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ABSTRACT 
Past research regarding on-body interaction typically requires 
custom sensors, limiting their scalability and generalizability. 
We propose EarBuddy, a real-time system that leverages 
the microphone in commercial wireless earbuds to detect 
tapping and sliding gestures near the face and ears. We 
develop a design space to generate 27 valid gestures and 
conducted a user study (N=16) to select the eight gestures 
that were optimal for both human preference and microphone 
detectability. We collected a dataset on those eight gestures 
(N=20) and trained deep learning models for gesture detection 
and classification. Our optimized classifier achieved an 
accuracy of 95.3%. Finally, we conducted a user study 
(N=12) to evaluate EarBuddy’s usability. Our results show that 
EarBuddy can facilitate novel interaction and that users feel 
very positively about the system. EarBuddy provides a new 
eyes-free, socially acceptable input method that is compatible 
with commercial wireless earbuds and has the potential for 
scalability and generalizability. 
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CCS Concepts 
•Human-centered computing → Human computer 
interaction (HCI); Interaction techniques; Ubiquitous and 
mobile computing systems and tools; 

INTRODUCTION 
Past research from the human-computer interaction 
community has explored the use of surfaces on the body 
like the palms [65], arms [26], nails [27], and teeth [71] 
for convenient, subtle, and eyes-free communication [20]. 
Leveraging these surfaces has typically required custom 
sensors—fingertip cameras [60], ultrasonic wristbands [77], 
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Figure 1: EarBuddy leverages the microphone embedded in wireless 
earbuds to recognize gestures on the face or around the ears. 

and capacitive fingernails [27], etc. Such custom sensors limit 
the scalability and generalizability to other applications. 

Our work takes advantage of the growing popularity of 
wireless earbuds as ubiquitous sensors for on-body sensing. 
Apple sold tens of millions of AirPods [16]. Other companies 
like Samsung [7] and Sony [8] are expected to show 
comparable trends in uptake of their earbuds. Although 
wireless earbuds are mainly used for audio output (i.e., playing 
music and videos), most products also include a microphone 
for audio input so that people can respond to phone calls. 
The fact that wireless earbuds rest within a person’s ears 
means that their microphone is conveniently situated near 
multiple surfaces that are suitable for on-body interaction: the 
cheek, the temple, and the ear itself. Tapping and sliding 
fingers across these surfaces generates audio signals that can 
be captured by an earbud, transmitted to a smartphone via 
Bluetooth, and then processed on-device to interpret gestures. 

This observation gives rise to EarBuddy, a novel eyes-free 
input system that detects gestures performed along users’ faces 
using wireless earbuds. As shown in Figure 1, users can easily 
control a music player or react to a notification by EarBuddy. 
Since EarBuddy augments the capabilities of devices that are 
already commercially available, our technique can easily be 
deployed through software updates to the phone to provide 
new interaction experiences for users. 
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We develop a comprehensive design space with 27 gestures 
along the side of a person’s face and ears. Since users 
cannot realistically remember all 27 gestures and some 
gestures are not easily detectable by earbud microphones, 
we conducted a user study (N=16) to narrow our gesture 
set to eight gestures. We carried out a second user study 
(N=20) to collect a thorough dataset with those gestures 
in both a quiet environment and an environment with 
background noise. We used that data to train a shallow 
neural network binary classifier to detect gestures and a 
deep DenseNet [25] to classify gestures. Our best classifier 
achieved a classification accuracy of 95.3%. Finally, we built a 
real-time implementation of EarBuddy using those models and 
conducted a third user study (N=12) to evaluate EarBuddy’s 
usability. Our results show that EarBuddy sped up interactions 
by 33.9 - 56.2% compared to touchscreen interactions. Users 
provided positive feedback as well, saying that EarBuddy can 
be used easily, conveniently, and naturally. 

Our contributions of this paper are threefold: 

• We propose EarBuddy, a novel eyes-free input technique 
supported by wireless earbuds without the need for 
hardware modification, and implement a real-time 
instantiation of EarBuddy. 

• We create a two-dimensional design space for gestures near 
the face and ears. Our first user study selects the gesture 
set for EarBuddy that is optimized for user preference and 
microphone detectability. 

• We train a gesture recognition model based on a second data 
collection study, and evaluate the usability of EarBuddy in 
a third user study. 

RELATED WORK 
We provide a general overview of on-body interaction with 
special attention towards interactions with the face and ears. 
We then review research on sound-based activity recognition. 

On-Body Interaction and Sensing 
On-body interaction refers to the use of the human body as 
an input or output channel [20]. A wide range of human body 
parts have been leveraged for on-body interaction. Examples 
include the palm [19, 20, 65], arms [18, 20, 26], fingers [24, 67, 
70], nails [27, 63], the face [26, 57, 74], ears [28, 36, 44], and 
teeth [10, 71], and even clothing that goes beyond skin [48, 56]. 
Researchers have used various sensing techniques to support 
these interaction surfaces. For example, Harrison et al. [20] 
used a ceiling-mounted infrared camera to locate a person’s 
arms and hands and a digital light processing projector to 
shine interfaces onto the user’s limbs. FingerPing by Zhang 
et al. [77] identified hand postures using an ultrasonic speaker 
on the thumb and speakers placed at the thumb and wrist. 
Through capacitive sensing, Kao et al. [27] created printable 
electrodes that can be placed on a person’s fingernails to enable 
touch gestures on nails. Finally, Weigel et al. [67] explored 
various forms of deformation sensing (e.g., capacitive and 
strain sensors) for on-skin gestures. 

The aforementioned techniques require additional hardware, 
thus limiting their deployability. In this paper, we strictly rely 

on the microphone that is built into commercially available 
wireless earbuds to detect gestures on the face and ears. 

Interaction on the Face and Ears 
Within the realm of face and ear gestures, Serrano 
et al. [57] examined the overall design space on the face 
for head-mounted display interaction, with special attention 
paid towards social acceptability. Their findings suggest that 
the cheek and forehead are the most practical locations for 
gesture sensing. However, they did not use their findings 
to propose a specific gesture set for the face. Lissermann 
et al. [36] offer three categories of interaction with the ear rim: 
touch (slide, single- and multi-touch), grasp (bend, pull lobe, 
and cover), and mid-air (hover and swipe). Inspired by the 
related work and literature on gestures performed with touch 
screens [11, 38, 72], we propose a two-dimensional design 
space for touch-based interaction on the face and ears. 

To detect face- and ear-based gestures, Masai et al. [41] 
installed photo reflective sensors on glasses to measure 
cheek deformation during different facial expressions [42]. 
Yamashita et al. [73] used similar sensors on a head-mounted 
display to detect face-pulling gestures. Kikuchi et al. [28] 
augmented earbuds with photoreflective sensors around the 
periphery; as users tugged on their ear, the distance between 
the ear’s antihelix and the sensors changed to produce 
distinguishable signals. Lissermann et al. [36] detected 
gestures behind the ear using an array of capacitive sensors. 
Wang et al. [66] used the capacitive phone screen to capture 
the contact between the ear and the screen to help blind users 
to interact with the phone with ear. Tamaki et al. [62] mounted 
a camera and a projector on earbuds to recognize hand gestures 
and provide visual feedback. Lastly, Metzger et al. [44] added 
a proximity sensor to earbuds to detect in-air gestures near 
the ear. As with the broader literature concerning on-body 
interaction, none of this work investigates gesture recognition 
without the use of additional hardware. To the best of our 
knowledge, we are the first to detect touch-based gestures 
on the face and ears using existing commercially available 
wireless earbuds for interaction. 

Sound-Based Activity Recognition 
Sound can capture rich information about a person’s physical 
activity and social context, thus leading researchers to use 
audio signals for activity recognition. For example, Chen 
et al. [12] used acoustic signals on a wooden tabletop to 
recognize users’ finger sliding. These methods have used 
a range of classification models, ranging from traditional 
machine learning models like support-vector machines [15] 
and hidden Markov models [14] to deep learning models 
like fully connected networks [31] and convolutional neural 
networks [12, 23, 69]. Models for activity recognition 
have also leveraged different types of audio features. Lu 
et al. [39], for example, demonstrated that time-based 
features like zero-crossing rate and low energy frame rate 
can be used to distinguish speech, music, and ambient 
sound with a smartphone’s microphone. Mel-frequency 
cepstral coefficients (MFCCs) are a particularly popular 
choice for audio analysis because of how they distribute 
spectrogram energy in accordance with human hearing. Stork 
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Figure 2: EarBuddy pipeline overview. Audio augmentation and optimizer tuning techniques are used to tune the state-of-the-art vision model DenseNet 
pre-trained on ImageNet Dataset. 

et al. [61] used non-Markovian ensemble voting based on 
MFCC features to have a robot distinguish 22 human activities 
within bathrooms and kitchens. Laput et al. [32, 33] developed 
custom hardware to distinguish 38 environmental events using 
MFCCs and a pre-trained neural network. 

Closer to our work, BodyScope [75] and BodyBeat [49] 
combined time- and frequency-based features to classify 
sounds recorded by a microphone pressed directly against a 
person’s throat. Both systems recognize events like coughing 
and chewing but hint at the idea of recording subtle sounds 
like hums and clicks. EarBuddy builds on this idea, using deep 
learning to classify gestures on the face and ears. 

EARBUDDY DESIGN 
EarBuddy allows people to perform tapping and sliding 
gestures on their face and around their ears to interact with 
devices. We leverage the fact that touching body parts 
naturally produces subtle but perceptible sounds that can 
be captured by wireless earbuds. We introduce both the 
sound-capturing system and interaction design below. 

System Design 
EarBuddy recognizes gestures in two steps. First, a gesture 
detector judges whether a gesture is present. If a gesture is 
detected, the gesture is recognized by a classifier. Figure 2 
illustrates the overall pipeline of the system, which we 
describe in detail below. For the purposes of this paper, 
we implement EarBuddy using Samsung’s Gear IconX 2018 
wireless earbuds [7]. The built-in microphones of these 
earbuds sample sound through a single channel at 11.025 kHz 
with 16-bit resolution. 

Detection 
Gesture detection starts using a 180 ms sliding window with 
a step size of 40 ms. Twenty MFCCs are extracted from the 
window at each step and fed into a binary neural network 
classifier [31, 61]. The classifier outputs a 1 whenever there 
is audio content belonging to a gesture and a 0 otherwise. 
Almost all gestures take longer than three single steps (> 120 
ms), so the presence of a gesture should lead the classifier to 
produce multiple 1’s in succession; however, temporal shifts 
in the data and noise can make the classifier’s serial output 
noisy. EarBuddy remedies this issue by using a majority 
voting scheme where adjacent sequences of consecutive 1’s 
are merged if they are separated by one or two 0’s. A gesture is 
defined to be present whenever there are 3 or more consecutive 

1’s, corresponding to a minimum gesture duration of 120 ms. 
Whenever a gesture occurs, EarBuddy takes a 1.2 s segment 
of raw audio (covers more than 99 % of the gestures) centered 
on the sequence of 1’s and feeds it into the gesture classifier. 

Classification 
EarBuddy processes audio data for classification using 
mel spectrograms, similarly to past work [23, 32]. Mel 
spectrograms are generated by applying the short-time Fourier 
transform with a 180 ms window and step size of 1200 / 224 
= 5.36 ms, thus yielding a 224-length linear spectrogram that 
can be converted into a 224-bin mel spectrogram. This process 
produces a 224×224 input frame for each audio segment that 
can be fed into a deep-learning classification model. 

Deep learning models with large numbers of parameters are 
very capable of accurately modeling data. However, training a 
deep model from the scratch on a small dataset can easily 
lead to overfitting. Transfer learning alleviates this issue 
by pre-training a model from a large, well-labeled dataset 
and then conducting additional training with the smaller 
target dataset [46]. As EarBuddy converts audio signals 
into mel spectrograms, the 1-D audio signal is transformed 
into a 2-D image format. We tried transfer learning using 
pre-trained vision models like VGG16 [58], ResNet [22], and 
DenseNet [25]. We found that DenseNet, which is pre-trained 
on ImageNet-12 [53], produced the best accuracy for our data, 
leveraging the advantages of DenseNet: having a deep dense 
network but relatively small number of parameters. DenseNet 
is a network with one convolutional layer, four dense blocks, 
and intermediate transition layers. We modify this architecture 
after pre-training by replacing the last fully-connected layer 
with two fully-connected layers, using a dropout layer [59] 
a ReLU activation function [45] in between. Modifying the 
output layer is required because DenseNet has 1000 possible 
output classes for the ImageNet dataset [25], but EarBuddy 
requires far fewer output classes (1 for each gesture). We train 
the modified, pre-trained network on our dataset to produce 
the final classification model used by EarBuddy. 

Real-time System Implementation 
We prototype EarBuddy using a ThinkPad T570 laptop with 
a quad-core CPU processor to perform gesture recognition 
in real-time. The wireless earbuds transmit the microphone 
audio to the laptop via Bluetooth in 40 ms chunks. The chunks 
are accumulated to identify the presence of gestures and 
perform classification when needed. Despite the fact that our 
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(a) Tap-based Gestures (b) Simple Slide-based Gestures (c) Complex Slide-based Gestures 

Figure 3: Gesture Design of EarBuddy 

Table 1: The names and shorthand identifiers for all 27 gestures that we investigated in this work: (T1-) single tap gestures, (T2-) double tap gestures, 
(S-) simple sliding gestures, and (C-) complex sliding gestures. 

T1-Temple T1-Cheek T1-Mandible T1-Mastoid T1-TopEar T1-MiddleEar T1-BottomEar 
Single Tap Single Tap Single Tap Single Tap Single Tap Single Tap Single Tap 
on Temple on Cheek on Mandible Angle on Mastoid on Top Ear Rim on Middle Ear Rim on Bottom Ear Rim 
T2-Temple T2-Cheek T2-Mandible T2-Mastoid T2-TopEar T2-MiddleEar T2-BottomEar 
Double Tap Double Tap Double Tap Double Tap Double Tap Double Tap Double Tap 
on Temple on Cheek on Mandible Angle on Mastoid on Top Ear Rim on Middle Ear Rim on Bottom Ear Rim 
SBF-Cheek STB-Cheek STB-Ear STB-Mandible STB-Ramus C-Pinch C-Lasso 

Back-to-Front Slide Top-to-Bottom Slide Top-to-Bottom Slide Top-to-Bottom Slide Top-to-Bottom Slide Two Fingers Pinch Lasso on Cheek on Cheek on Cheek on Ear Rim on Mandible Base on Ramus 
SFB-Cheek SBT-Cheek SBT-Ear SBT-Mandible SBT-Ramus C-Spread 

Front-to-Back Slide Bottom-to-Top Slide Bottom-to-Top Slide Bottom-to-Top Slide Bottom-to-Top Slide Two Fingers Spread on Cheek on Cheek on Ear Rim on Mandible Base on Ramus 

laptop does not have a GPU, the average computation time of 
detection and classification is only 190ms. The average delay 
between the completion of a gesture and the classification 
result being returned is around 800 ms. 

Interaction Design 
People can produce different sounds by touching different 
areas around their face and ears. This is because the face 
and ears have unique structures with distinct combinations of 
materials. For example, the ear rim is primarily composed 
of cartilage, while the cheek is typically more fleshy. We 
identified seven areas that can be used for interaction: the 
temple, the cheek, the mandible angle, the mastoid, and the 
top/middle/bottom of the ear rim. 

Different sounds can also be produced by different touching 
gestures. For instance, sliding gestures produce a sustained 
high-frequency sound, whereas a tap produces a broadband 
impulse. Past work has explored a number of touch-based 
finger gestures [34, 57, 64] including tap-based gestures 
(single- and double-tap) and slide-based gestures (straight 
slide, lasso slide, and pinch-and-spread). 

Together, the gesture’s position on the face and the action by 
the fingers are the two dimensions that define our design space. 
Using all possible pairs of options along those two dimensions 
that are feasible to perform, we generate 27 gestures (Figure 3). 
Single- and double-tap gestures can be performed at all 7 

locations within our design space (Figure 3a), producing 14 
tap-based gestures (T1-/T2-). Simple slide-based gestures, on 
the other hand, can only be performed on larger areas of the 
face: the cheek, the ear rim, the ramus, and the mandible 
base (Figure 3b). At each location, sliding can be either 
top-to-bottom (STB-) or bottom-to-top (SBT-). Because the 
cheek is particularly wide, it is also possible to perform 
back-to-front (SBF-) and front-to-back (SFB-) slides on it. The 
cheek can also support complex sliding gestures (Figure 3c) 
like a lasso motion (C-Lasso), a two-finger pinch (C-Pinch), 
and a spreading gesture (C-Spread). 

STUDY 1: GESTURE SELECTION 
We wanted to narrow down the gesture set from 27 gestures to 
a subset that can be naturally performed, quickly remembered, 
and easily classified. Therefore, we conducted a study to 
identify a subset of the most preferable gestures. 

Participants and Apparatus 
We recruited 16 participants (8 male, 8 female, age = 21.3 ± 
0.9) via email and paper flyers. The study was conducted in a 
quiet room with an ambient noise level around 35-40 dB. As 
mentioned earlier, we implemented EarBuddy using a pair of 
Samsung Gear IconX [7] for data collection. 

Design and Procedure 
Each participant performed all 27 gestures three times using 
their right hand. The order of the gestures was pre-determined 
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Figure 4: Example plots of all 27 gestures. For each plot, the left side is the waveform of the raw audio and the right side is the mel spectrogram. The 
X-axis indicates the window size, which is 1.2 s. 

to counterbalance ordering effects. For each gesture, the 
experimenter led the participant through a brief practice phase 
to ensure they could perform the gesture correctly. The 
participant then followed instructions provided on a laptop 
screen to perform gestures at pre-defined times; doing so 
facilitated gesture segmentation for data analysis. After 
performing the gesture three times, the participant was asked 
to rate the gesture according to three criteria along a 7-point 
Likert scale (1: strongly disagree to 7: strongly agree): 

• Simplicity: “The gesture is easy to perform precisely.” 
• Social acceptability: “The gesture can be performed without 

social concern.” 
• Fatigue: “The gesture makes me tired.” (Note: Likert scores 

were reversed for analysis) 

Results 
Figure 4 shows example signals for all gestures. Figure 5 
shows all gestures’ ratings, sorted by the sum of the scores. 
We used the following aspects to select the best gestures: 

1. SNR. We calculated each sample’s signal-to-noise ratio 
(SNR) and removed the gestures that had an average 
SNR lower than 5 dB. This removed eight gestures, many 
of which were sliding-based gestures that either went 
bottom-to-top or complex sliding gestures: SBT-Cheek, 
SBT-Ear, SBT-Mandible, STB-Mandible, SBT-Ramus, 
C-Spread, C-Pinch, C-Lasso. 

2. Signal Similarity. We used dynamic time warping (DTW) 
[54] on the raw data to calculate signal similarity between 
pairs of gestures. We created a 27×27 distance matrix 
where each entry was the average DTW distance across 
all possible pairs of the corresponding gestures. We then 
summed each row to calculate the similarity between 
each gesture and all others. Gestures with total distances 
lower than the 25th percentile were removed, since they 
are most likely to be confused during classification. 
Doing so removed T1-Temple, T1-Mandible, T1-TopEar, 
T2-Mandible, T2-BottomEar. 

Figure 5: Subjective ratings of all 27 gestures in terms of simplicity, 
social acceptability, and fatigue (reversed). 

3. Design Consistency. Prior work has shown that single-
and double-click gestures usually appear in a design space 
together [51], i.e., if an interface supports single-click 
gesture, it usually supports double-click gesture as well. 
Therefore, for each single-tap gesture that was eliminated 
before this point, the corresponding double-tap gesture was 
removed, and vice versa. This eliminated T1-BottomEar, 
T2-Temple, and T2-TopEar. 

4. Preference. We used the subjective ratings to decide 
between the remaining gestures. For each participant, each 
gesture was ranked from first to last along each of the three 
criteria. Those rankings were mapped to a score (first = 
1, second = 2, etc.), and those scores were summed across 
criteria and participants. We selected the ranked gestures 
from the top to the bottom, and stopped selection once either 
of the three criteria had a score below 4. This eliminated 
SFB-Cheek, STB-Cheek, and SBT-Ear. 

The gesture selection procedure resulted in 8 gestures. 
Our final gesture set had 6 tapping gestures—single-
and double-tap on cheek (T1-Cheek and T2-Cheek), 
mastoid (T1-Mastoid and T2-Mastoid), and middle ear 
rim (T1-MiddleEar and T2-MiddleEar)—and 2 sliding 
gestures—top-to-bottom slide on ear rim (STB-Ear) and ramus 
(STB-Ramus). 
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STUDY 2: DATA COLLECTION 
After finalizing our gesture set, we conducted a second study to 
collect more instances of those particular gestures and evaluate 
both the detection and classification accuracy of EarBuddy. 

Participants and Apparatus 
We invited another 24 participants for this study. All 
participants used earbuds on a daily basis and were right-hand 
dominant. Software and hardware errors caused the collected 
data to be corrupted for six of them. This left us with 18 
participants (9 male, 9 female, age = 21.6 ± 1.3) with valid 
data. The study was conducted with the same devices and 
room as the previous study. 

Noisy Environment 
Handling ambient noise is one of the most salient challenges 
for sound-based interaction techniques [13, 40]. Therefore, 
this study was conducted in two sessions: one in a quiet 
environment (quiet-session) and one in a noisy environment 
(noisy-session). In the quiet-session, participants sat in 
the room with minimal noise (38 dB on average). In the 
noisy-session, standardized noise was generated by a stereo 
playing a soundtrack at 55 dB [5]. The audio contains standard 
ambient office noise such as talking, laughing, walking, and 
typing. The soundtrack was started at a random timestamp for 
each session to avoid systematic biases. 

Design and Procedure 
We conducted a within-subject study with a 2×8 factorial 
design, with Session and Gesture being the factors. The order 
of the two sessions and eight gestures was counterbalanced to 
reduce ordering effects. 

Participants were only required to perform the gestures on the 
right side of their face. They first went through a 5-minute 
practice phase to familiarize themselves with the eight gestures. 
During the data collection, participants were asked to perform 
each gesture 10 times in 5 rounds in both sessions, thus 
generating 100 examples of each gesture per participant 
(10 examples/round × 5 rounds/session × 2 sessions). To 
validate the detection accuracy of EarBuddy, participants were 
instructed to perform gestures in sync with a countdown timer 
presented on a laptop screen. The timer counted down for 
2 seconds, and then participants had another 2 seconds to 
complete the gesture. Audio was recorded during those 4 
seconds to capture audio both with and without gestures. 
A 1-minute break was placed between each round, during 
which participants were asked to remove the earbuds and then 
put them back into their ears to allow for different earbud 
positioning. The study lasted about 45 minutes. 

Annotation 
Three researchers examined all of the data to annotate the 
start- and end-times of each gesture. They removed samples 
obscured by noise due to some software issue (the audio 
channel crashed, leading to large noise in the audio sample) 
and hardware issue during data collection (occasionally the 
built-in noise cancellation function was activated). 11,147 
(77.4%) gesture samples remained in our dataset after filtering. 
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Figure 6: The distribution of three gesture types’ duration. The vertical 
dashed lines indicate the 99th percentile of the duration of that type. 

Figure 6 illustrates how long it took for participants to perform 
the single-tap, double-tap, and slide gestures. Slide gestures 
took the longest amount of time, with the 99th percentile being 
1.2 s. EarBuddy uses this duration as the length of raw audio 
input for gesture classification. Each gesture is segmented by 
clipping a 1.2 s-long window of audio data centered at the 
middle of its annotated range to produce the dataset we use to 
evaluate gesture detection and classification. 

GESTURE DETECTION AND CLASSIFICATION 
To test the feasibility of EarBuddy, we trained two models 
using the data that was collected in this study, one to segment 
the audio (i.e., gesture detection) and one to recognize the 
gesture in the segment (i.e., gesture classification). 

Gesture Detection 
We simulated real-time input by manually applying a 180 ms 
sliding window across the data with 40 ms steps, the same rate 
as our implementation of EarBuddy. If more than 50% of the 
sliding window overlapped with the audio data related to a 
manually annotated gesture, the window was considered to be 
a positive gesture detection example; otherwise, the window 
was negative. This procedure led to 120k positive samples and 
252k negative samples for training and testing. 

As described earlier, we converted each sliding window to a 
vector of 20 MFCCs which was used as input for the gesture 
classifier. A three-layer fully connected neural network binary 
classifier [55] was trained on the data. The hidden layers had 
100, 300, and 50 nodes from input to output, with intermediate 
dropout layers. Using an 80-20 train-test split on all of the 
samples produced an overall weighted accuracy of 92.6% 
(precision: 91.7%, recall: 85.3%). After the classification 
results were smoothed using the majority-vote algorithm 
described earlier, 98.2% of the gestures were successfully 
detected. Among the remaining 1.8% of gestures that were 
missed, 0.4% were from the silent environment and 1.4% were 
from the noisy environment, showing that noise complicated 
gesture detection. 

Gesture Classification 
The manually annotated gestures were used to assess the 
optimal performance of EarBuddy’s gesture classification 
performance. 
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Data Augmentation 
Because our dataset was relatively small compared to what 
is normally desirable for deep-learning, we augmented our 
dataset by producing similar variations of the collected 
examples. We did so using the following methods: 

• Mixing Augmentation [32]: Noise from two common 
scenarios—office noise [5] and street noise [9]—were 
mixed with the raw audio data before they were converted 
to mel spectrograms. 

• Frequency Mask [47]: f consecutive mel frequency 
channels [ f0, f0 + f ) were replaced by their average, where 
f was chosen from a uniform distribution from 0 to the 
maximum mel frequency channel v, and f0 was chosen 
from [0,v − f ). 

• Time Mask [47]: t consecutive time steps [t0, t0 + t) were 
replaced by their average, where t was chosen from a 
uniform distribution from 0 to the maximum time τ , and t0 
was chosen from [0,τ − t). 

• Horizontal Flip [22]: The mel spectrogram was flipped 
horizontally. 

Each of the four augmentation methods was independently 
applied on the raw dataset with a probability of 50% during 
each epoch of training. 

Learning Optimization 
Past literature has suggested that stochastic gradient descent 
(SGD) [50] has better generalization than adaptive optimizers, 
such as Adam [29, 68]. Therefore, we employed SGD as 
the optimizer for the training, with the momentum parameter 
at 0.9 [52] to accelerate convergence and the weight decay 
regularization parameter at 0.0001 [30] to prevent overfitting. 
These parameters are commonly adopted for SGD [35]. We 
combined the linear graduate warm-up method [17] and the 
cosine-annealing technique [37] to update the learning rate. 
The learning rate started at 0.01, then climbed up to 0.1 in 20 
epochs, then decayed in a cosine curve in the next 400 epochs. 
Such a learning rate schedule has the advantage of fast (large 
learning rate at the beginning) and robust (small rate at the 
end) convergence. 

Population Results 
We trained two additional models as our baselines: 

1. Twenty MFCCs were extracted in 40 ms steps, similarly 
to what is done for EarBuddy. The mean and standard 
deviation of the MFCCs were calculated to summarize each 
gesture as a feature vector with 40 values. Those features 
were used to train a random forest classifier. 

2. A VGG16 Net [58] was trained from scratch on the mel 
spectrogram images. 

We mixed all users’ data together and randomly separated 
them into an 80-20 train-test split. Table 2 provides 
the classification performance of the baseline models and 
variations of models. Pre-training with DenseNet, data 
augmentation, and learning optimization each significantly 
improved EarBuddy’s performance. The final model with 
all techniques achieved an overall classification accuracy of 
95.3% and an F1 score as 0.954 on the test set. 
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Table 2: Test results of different models and enhancing techniques. 
Precision, recall, F1, and accuracy values are weighted across gestures. 

Model Prec Rec F1 Acc 

Random Forest on Means and Std 0.607 0.631 0.620 0.602of 20 MFCCs over the window 

VGG16 from scratch with Adam 0.637 0.645 0.640 0.629 

Pre-trained VGG16 with Adam 0.769 0.755 0.762 0.761 

Pre-trained ResNet with Adam 0.810 0.793 0.802 0.785 

Pre-trained DenseNet with Adam 0.807 0.803 0.805 0.809 

Pre-trained DenseNet with Adam + 0.872 0.872 0.872 0.872Data Augmentation 

Pre-trained DenseNet with SGD + 0.929 0.893 0.916 0.914Data Augmentation 

Pre-trained DenseNet with SGD + 0.956 0.951 0.954 0.953Data Augmentation + Schedule 

Note that these results included data from both the quiet 
and noisy environments. When we trained our best model 
configuration using data from each environment separately, 
EarBuddy had overall classification accuracies of 93.8% and 
92.5%, respectively. The decrease in accuracy from the quiet 
to the noisy environment was expected due to the increased 
noise in the latter. We also expected a slight drop in accuracy 
when the data was separated into two halves because there was 
less data to train each model. 

Figure 7 presents the confusion matrix for the eight gestures 
based on the best model in Table 2. The three double-tap 
gestures had the highest accuracy (97.3%), followed by the 
three single-tap gestures (94.4%) and the two sliding gestures 
(93.1%). The STB-Ramus had the lowest accuracy (91.7%), 
which may be explained by the relatively lower signal SNR 
(see Figure 4). That error rate (8.3%) is about two times 

Figure 7: Confusion matrix of the best model on test set. The overall 
weighted precision, recall, F1 score, and accuracy are 0.956, 0.951, 0.954 
and 0.953, respectively. 
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Figure 8: Results with the leave-one-user-out data plus the ignored 
user’s additional samples. Error bar is the standard error. The 
population accuracy is when all users’ data is merged for training. 

higher than the average error rate (4.7%). For this reason, we 
eliminated it and only evaluated the remaining seven gestures 
in the real-time system in our final evaluation study. 

Leave-One-User-Out Results 
The audio signal for the same gesture can appear different 
across users for a couple of reasons: (1) users may perform 
gestures in unique ways, or (2) users’ unique body structure 
can produce sounds in slightly different ways. To investigate 
the feasibility of a model that could recognize gestures by 
new users, we trained our best model configuration using 
leave-one-user-out cross-validation. Doing so produced an 
overall accuracy 82.1%, a 13.2% drop from the model that 
was trained within users. 

In a real-world situation, it is realistic to ask a new user to 
perform each gesture a few times before using the system 
(e.g., during a tutorial). The system can utilize these samples 
to apply additional training on a pre-trained model. We 
tested this approach by saving our leave-one-user-out model 
and further training it on a small number of examples of 
each gesture from the ignored user. Figure 8 shows how 
the inclusion of a small amount of data from the new user 
can improve model performance. With just five gestures, 
the performance improved to 90.1%. The performance 
approached the population test accuracy with additional 
samples, reaching 93.9% with 30 gestures. 

STUDY 3: USABILITY EVALUATION 
Our final user study evaluated a real-time implementation of 
EarBuddy on its performance and usability. 

Participants and Apparatus 
Twelve participants (8 male, 4 female, age = 21.4 ± 0.8) from 
Study 2 were invited back to evaluate the system. The same 
earbuds and room were used for this study, with the software 
issue in Study 2 fixed. To test the robustness of our system, 
the same office audio [5] was employed to simulate a noisy 
office. We employed an Android phone as the interface where 
all the gesture results would appear. The phone communicated 
with the laptop via TCP. The laptop was also used to instruct 
participants on when to perform which tasks. 

Design 
We compared our input technique with two baselines in three 
common application tasks. We conducted a a 3×3 factorial 
within-subject study with Task and Setup being the factors. 

Figure 9: UI design of the three tasks for evaluation. The two physical 
buttons on the left edge are used for volume adjustment in music 
application. And the button on the right edge is used for muting a call. 

Table 3: The design of the mapping of EarBuddy gestures and on-screen 
touch operations for the three applications examined in the user study. 

Task Operation Earbud Gesture Touch Gesture 
Music Play/Pause STB-Ear Virtual Button Click 
Music Vol Up T1-Cheek Physical Button Click 
Music Vol Down T2-Cheek Physical Button Click 
Music Next T1-Mastoid Virtual Button Click 
Music Previous T2-Mastoid Virtual Button Click 
Call Answer T1-MiddleEar Virtual Button Click 
Call Reject T2-MiddleEar Virtual Button Click 
Call Mute STB-Ear Physical Button Click 

Notification Read STB-Ear - (Read) 
Notification Open T1-MiddleEar Notification Click 
Notification Delete T2-MiddleEar Notification Slide 

Setups 
As our system has the advantage to provide eyes-free 
interaction, all setups were designed in such a way that the 
phone screen was locked at the beginning so interactions were 
not visually available initially. Three setups were involved in 
the study—one based on EarBuddy and the other two based 
on touchscreen input: 

• EarBuddy: The smartphone was placed on the table, and 
participants used the seven gestures to complete the task. 

• Table: The smartphone was also put on the table, but 
this time, participants had to interact with the phone by 
touchscreen. This required participants to pick up and 
unlock the phone and then finish the task. 

• Pocket: Participants were asked to wear a jacket and place 
the smartphone in the right pocket. They need to remove 
the phone from the pocket and then complete the task. 

Tasks 
We designed three common applications for our study, each 
of which required a different set of actions to complete 
operations: 

• Music Player: Participants controlled music with five 
actions: play/pause, volume up, volume down, next song, 
and previous song. 

• Phone Call: When a phone call came in, participants could 
either answer, reject, or mute the call. 

• Notifications: Participants consumed a notification by 
either hearing it in the EarBuddy setup or by picking up the 
phone and reading it in the other two setups. They could 
either open the notification for more details or delete it. 
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Figure 9 shows the interfaces for the three tasks. Table 3 shows 
the mapping between gestures and smartphone operations, 
which we pre-determined using pilot testing. 

Details 
We used a Latin square to assign the ordering of tasks and 
interfaces. Within each task, the order of operations were 
randomized and each operation appeared three times. We 
logged the completion time of every operation and three types 
of errors: (1) user errors, where participants performed the 
wrong gesture or clicked on a wrong button; (2) segmentation 
errors, where participants performed a gesture but EarBuddy 
failed to recognize it (false negative) or EarBuddy mistakenly 
detected a gesture when none was performed (false positive); 
and (3) recognition errors, where EarBuddy did not correctly 
recognize a gesture that participants performed. For touch 
interaction, the detection and recognition errors were assumed 
to be zero. Note that if a user did not complete an operation in 
20 seconds, the operation would be skipped. 

After completing the three tasks in each setup, 
participants completed a 7-point Likert scale NASA-TLX 
questionnaire [21] to assess the perceived workload of the 
task and the effectiveness of the gestures. 

Procedure 
Participants first familiarized themselves with the three setups. 
The experimenter then introduced the three applications to 
the participants. As EarBuddy provides a new interface 
that users have never experienced before, we included a 
3-minute practice phase for each combination of setup and 
task to allow participants to familiarize themselves with the 
gesture mappings. Participants followed the instructions 
on a laptop screen to complete the required tasks for each 
setup. Participants were asked to complete the task as soon 
as possible after a beep from the laptop so that each action 
could be timed. There was a one-minute break between each 
task. After each setup, participants filled out the NASA-TLX 
questionnaire for the setup. The study took about 40 minutes. 

Results 
Participants were able to easily remember the mapping 
between EarBuddy gestures and setup actions since nobody 
performed an incorrect gesture. Meanwhile, our system 
had a low segmentation error rate (4.1% of gestures were 
missed) and a low recognition error rate (6.3% of gestures 
were incorrectly classified). 

Figure 10 top shows the average time participants took to 
complete each of the three setups. As the data violated 
normality and homoscedasticity assumption, we used analysis 
of variance on a generalized linear mixed model (GLMM) 
with Gamma family link function [43]. The results indicate 
a significant effect on Setup (χ2(2) = 73.0, p < 0.001), but 
neither on Task (χ2(2) = 2.1, p = 0.34) nor the interaction 
between Setup and Task (χ2(4) = 3.2, p = 0.52). Three 
post-hoc paired-samples z-tests on Setup, corrected with 
Holm’s sequential Bonferroni procedure, indicate that the 
setups were all significantly different (p < 0.001). Participants 
completed the EarBuddy setup 33.9% faster than the Table 
setup, and 56.2% faster than Pocket setup. 
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Figure 10: Results of the evaluation study. Top) Time to complete the 
tasks. Bottom) Subjective ratings of the three setups 

Participants’ subjective feedback of EarBuddy was also 
positive, as presented in the bottom of Figure 10. A 
generalized linear mixed-effects model analysis of variance 
(with ordinal family link function) on each question indicates 
a significant effect on Setup for physical demand, (χ2(2) = 
7.7, p < 0.05), performance (χ2(2) = 5.7, p < 0.05), and 
effort (χ2(2) = 5.8, p < 0.05). For these three questions, 
three post-hoc paired-samples Wilcox tests with Bonferroni 
procedure correction indicate that EarBuddy has lower 
physical demand (V = 2, p < 0.05) and requires less effort 
(V = 5, p < 0.05) than Pocket, and that EarBuddy has better 
performance than Table (V = 6.5, p < 0.05). 

DISCUSSION 
We discuss insights on gesture design, how EarBuddy can be 
generalized to new users, potential hardware generalizability 
and applications, as well as limitations and future work. 

Gesture Design for Face and Ear Interaction 
We discovered a few insights from our first study when users 
explored the entire design space. Users generally preferred 
tapping gestures over sliding gestures. Tapping gestures have 
similar average simplicity ratings compared to sliding gestures 
(both 5.0), but better social acceptability (4.6 vs. 3.9) and 
fatigue ratings (4.8 vs. 3.7). Moreover, simple sliding gestures 
were preferred over complex sliding gestures as the latter were 
viewed to be socially inappropriate (2.6) and fatiguing (3.0). 
Users also preferred top-to-bottom and back-to-front sliding 
over the reverse directions. The top-to-bottom/back-to-front 
gestures had higher ratings in all three attributes (simplicity: 
5.3 vs. 4.8, social acceptance: 4.3 vs. 3.6, fatigue: 4.1 vs. 3.3). 
This may be due to the fact that moving the finger forward and 
downward works with gravity rather than against it, returning 
the arm to a more natural position than the reverse. 

As for the signal quality, tapping on facial skin generated 
louder sounds compared to sliding. Gestures on the ears 
also produced louder sounds than gestures behind the ears, 
followed by gestures on the cheek, temple, and mandible. This 
trend is mainly due to the distance between the microphone 
and the gesture surface. Putting these facts together, tapping 
gestures on the ear rim produced the strongest signal. Both 
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user preferences and signal quality should be considered by 
researchers and designers in the future. 

Improving Performance for New Users 
Individuals have unique ways of performing different gestures. 
When performing a double-tap, for example, some users 
tap harder the first time than the second, while others do 
the opposite. Two users may also tap at slightly different 
positions on the cheek when performing a tapping gesture. 
Because of these differences, the average accuracy after 
leave-one-user-out training (82.1%) was lower than the 
accuracy after training across all users (95.3%). However, as 
shown in Figure 8, using just five examples per gesture from 
the new user raises the accuracy to 90.1%. This illustrates that 
introducing a warm-up phase for a new user can efficiently 
improve the model’s performance, which can be delivered 
in a clever way to avoid burdening new users. E.g., training 
examples can be collected while the user walks through a 
tutorial on which gestures are supported by a given interface. 

Generalizability on Hardware 
Our studies of EarBuddy used a single pair of in-ear Samsung 
Gear IconX earbuds. However, commercial earbuds have 
various form factors that could lead to different acoustic 
responses. For example, some earbuds are kept in place 
by clips that wrap around the ear (e.g., Powerbeats Pro [6]), 
whereas others have a microphone that sticks out like a headset 
(e.g., Bose SoundSport Wireless [2]). Increasing the distance 
between the microphone and the different gesture surfaces can 
weaken the audio signal intensity (SNR). However, having 
a microphone that is effectively in the air can better detect 
near-audible sounds that are transmitted through the air. 
Earbuds that have the microphone embedded within their 
main housing may do a better job of distinguishing infrasound 
because of their close contact with the skin. 

EarBuddy is compatible with other hardware that has a 
fixed microphone location around the face/ear as long as the 
captured audio has a sufficient SNR; for the 8 gestures we 
chose in Study 2, the average SNR is 10.3 dB. Examples of 
devices that could potentially be used with EarBuddy include: 
Bose headphones [2] have microphones in their main housing; 
the HTC Vive [4] has built-in microphones at the bottom center 
of the headset; and the HoloLens 2 [3] has two microphone 
arrays near the nose pad. Although further investigation is 
needed, the microphone position of these devices are close to 
the face and ears, thus promising for use in detecting gestures. 

Potential Applications 
EarBuddy can provide an eyes-free, socially acceptable input 
method. Users can interact with devices in a more subtle 
way, e.g., during a meeting, in a library, and in an office. 
It is suitable for quick reactions such as issuing commands 
and handling notifications, as illustrated by the application 
examples in our evaluation study. Moreover, EarBuddy can 
serve as a convenient input method when a user is using the 
device in a hands-free mode, such as when watching videos, 
cooking, etc. However, EarBuddy is not suitable for repeated, 
continuous interactions, e.g., text entry and interface scrolling. 
It also offers potential use cases in AR/VR. Rather than 

needing additional input widgets on the headsets, controllers 
or 3D finger tracking, EarBuddy can be embedded in a headset 
without additional hardware modification. 

Limitations and Future Work 
There are some important limitations of our work. First, the 
hardware we used only allowed the microphone on one side 
to be activated at a time, likely for better battery life. This 
prevented us from evaluating gestures on the left and right side 
of the face simultaneously. There is some work that deals with 
the problem by introducing a second smart device (e.g., [76]). 
In addition, we eliminated a number of data (22.6%) from the 
Study 2. This might be caused by built-in noise cancellation 
functions. We will investigate these issues in future work. 

Second, we only included noise from an office when 
simulating a noisy environment during data collection and 
evaluation, but there are other common noise types. One 
particularly intriguing source of noise was random face 
touches (e.g., scratching one’s face), which could have 
generated explicit false positives for gesture detection. 
Generalization with this noise remains as an open issue. We 
believe that personalized models work better due to differences 
in noise, physiology and gestures, but a one-fits-all model 
could also achieve good performance if trained on a large 
population. We plan to investigate this question by collecting 
data from more users to enhance model robustness. 

Regarding future work, EarBuddy currently only leverages the 
microphone sensor on wireless earbuds. Commercial wireless 
earbuds also usually contain other sensors such as an IMU, 
which may provide additional information that can enhance 
recognition performance. Moreover, earbuds that rely on bone 
conduction technology (e.g., AfterShokz Aeropex [1]) provide 
a unique opportunity for facial gestures. We hope to include 
these additional data sources in future iterations of EarBuddy. 

CONCLUSION 
We propose EarBuddy, a novel input system using 
commercially available wireless earbuds to measure the sound 
generated by contact between the finger and skin on the face 
and ears. EarBuddy allows users to interact with any device by 
simply tapping or sliding on the face and ears. We developed a 
design space with 27 gestures and conducted a user study with 
16 participants to select a subset of gestures optimized for user 
preference, social acceptability, and microphone detectability. 
We then conducted a study with 20 users to collect data 
for the eight gestures in both quiet and noisy environments. 
Machine learning models were trained for gesture detection 
and classification, the latter of which was able to identify 
gestures with 95.3% accuracy. We embedded the models into a 
real-time system to conduct another usability evaluation study 
with 12 users. The results indicate that EarBuddy accelerated 
input tasks by 33.9–56.2%. Users also preferred EarBuddy 
over touchscreen alternatives since EarBuddy allowed them to 
interact with devices easily, conveniently, and naturally. Our 
work demonstrates how earbud-based sensing can be used 
to enable novel interaction techniques, and we hope to see 
other researchers leveraging earbuds and other commercial 
wearables to support novel forms of interaction. 
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