, we combine two features to detect a touch:
1) A contact occurs when the fingertip is on or within the face region; 2) A
touch event is reported if the fingertip movement has a sudden change in
two consecutive frames. Specially, We determine a “sudden change” by first
calculating the distance between nose centroid and fingertip, and judging
whether this parameter becomes greater in two consecutive frames; The
second statement above leads to another frame of delay, but it can effectively
reduce unintentional activation and only report the exact touch moment.

5.1.3 Stage 2: Recognizing Touch Location. If a hand as well as its contact
with the face is detected in the image, we further determine the location
where the touch occurs (five categories: nose, mouth, chin, left cheek, and
right cheek). To do this, we find the four segmented facial regions’ keypoints,
such as the leftmost of the nose regions, topmost of the mouth regions (i.e.,
chin), and so on. We determine the landmark to which fingertip is closest.
The distance between the fingertip and contour is also useful as it reflected
whether the fingertip is in that region.

5.1.4 Stage 3: Gesture Classification with CNN. Given a touch location, we
further classify what hand posture of a user performing on that location.
We use a convolutional neural network (CNN) model, a well-known deep
learning architecture, proven to be very powerful in image classification
tasks. We train a CNN model for each location separately (i.e., nose, mouth,
chin, left cheek, and right cheek). The model contains two convolutional
layers, a 2×2 maximum pooling layer, and a fully connected layer. We adjust
the parameters of the convolutional layers to improve accuracy, and finally
determine the following parameters: first layer 11×11 for kernel size, 5
for stride step and 3 for padding, the second layer 5 × 5 for kernel size,
1 for stride step and 2 for padding. We use softmax and cross-entropy as
the loss function, and use accuracy rate and false recognition rate as the
accuracy index. We use Adam optimizer to train all models. The learning
rate coefficient is set to 3× 10−3. The model’s input is the hand regions with
downsampling to 200×200, while the output is a label corresponding to a
specific gesture.

5.1.5 Stage 4.1: Locating the Touching Fingertip for Continuous Input. Based
on the segmented hand region(s), we recognized the points along the contour
that achieved local minimum according to the distance to the face region
as the fingertip candidates, and we finally located the fingertip location
as the lowest one. We calculate the average of the location found in the
instant frame and two previous frames for smoothing.We complete fingertip
locating before running the detection of touch contact step (Stage 1), due to
it requires the fingertip’s parameters.

Suppose the current hand posture recognized by stage 3 is a cheek
tapping (Tap RR, Tap RL, Tap LL, Tap LR, or using both hands together) or
chin tapping (Tap (1 finger)), we start to track the fingertip(s) for continuous
input by calculating its(their) displacement between each frame.

5.1.6 Stage 4.2: Estimating the Degree of Nose Deformation. The action
of pushing the nose can cause deformation or shifting of the nose region.
We calculate the change of area of nose region (area decreased since the
nose wing is squeezed by fingertip) and the offset of the nose centroid and
the nose wing keypoint between sequential image frames. Precisely, we
empirically determine the weights of 0.00005 for the area change, 0.02 for
the offset of nose centroid, and 0.04 for the offset of nose wing keypoint.
These offset threshold units are pixel. We add them up and recognize a rude
pushing if the sum greater than 1.0. This approach would only activate
when the recognition of stage 3 is a nose-pushing gesture.

5.2 Data Collection
We collected hand-to-face gesture samples used to evaluate both the contact
detection and classification accuracy of FaceSight.

5.2.1 Participant. In this study, we recruited 10 participants (2 females, 8
males), their ages ranged from 18 to 55 (mean age = 27.8). The goal was to
collect data from users with various facial forms. All of them were right-
handed and usually wore eyeglasses in their daily life.

5.2.2 Design and Procedure. We expand each swiping gesture (i.e., Swipe(1
hand), Swipe(2 hands) on cheek, and Swipe on chin) to two different gestures
with opposite movements used to evaluate the fingertip locating perfor-
mance, such as swipe up/down, and swipe left/right. In total, our gesture
set has 24 gestures (18 + 3 swiping gestures × 2 movements). Participants
were required to perform each of 24 gestures for 60 times at random order.
During the data collection, we asked participants to move their hand(s)
away from the face between each contact to simulate the process of raising
a hand to touch face. Participants were seated to perform gestures and had
a one-minute break for each round. We video-recorded the data.

5.2.3 Data. After data collection, we collected a total of 14440 hand-to-face
gesture samples (10 participants × 24 gestures × 60 times). These samples
were all used to evaluate our touch contact detection and touch location
recognitionmethods. To acquire data for training the neural networkmodels,
we obtained the hand region of each frame from the recorded video using our
segmentation approach, and finally received 198572 images. We manually
examined those images and excluded inappropriate ones, such as a hand
being out of the camera’s FoV or a gesture being wrongly performed by
participant. After filtering, we remained in 194204 images (97.8%).

We created five datasets associated with the facial parts: nose, mouth,
chin, left cheek, and right cheek. CNN models were trained for each of the
five datasets, as shown in table 3. The gesture of Swipe (2 hands) required
the delimiter (i.e., know when to activate the mode), so we replaced it with
Tap (2 hands) gesture to classify. On the other hand, some gestures involved
contact with multiple facial parts, such as the Cover Mouth gesture and
the Tap (2 hands) gesture, the data of the two gestures were placed into
multiple datasets they involved. Overall, there were 67553 images in the
nose dataset, 30368 images in the mouth dataset, 33582 images in the chin
dataset, 51869 images in the left cheek dataset, and 57747 images in the
right cheek dataset.

We added two additional datasets to evaluate the accuracy of fingertip
swiping and nose deformation estimation. The first dataset contained six
different swiping gestures on the cheek and chin. The second dataset had
four classes, including the nose-pushing gestures of gentle or rude pressure.

5.3 Algorithm Evaluation
We evaluated the recognition accuracy and computational efficiency of
each stage in our algorithm pipeline. Note that each stage was evaluated
individually, not depending on the results of the previous stage.

5.3.1 Recognition Accuracy of Touch Contact and Location. Through offline
calculation, our contact detection algorithm successfully recalled 14097 /
14440 touches (recall rate: 97.90%). Most of the false negatives came from
that the touch was too close to the border of the camera view, making
the fingertip invisible or being excessively dark that could be cut after
segmentation. We detected 168 false positives (precision: 98.82%), and the
F1-Score was 98.36%.

Over those recalled touches, the average accuracy of location recognition
was 94.69% (Nose: 92.67%, Mouth: 94.43%, Chin: 95.12%, Left Cheek: 95.06%,
Right Cheek: 94.22%). Table 2 was the confusion matrix of touch location
recognition. Most of the misidentifications occurred between: 1) Nose and
cheek; 2) Mouth and chin, particularly at performing shush gesture or
gripping the chin; 3) Mouth and cheek.
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5.3.2 Recognition Accuracy of Hand-to-Face Gestures. Considering par-
ticipants could perform gestures in unique ways, and the camera views
produced by different participants had a slight difference, we followed leave-
one-out cross-validation approach to train and test our classification models,
by training the models using all other users’ data except for the wearer’s
data. All model was trained for ten epochs. We obtained the recognition
accuracies as follows: nose 96.18% (5 classes), mouth 99.53% (3 classes), chin
94.00% (3 classes), left cheek 94.65% (4 classes), and right cheek 97.73% (5
classes). The average accuracy of the five classification models was 96.42%,
as shown in Table 3.

5.3.3 Recognition Accuracy of Nose Pushing Estimation and Swiping. Results
are shown in Table 4. Our method achieved 94.12% accuracy in recognizing
two different nose-pushing pressures on both nose wings. Meanwhile, the
recognition accuracy of six swiping gestures was 94.67% (Chin swiping:
97.5%. Cheek Swiping (1 hand): 94.17%. Cheek Swiping (2 hands): 92.18%).

5.3.4 Computing Efficiency. We ran our algorithm pipeline on a server
with 1 GTX 1080 Ti NVIDIA GPU, 12GB memory and Intel(R) Xeon(R)
CPU. We tested the average time each component took to process a single
frame (Resolution: 960×540). The results were 35 ms for the segmentation
algorithm, 13 ms for the CNN classification. The fingertip locating and
contact detection approach both spent only 1ms.

5.3.5 Summary. To process the image data generated by the downward-
facing camera, we leverage the high contrast properties for segmentation,
geometric features to detect touch contact, and CNN models to recognize
hand-to-face gestures. According to current results, if a user performs
a Gentle Pushing(R) gesture, it would be correctly recognized at 82.51%
accuracy (98.36% × 92.67% × 96.18% × 94.12%, of stage 1 to 4 respectively).
For all 24 gestures, FaceSight achieves an overall classification accuracy of
83.06 % for classifying them simultaneously, which is validated by the data
of ten users. We deem that the results are sufficient to prove the computation
and recognition feasibility of using a camera sensing solution to identify a
large space of hand-to-face interaction. In the future, a thorough dataset is
required to build more robust and generalized models.

To test the applications and interaction techniques, we trained additional
models using all data we gathered from the data collection study. For each
application, it can register or disable interaction of a particular facial model,
to only interact with the desired one. For example, if an application only
requires hand-to-nose gesture interaction, it can directly conduct stage 3
(i.e., classify gesture using CNN model) once our algorithm recalls a touch

contact at stage 1, as it does not need to recognize touch location anymore.
In that case, the algorithm performance could significantly improve since it
reduces the computation and recognition of stage 2.

6 APPLICATION AND INTERACTION DESIGN
Based on the gesture set proposed in this paper, we designed and developed
five AR applications and twelve interaction techniques to demonstrate the
potential uses of FaceSight. The five applications included Home, Video
Player, Photo Library, Contacts, and Voice Assistant. We chose these ap-
plications since they were representative tasks on AR HMD devices. We
adopted a client-server architecture to test our purpose, in which the de-
tection pipeline was implemented on a server, and the applications were
developed on the Nreal Light AR glasses. The server calculated locally and
sent predictions to the AR glasses via Wi-Fi.

6.1 Home
Home is a very common application in commercial AR systems (e.g., HoloLens).
It usually has a user interface that displays the icons of all other applications
on the device and enables the user to access these applications via its corre-
sponding icon. For example, in HoloLens, a user needs to conduct a bloom
gesture to call the Home interface. With FaceSight, we allowed users to
conduct touch gestures on their chin to interact with the Home application.
Specifically, a user can tap her chin with both their index and middle fingers
to call the home interface. Then she can gaze at a specific icon and tap
her cheek or chin with one finger as selection to open the corresponding
application. In our Home application, there were four icons on the user
interface which represented the four other applications we describe in this
section.

6.2 Video Player
We designed six interaction techniques to allow users to control the Video
Player with FaceSight: pause/resume, fast forward, fast rewind, playing the
next video, playing the last video, and mute. Specifically, a user can tap on
the nose tip to pause/resume a video. and she can gently push her left (and
right) nose wing for fast forward (and rewind), or rudely push her left (and
right) nose wing for playing last (and next) video. She can also conduct a
shush gesture to mute the video. Different from the conventional interaction
techniques in current commercial AR systems (e.g., HoloLens) where a user
had to stare at a button and conducted an air-tap gesture to trigger the
function, FaceSight allowed the user to easily assign a command using a
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Figure 8: The demonstrated AR applications and interaction techniques: a) Returning to home page by tapping on chin with
two fingers; b) Gazing at an icon and tapping on chin with one finger for confirmation; c) Gentle pushing the nose wing for
fast forward or rude pushing it to play next video; d) Swiping on cheek to browse pictures; e) The phone gesture as a shortcut
to open Contacts application; f) Conducting the cover mouth gesture to activate voice input, and releasing hand to close it.

simple eyes-free gesture. To ease the process of selecting a video and focus
on the interaction tasks for video control, we simplified this application by
loading default demo videos. The video played automatically when the user
opened the Video Player application.

6.3 Photo Library
The Photo Library application included all the pictures taken by the user.
To navigate the library, a user can swipe vertically with her index finger on
her cheek to browse the pictures. She can also select an image by staring
at it and tapping on cheek, and swipe with her two index fingers on each
cheek together to scale a picture (swiping down to zoom out and swiping
up to zoom in).

6.4 Contacts
When a user wanted to make a phonecall, FaceSight allowed the user to
open the Contacts application quickly by conducting the Phone gesture.
This gesture provided a convenient and intuitive way to access the Contacts,
which largely saved the user’s time from navigating the whole application
list. After opening the Contacts applications, the user can then gaze at the
target contact and tap on her cheek to call.

6.5 Voice Assistant
Our design of Voice Assistant application was inspired by the works [37, 50].
Originally, to trigger a voice assistant, a user usually needs to navigate the
whole application list to find the corresponding application, or speak a
specific keyword to wake up the voice assistant, such as "OK, Google." With
FaceSight, a user can speak to the voice assistant directly with the cover
mouth gesture, so that the voice assistant can be activated automatically

and respond to the user’s voice input. The voice assistant application closed
immediately if the user released her hand.

7 USER STUDY: USABILITY EVALUATION
We conduct a user study to evaluate the usability of FaceSight. We invite
ten users to perform twelve tasks with the help of FaceSight, and collect
their subjective feedback on the interaction design, form factor, as well as
the real-time performance.

7.1 Participants and Apparatus
We recruited another 10 participants (8 males, 2 females) from our univer-
sity. Participants’ ages ranged from 21 to 27 (mean = 23.7). All of them were
familiar with mid-air hand gestures supported by Hololens. Four partici-
pants had prior experience using other input methods, such as a trackpad
or head movement (using built-in sensors on HMD to sense head position
and orientation as input [51]). The study was conducted with the same AR
glasses and camera described in the hardware section.

7.2 Task
There are twelve tasks in total, corresponding to twelve interaction tech-
niques introduced in Application and Interaction Design section. Among
them, Home application corresponds to two tasks (Return home, Select).
Video Player application has six tasks (pause/play, fast forward, fast rewind,
play next video, play the previous video, and mute). Photo Library ap-
plication possesses two tasks (page scrolling, picture zooming). Contacts
application and Voice Assistant application both relate to a task (activate).



FaceSight: Enabling Hand-to-Face Gesture Interaction on AR Glasses with a Downward-Facing Camera Vision CHI ’21, May 8–13, 2021, Yokohama, Japan

Figure 9: The subjective ratings of twelve hand-to-face interaction techniques in our customized AR applications. 1=strongly
disagree, 7=strongly agree. The scores of three metrics of "fatigue, "health anxiety", and "social concern" were rated reversely.

7.3 Procedure
The study lasted about 60 minutes. We firstly gave a brief interview, asking
the participants’ demographic information and their prior experience with
AR Glasses. An experimenter then introduced the concept of FaceSight
and the tasks in this study. After that, we started the experiment using a
randomized task order. For each task, they performed a gesture to instruct
AR glasses to execute a specific command. They can freely attempt until
they fully understood that technique. After the whole tasks were completed,
we asked them to give 7-point Likert scale scores for their agreements with
6 metrics to evaluate their experience (7 means strongly agree and 1 means
strongly disagree). The metrics included:

• Fatigue: "Performing the gesture makes me tired." (the scores were
reversed)

• Health anxiety: "The gesture leads to my health consideration." (the
scores were reversed)

• Social concern: "Performing the gesture would raise my social con-
cern" (the scores were reversed)

• Learnability: "The technique was easy to learn."
• Enjoyment: "The technique was fun to use."
• Willingness to use: "I would use the technique on my AR glasses."

We also asked them to reflect their feelings on the form factor with three
statements along a 7-point Likert scale:

• Did you socially accept the form factor?
• Did you feel concerned about your face being exposed to a camera?
• Did you perceive narrowing a sight for real world because of camera
physical protrusion?

In the 7-point Likert scale, 7 means the most positive feeling, while 1
means the most negative feeling. For example, if a user rated "7" for the
first question, that represented she can fully accept the form factor and
would use in any practical scenario; If a user rated "1", that defined she felt
extremely embarrassed and had no willingness to use in public settings at

all. For the first question, we required participants to focus on the placement
of the add-on camera, not consider AR glasses and camera together. For the
second question, they can see the images captured from the camera on a
laptop’s screen when they are wearing the AR glasses.

7.4 Results
7.4.1 Subjective Feedback on Interaction Design. Figure 9 showed the mean
scores that participants gave to the gestures (fatigue, health anxiety, and
social concern) and interaction techniques (learnability, enjoyment, willing-
ness to use). In general, participants appreciated the interaction techniques
in five example applications. They felt that the interaction techniques were
fun to use and easy to learn, especially performing Shush gesture to mute an
application got "7" points in the "fun to use" metric from every participant.
However, one participant (P10) felt concerning that, "Performing shush
gesture in public could be offensive to other people." With Voice Assistant
application. While covering the mouth, P1 recommended that interaction
can be expanded by further tapping on the cheek, such as answering a true
or false question asked by the voice assistant. Some participants also gave
suggestions on how to improve the interaction technique. For example,
P10 said, "Spread two fingers on one cheek for zooming is more natural
than using two hands." and four participants(P3, P6, P8, P9) mentioned, "For
selection, I would like to tap on the cheek, not on the chin."

Participants consistently preferred subtle gestures, such as simply tap-
ping on a particular facial region. Compared with swiping or nose pushing
gestures, these ones required less physical effort, hygiene concern, and
social awkwardness. They also appreciated the cover mouth gestures "This
could lessen my social worries since my mouth would not expose to the
public" From our observations, participants tended to use the hand that was
on the same side as the target region. For example, if one’s target is the left
nose wing or left cheek, she would intuitively use her left hand, and vice
versa.
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Figure 10: The subjective ratings on the form factor. 7means
the most positive feeling, and 1 means the most negative
feeling. Error bars represent standard deviation.

We also collected comments related to the facial regions. Some partic-
ipants thought "Nose has a well-defined shape, and the fingertip can be
seen by the peripheral vision while touching nose, which helps complete
a task accurately." and "Conducting gestures on chin costs less on health
considerations and social concern." We also received negative feedback. Two
females (P2, P5) expressed, "I would not swipe on my cheek, as it could
break my makeup. But tapping on the cheek is tolerable." and P3 reported,
"hand-to-chin gestures are more likely to use fingernail rather than finger
pulp, making me a little bit uncomfortable." Meanwhile, a rhinitis patient
(P9) showed a low willingness to interact with the nose. Concerning this,
the mapping of a hand-to-face gesture and its function should better allow
customized by users themselves.

7.4.2 Subjective Feelings about Form Factor. Figure 10 reflected the sub-
jective ratings about the augmented camera use of FaceSight in terms of
three statements (social acceptability of the form factor, privacy concern,
and awareness of camera). Participants generally accepted the form factor
(average=5.2 ±1.32) except P10, who rated 2 points. They also remained
positive attitudes on the privacy issue (average=5.9 ±0.99). For the issue of
camera obstructing real world view (average=6.4 ±0.52), two participants
did not notice the camera protrusion during the whole process, while the
other eight participants did. Still, most of them felt, "The device appears
highly transparent and unclear. It is only visible while focusing on it." The
results indicated to mount a camera compactly on AR glasses was socially
acceptable and would not affect the user experience.

7.4.3 Observations of Real-Time Performance. From our observations, par-
ticipants can be proficient with the system after around ten minutes of
practicing. More than half participants reported "The gestures of cover
mouth, phone, and shush can be robustly recognized." To our surprise, par-
ticipants familiarized with gentle or rude pushing nose wing gestures with
just a few learning. For the swiping gestures, four participants fail to scroll
the page successfully in their earlier trials. One reason is that they were
not familiar with the boundaries of the camera’s viewing angle. After they
followed the experimenter’s instruction and training, all of them can scroll
a page smoothly without frustration.

The hand-to-chin gestures of Tap (1 finger) and Tap (2 fingers) were
easily misidentified. However, the performance had improvements while
they spread two fingers or lifted their palm to the same height as the chin,
since this could make more hand features expose to the camera. We also
noticed that frequent head movements would suffer the performance, which
could involve background noises and affect the algorithm accuracy.

8 DISCUSSIONS
In this section, we discuss the potential use cases, practical deployment
issues of FaceSight.

8.1 Applicable Platform and Use Cases
FaceSight offers an eyes-free, tangible input modality that helps users lever-
age proprioceptive to complete AR tasks naturally, such as basic commands
(e.g., confirming an action, browsing a page, zooming a picture), application
shortcut, or mode switching, as demonstrated by the application examples.
Based on our findings, hand-to-face interactions are well-suited to input
AR HMD, with high enjoyment and less learning effort. However, consid-
ering the sanitation concerns resulting from frequent hand-face contact
[31], FaceSight is not appropriate for highly repetitive task, like text en-
try. Moreover, FaceSight also has the potential to be embedded on other
platforms, such as a pair of regular eyeglasses, which could allow users
to make a quick response to their smartphone or surrounding intelligent
devices, such as issuing commands, or dealing with notifications. VR HMDs
are also compatible with FaceSight by installing a camera on the device or
integrating it into the box that can enjoy the interaction benefits.

8.2 Form Factor
The hardware setup of FaceSight is compact. Due to the camera’s proximity
to human eyes, thus it is perceived to be highly transparent and unfocused.
According to our study, all participants showed positive feelings about the
augmented device (Figure 10). They reported that the slight and unnotice-
able camera occlusion is acceptable, which neither disturbed their user
experience nor raised discomfort. Also, The camera size can be further re-
duced. We can re-design AR glasses to integrate the module into the device
and leave only the lens outside. It can even adopt a motor-based mechanical
design to popup the lens whenever needs. The camera we used costs about
30$.

8.3 IR versus RGB Illumination and Sensing
In this paper, we realize FaceSight based on IR illumination and sensing. The
benefits are as follows: 1) The IR camera usually accompanies lighting bulbs,
providing active illumination without bothering users that promises the
system’s usability in a completely dark environment. 2) The illumination
scope and power can be customized to satisfy the usages in specific sce-
narios. An appropriate setup can simplify the segmentation algorithm and
reduce potential privacy concerns. 3) IR sensing scheme is widely applied
in commercial human-computer interaction devices, such as Leap Motion
and Kinect, proving the practical feasibility of both computing hardware
and software. An alternative solution is adopting RGB sensing. RGB cam-
era provides rich color information that is beneficial to implement skin
segmentation and gesture detection. However, the shortcoming is that the
algorithm significantly relies on the lighting conditions. Low illumination
in the environment will affect the sensing quality and usability.

8.4 Midas Touch Problem
Prior studies [2, 31] indicated that people often touched their facewith hands
in their daily lives. Therefore, in practical use, we need to design interaction
mechanisms to avoid Midas touch (i.e., trigger a command inadvertently)
when using FaceSight. A solution is to create a mode-switch method to
let users explicitly specify the interaction mode. For example, a user first
performs a delimiter gesture and then completes the rest interaction. The
delimiter gesture itself still requires to be robustly recognized and is rarely to
be acted unintentionally. Other strategies include repeating the action twice
to confirm the intention, specifically collecting unintended hand-to-face
action data and training an extra classification model.

8.5 Impact of Head and Glass Movement
The head-worn camera can capture the human face stably regardless of head
movements. However, frequent head movements in a complex environment
could involve more background noises that would influence the robustness
of segmentation algorithm. For the glass movement, except for leading the
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camera to rest on the nose, most of the cases are negligible because the
offset is too slight to affect the image quality.

9 LIMITATION AND FUTUREWORK
We discuss some limitations and future works of FaceSight in this section.
First, infrared sensing is susceptible to interference from infrared light in the
environment. In this work, our experiment was conducted in an ideal indoor
environment. We did not study the problem of infrared interference in depth.
Our rule-based segmentation approach may generate unsatisfactory results
in some circumstances (e.g., in outdoor space), where we could lose some
utilized features, like intensity contrast between cheek and nose. We would
further test our system in those conditions and research a more robust
segmentation algorithm (e.g., semantic segmentation model) to address this
issue.

Second, in this study, all gestures were designed by authors, as the goal
was to explore the design possibilities. In the future, we would recruit users
from different cultures and conduct a study to curate the gestures and their
applicability carefully, with special attention towards social acceptability.
Third, our current system runs the computer-vision algorithm on a remote
server, which takes advantage of GPUs to perform CNN model inference.
For practical use, it is important to research a lightweight classification
algorithm that can run locally on AR glasses, with particular concerns of
efficiency and power consumption.

Currently, we only explored the hand-to-face interactionwith a downward-
looking camera mounted on the nose edge of AR glasses. The camera also
has the potentials to sense facial expressions (e.g., smiling, puffing the
cheek) [28, 52], which gives a unique opportunity for hands-free interac-
tion. Moreover, commercial AR glasses usually contain microphone sensors,
bringing additional information (the audio signal resulting from hand-face
contact [48]) that may further improve the contact detection performance.
We expect to incorporate these features into the future version of FaceSight.

10 CONCLUSION
We present FaceSight, a novel camera-based sensing technique to enable
hand-to-face gesture interaction on AR glasses. FaceSight uses a downward-
looking camera to capture a users’ lower face and leverages infrared illu-
mination and sensing to enhance the quality and signal-to-noise ratio of
the image. Thanks to the high-resolution image of hand and face, FaceSight
is capable of detecting rich and subtle hand gestures performed on the
face. To explore the interaction potential of FaceSight, we proposed a rich
gesture set that contained 21 hand-to-face gestures associating with the
nose, mouth, chin, and cheek. Out of them, ten novel gestures have not
been present in prior literature. We also demonstrated the value of these
hand-to-face gestures by implementing customized AR applications. Our
recognition algorithm takes advantage of the high contrast of the image,
and can detect touch contact and classify hand-to-face gestures in high
accuracy (83.06% in recognizing all gestures simultaneously), reflecting the
advantage of the sensing scheme of FaceSight. We conclude this work by
discussing the potential usages, issues for practical deployment, limitations
of the current work. In conclusion, our exploration suggests that FaceSight
has great potential to realize and advance hand-to-face gesture interaction
on AR glasses.
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