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HeadGesture: Hands-Free Input Approach Leveraging Head
Movements for HMD Devices

YUKANG YAN, CHUN YU∗†, XIN YI, and YUANCHUN SHI, Tsinghua University, China

We propose HeadGesture, a hands-free input approach to interact with Head Mounted Display (HMD) devices. Using
HeadGesture, users do not need to raise their arms to perform gestures or operate remote controllers in the air . Instead,
they perform simple gestures with head movement to interact with the devices. In this way, users’ hands are free to perform
other tasks, e.g., taking notes or manipulating tools. This approach also reduces the hand occlusion of the field of view [11]
and alleviates arm fatigue [7]. However, one main challenge for HeadGesture is to distinguish the defined gestures from
unintentional movements. To generate intuitive gestures and address the issue of gesture recognition, we proceed through a
process of Exploration - Design - Implementation - Evaluation. We first design the gesture set through experiments on gesture
space exploration and gesture elicitation with users. Then, we implement algorithms to recognize the gestures, including
gesture segmentation, data reformation and unification, feature extraction, and machine learning based classification. Finally,
we evaluate user performance of HeadGesture in the target selection experiment and application tests. The results demonstrate
that the performance of HeadGesture is comparable to mid-air hand gestures, measured by completion time. Additionally,
users feel significantly less fatigue than when using hand gestures and can learn and remember the gestures easily. Based on
these findings, we expect HeadGesture to be an efficient supplementary input approach for HMD devices.
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1 INTRODUCTION
As the popularity of Head Mounted Display (HMD) devices rapidly increases, improving the input in virtual
reality (VR) and augmented reality (AR) is of great value. Current state-of-the-art head mounted AR (e.g. Hololens
[4]) and VR (e.g. HTC Vive [2]) devices mostly require users to input via in-air hand gestures or operating
controllers. However, there are a number of situations where users cannot use their hands as the actuator [20].
For example, user’s hands are sometimes occupied, e.g., while writing notes with a pen or holding the handrail
on an escalator. For users with limited arm mobility, they cannot interact with HMD devices easily because of the
requirement for hand input. Additionally, mid-air hand input for an extended time may cause arm fatigue and
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pain [12, 53] which severely influences the user experience. In these scenarios, to provide a supplementary input
approach that supports hands-free interaction is of great importance.

To support hands-free interaction, most HMD devices have a voice control interface. Voice control is accurate
and convenient when in a quiet environment. However, it may suffer in a noisy environment and cannot easily
protect users’ privacy in the public. Head movements can be also leveraged as an input channel to HMD devices,
especially as head positions are tracked by the built-in sensors of most current HMD devices. Users are also
familiar with performing gestures with head movements, e.g. to nod or shake head to communicate. So in
this paper, we explore interactions with HMD devices using only intentional head movements. We propose
HeadGesture, a head movement based input approach for HMD devices. Using HeadGesture, users perform
simple gestures with the head to issue the control commands of the HMD devices. HeadGesture supports basic
operations, including pointing, dragging, zooming in and out, scrolling up and down, and returning to the
homepage. With these operations, users can interact with different applications on HMD devices.
However, the design of HeadGesture faces two major challenges. First, the gestures should be simple and

intuitive, otherwise users have to make excessive effort to learn and remember them, and this will discourage users.
Secondly, the gestures should be robustly recognizable and distinguishable from unintentional head movements.
Users will move their heads without prescribed gestures in mind, e.g., looking around, so we need to avoid these
movements from being classified as HeadGesture (false positives[54]).
To address these challenges, we followed the Exploration-Design-Implementation-Evaluation procedure. In

the Exploration and Design, we first explored the space of usable head gestures with users. Then, we applied the
participatory design paradigm [62] to elicit the head gesture set from the users. Users were invited to design a
gesture set for nine basic operations on HMD devices. Finally, we summarized design goals and generated the final
gesture set based on the results. With the final gesture set, we implemented an algorithm to classify HeadGestures
and to filter out unintentional head movements. The algorithm consists of four parts: gesture segmentation, data
reformation and unification, feature extraction, and classification with the SVM model. Finally, we evaluated the
performance and user experience of HeadGesture through a comparison experiment and application tests. The
results showed that the overall performance of HeadGesture was comparable to mid-air hand gestures; meanwhile
HeadGesture caused less fatigue and were easy to learn and remember. We concluded that HeadGesture is an
promising supplementary input approach for HMD devices when hand input is not available.

2 RELATED WORK
We first review related work on hands-free interaction techniques and head movement based interactions. Then
we discuss the participatory design paradigm for the design of gesture set.

2.1 Hands-free Interaction
To achieve the goal of hands-free interaction, e.g. text entry [25] and navigation [21], speech based input
techniques were developed. However, with these techniques, recognition accuracy is compromised when in a
noisy environment[27], and can be inconvenient to interact via speech in a quiet public place.

In addition to speech input, body gestures were also studied to support hands-free interactions. WIP (walking
in place) [50] is an immersive and effective method for virtual locomotion by step-like movements. Using this
method, techniques [44, 55, 57] support hands-free navigation in the virtual environment by sensing the headset
motion of the user. Another body of leaning techniques [8, 16, 17, 48, 56, 61] can also achieve hands-free navigation.
The users leans their body to the direction that they want to navigate to, the posture is sensed by chairs [8, 48],
balance boards [17, 61]. Or the users can tilt part of their body, e.g. the wrist [16] or head [56] in the direction
to navigate. These techniques, however, only support navigation in virtual space. In this paper, HeadGesture is
designed to support most basic operations for different applications.
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2.2 Head Movement Based Interaction
From infancy, humans naturally use head gestures to convey messages [34]. The applications of head gestures
as a mode of human-computer interaction [36] and wheelchair control [14, 33] have been studied intensively,
especially for users with limited hand or arm mobility.

For able-bodied users, head movement is also a valuable interaction channel. Studies have shown that sensing
head orientation and position can help the calibration of gaze interaction and promote the accuracy of gaze-based
selection tasks [51, 52]. Head movements were also leveraged to control desktop cursors [22, 58] and mobile
devices [15], by mapping the position of the head to the cursor. Head gestures were also proposed for performing
discrete operations on the desktop [40, 45, 54] and HMD glasses [19, 64]. HeadTurn [45] enables users to adjust
input numeric values by turning their heads left or right beyond the range threshold. HeadPager[54] enables
users to turn pages in two directions by leaning their heads to the left or the right area. HeadNod [40] supports
quick dialogue answering via a nod or shake of the head. Glassgesture [64] was the first work to leverage head
gestures to achieve user authentication on AR headsets. Smoothmoves [19] requires users to follow the movement
trajectory of the target with the head to select it, on AR headsets.

Besides the preceding techniques only leveraging head movements, previous research also studied to combine
the use of gaze and head movements [31, 32, 35]. As gaze can reflect the focus and intention of the user [39], it
has been naturally leveraged as an input method [30]. Additionally, gaze changes have a strong correlation with
head movement [10], this can promote the recognition of head orientation and head gestures [38]. Studies [31, 32]
also showed that by combining the use of gaze and head movement data, target selection techniques can achieve
higher performance than using only one of them (faster than head pointing, more accurate than eye pointing).

2.3 Participatory Design
A key to the design of gesture-based interfaces is the mapping between gesture and the command, this quantifies
the discoverability and learnability of the gesture [24, 60]. However, current gestures are often created to manage
constraints such as robust recognition rather than intuitiveness and ease of use [37, 41].
To improve the learnability and memorability of gestures, the user defined method was first proposed by

Wobbrock et al. [62] by designing gestures on an interactive surface. This method shows participants a command
and a simulation of the effect of that command, and then asks participants to define a gesture to issue it. After all
participants define their gestures, the gesture with the highest consensus is assigned to the presented command.
In comparison with the pre-defined gestures, the gesture sets that are generated by this method are of higher
preference by the users [42], with higher memorability [43] and are consistent with users’ acquired experience.
[62]. This method has been successfully applied in the gesture design of many different areas, including mobile
interaction [49], smart TV interaction [59], virtual reality [63] and augmented reality [46]. In this paper, we
applied the participatory design paradigm to generate the HeadGesture set. To the best of our knowledge, we are
the first to design head movement based gestures through a participatory design process.

3 HEADGESTURE DESIGN
The HeadGesture Design consisted of two parts, the gesture space exploration and the gesture elicitation
experiment. Different from typical elicitation studies, we added a gesture space exploration before the elicitation
experiment. Because users were not as familiar with head gestures as with hand or touchscreen gestures, this
process was to analyze the design space of head gestures and to help users think of more usable gestures. Another
difference was that the design goal of HeadGesture was two-fold. We aimed to generate a set of head gestures that
were not only intuitive and natural to users, but also to be recognized robustly by computers. So we encouraged
the participants to consider both goals when designing the gestures.
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3.1 Gesture Space Exploration
The goal of this process was to explore the design space of head gestures. We extracted the dimensions that should
be considered when designing head gestures. The results of this process helped participants in the following
experiment to better design gestures to meet the design goals. Before exploration, we first summarized the related
work on head gesture interaction. Table 1 lists the features that related work frequently used in their gesture
design. Then, we went through the exploration process with users to gain more design inspiration and complete
the design space. By combining the results of these two parts, we report the taxonomy of head gestures, which
guides the gesture design, the design inspiration and strategies to avoid false positives.

Features Explanations for the Features

Movement Tracking Map the different head orientations to the different positions of the cursors, by ray casting metaphors.
(Nouse [22], HeadTilting [15])

Rotation Rotate the head to the left or the right, with a range threshold to avoid the false positives.
(HeadTurn [45], HeadPager [54] and [29])

Leaning Leaning the Head to the shoulders, with the head facing forward. (HeadTilting [15] and [33])

Drawing Shapes Drawing special shapes (e.g., circle, triangle) using the head. (GlassGesture [64])

Existing Gestures Leveraging the existing head gestures, e.g., nodding and shaking. (HeadNod [40])

Table 1. The features of gestures that related work leveraged in the design of head gesture interaction.

3.1.1 Participants. In the participatory exploration, we recruited 16 participants from a local campus. The
average age was 24.44 (SD = 1.90). Four participants were female. Ten participants had experience with AR or VR
HMD devices. All participants were familiar with gesture interaction.

3.1.2 Task. Users’ task was to propose usable head gestures that met the design goals, and to report their
design inspiration and strategies. In this process, we did not provide a command set to map the gestures to. The
users were instructed to propose the gestures they thought usable for HMD interaction. They could think of
a suitable function for the proposed gesture, but we did not limit the functions. The purpose was to collect a
wider range of usable gestures, so that in the following elicitation experiment, participants would have more
options to map to the commands. While designing the gestures, users wore a Hololens headset so they could take
into account the weight of the device. We also showed a cursor and its trajectory of recent 500 ms in the center
of the headset display. The cursor trajectory was to help users observe the amplitude and direction of the head
rotations and movements.

3.1.3 Exploration Process. Participants first put the Hololens headset on and confirmed that they could see
the cursor trajectory in their view. Then we introduced the concept of using head gestures to interact with HMD
devices. We used the example of HeadPager [54] to explain the relationship of the gesture (rotating the head)
and its function (turning pages). Then we clarified that in this process, we did not constrain the functions of
the gestures and they should think of usable head gestures that met the design goals, as many as possible. We
introduced the features summarized in Table 1 and suggested participants to use the features in the gesture
design. We also encouraged participants to think of more usable features and novel gestures. Thirty minutes
were given for the gesture design. After that, we reviewed the gestures and interviewed their composers on
the inspiration and design strategies. In total, we collected 210 HeadGesture instances. Based on the results, we
summarized the Gesture Taxonomy, Design Inspiration and Strategies for Determining False Positives.
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3.1.4 Gesture Taxonomy. We summarized the gestures and categorized them along four dimensions,Movement,
Trajectory, Flow and Nature. Within each dimension are multiple categories, shown in Table 2. Movement
dimension includes five basic categories which breaks down the head gesture into head rotations, translations
and dwellings. Trajectory describes the spatial features of head movement trajectories. We found participants
typically use directional movements, or draw shapes and characters. Flow describes the temporal features of head
movements, which were related to the strategies of participants to avoid the false positives. In Nature dimension,
we summarized the design inspiration of the gestures.

Movement Lower or Raise Lower or raise the head along x axis

Tilt Rotate the head along y axis

Rotate Rotate the head along z axis

Stretch Stretch the neck to different directions without rotating the head

Dwell Stop the head movement for a short duration

Trajectory directional Move the head to different directions

Shape Use head to draw geometrical shapes, e.g., circle

Character Use head to write characters or numbers

Flow Delimiter To perform a head gesture at the start
and the end as the delimiter to switch the mode

Repetition Repeat a head gesture for more than one times

Reverse Perform a head gesture and then reverse it

Nature Transfer Use the head movement to mimic the hand gestures

Existence Use the head gestures that already exist, e.g., nodding

Infrequent Actions Use the head movements that were rarely performed in daily life

Large amplitude Enlarge the amplitude of daily head movements
Table 2. The head gesture taxonomy that we summarized from the results. The dimensions include movement category,
movement trajectory, gesture flow and nature of the design.

3.1.5 Design Inspiration. We summarized two categories of the design inspiration to achieve high intuitiveness
and simplicity of the gestures.

1 Act like using hands: Participants proposed head gestures that mimic the use the hands. For example, P4
proposed "to raise the head fast towards the upper right corner" to mimic throwing objects away with the
right hand, and "to lower head to the direction of the ground fast" to mimic putting away books into the
drawer with hands. P7 proposed "to lower and shake the head simultaneously" to mimic swiping the hands
to clean the window. With these metaphors, the composers of these gestures expected them to be easy to
learn and memorize, and interesting to perform.

2 Transferring Daily Experience: Inspired by Existing Gestures, participants proposed gestures that already
existed in daily life. For example, P3 proposed the action of leaning the head to the shoulder, which is
performed when we feel tired. Another example is moving the head forward, which we perform to approach
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a target to see it in detail. The composers believed that these gestures would reduce the learning effort and
have a high discoverability.

3.1.6 Strategies for Determining False Positives. We summarized five categories of strategy that participants
applied in their gesture design, to distinguish these gestures from unintentional head movements. These strategies
can also be applied in combinations.

1 Infrequent Actions: Participants proposed gestures that are unlikely to be performed unintentionally, e.g.,
"rotate the head to the leftmost position". The advantage of these gestures was the low possibility of users
accidentally performing them. However, some of these gestures were not natural feeling human movements,
and these were excluded from the final set.

2 Repeat It Twice: Participants proposed to repeat a simple action two or more times to avoid false positives,
e.g., "nod twice", "turn left twice". They thought that the repetition would confirm the intention of the input
and maintain the simplicity and naturalness of the gesture.

3 Draw Strokes: Using the head to draw strokes was also proposed, these included geometric shapes (e.g.,
triangle, circle), characters and numbers. As the strokes have specific meanings, the gestures could be easily
followed and remembered. Also, the meaning traces of the head movements helped with recognition.

4 Delimiter Gestures: The mode switch paradigm was also proposed, where users first perform a delimiter
gesture to trigger the gesture input mode. Following this delimiter, users completed the rest of the gesture
and perform the delimiter again as the end. In this way, little constraints were placed on type and range of
gesture after the mode switch. This method still required the delimiter itself to be robustly recognized, and
took more time to complete.

5 Forth and Back: Participants proposed a simple action followed by a reverse movement to avoid false
positives. Similar to Repeat It Twice, participants believed that the reverse pattern is a guarantee of being
intentional input. The examples included "Rotate to the left and back", "Move forward and back".

3.2 Gesture Elicitation Experiment
After the gesture exploration, we conducted a gesture elicitation experiment. Different from typical elicitation
experiments [46, 49, 59], we provided the results of the exploration as reference for the participants. We printed
the reference sheet that listed the taxonomy, including the dimensions and categories, the features summarized
from related work and their gestures as examples, and the inspiration and strategies that were proposed by
participants. Participants consulted these references during the design process, so they had more options to
select from and more resources to draw inspiration form. Another difference was that we added an additional
requirement for gestures, which was to be easily recognized as an intentional input. We decided to encourage
users to consider this recognition issue because they knew the unintentional head movements they may perform
when interacting with HMD devices, and therefore they could balance the trade-off of gesture intuitiveness and
recognition from their perspective.

3.2.1 Command Set. The command set for HeadGesture covered basic control operations. We referred to
the command set of a state-of-the-art AR headset (Hololens [4]), which included nine basic commands: Drag,
Hold, Home (return to the main menu), Scroll up/down, Select, Double Tap, Zoom in/out. These commands could
support most interaction tasks, including navigation and object manipulation. In most systems, Double Tap was
implemented as a repetition of Select. However, we decided to separate the design for Select and Double Tap
in this experiment. In this way, participants were less constrained on their design of Select and did not need
to take into account whether the gesture of Select could be easily repeated for two times. As Select is the most
fundamental operation, to separate it from Double Tap was to guarantee the highest quality design.
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Fig. 1. The agreement scores for the head gestures that participants designed for each command.

3.2.2 Participants. We recruited sixteen participants for this study. Six were female. The average age was
25.56 (SD = 2.97). All of them were familiar with touchscreen gestures of smart phones. Four had experience with
Hololens. Eight of them had also taken part in the exploration process.

3.2.3 Procedure. We followed the participatory design paradigm [62] to conduct this experiment. For each
command, we first showed its effect on the Hololens by recorded screen videos. For example, we showed a video
where the main menu of Hololens appeared in the center of the view to illustrate the effect of "Home" command.
Participants wore the Hololens and watched the video, they were then asked to design a HeadGesture to trigger
the command. During the design process, they were free to re-play the videos and free to pause and resume
the videos. We encouraged participants to refer to the reference sheet, especially when they could not think of
any suitable gestures. After they designed the gestures, they were instructed to perform the gestures along with
videos, to examine whether the gesture matched the command. For each command, participants were asked to
design more than one gesture. In this way, we had a wider range of gestures to choose from for the final set. To
record the gestures, we implemented programs (at 60 frames per second) to record head orientation and position
when participants performed gestures. Participants wrote down the explanations of the gestures and some of
them also drew sketches to help explain them. The command order was randomized in this portion of the study.

3.2.4 Consensus Measurement. We collected 267 head gestures in total from 16 participants. The authors
merged the same gestures manually based on the sketches and explanations of participants which resulted
in 80 distinct gesture-command pairs. We applied a metric, agreement score, to measure the consensus of the
command-gesture mappings of participants, first introduced by Wobbrock [62]. The results are shown by Figure
1. Compared to previous studies [46, 49, 59], where most scores were above 0.2, the agreement scores of the
HeadGesture set were lower. This reflected that participants had less experience with head gestures and their
proposals were less consistent. Another possible reason was that we allowed participants to propose more than
one head gesture for each command. Comparing the agreement scores of different commands, we found that
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Fig. 2. The distribution of the gestures along the taxonomy dimensions that we generated in the exploration process. In
Movement, the amount was over 80, because some of the features were used in combination. ’LR’ represents ’Lower or Raise’.

participants were more consistent with the mappings for "Select" and "Double Tap". The proposals for "Hold"
resulted in the highest disagreement. Most participants designed the gesture for "Double Tap" as a two-time
repetition of the gesture for "Select", except two extra proposals for "Select". For all participants, the gestures
proposed for "Scroll up/down" and "Zoom in/out" were in a reversed manner, so their agreement scores were
equal. Table 3 lists the top three HeadGestures with the highest votes.

3.2.5 Gesture Distribution. Figure 2 shows the breakdown of the gestures collected in this experiment. We
used the taxonomy that we generated in the exploration process to analyze the gestures. As shown, the most
popular movements were Lower or Raise and Rotate, and they were also frequently used in combination, e.g.,
drawing circles with the head. Directional was the most frequent trajectory type, including directional rotations
and stretching the neck to different directions. Directional rotations were reported to be simple and comfortable
to perform. The amount of the gestures that applied Delimiter, Repeat and Reverse were similar. By applying
these strategies, the designed gestures were more distinguishable from unintentional head movements. Infrequent
Actions were the most frequent in nature, and gestures with Transfer nature were noted as interesting to perform.

3.2.6 Final Gesture Set. Based on participants’ proposals, we generated the final gesture set. We first considered
user preference and the selected gestures were all among the top three most voted proposals. However, we did
not simply adopt the most popular proposals. We also ensured that there was no conflicts between the gestures
and considered gesture practicality. The final gesture set is shown in Figure 3.
Select / Double Tap: We assigned slow down, nod and back, with highest votes, for Select, and a two-time

repetition of Select to Double Tap. To select a target using HeadGesture, the user first controls the cursor to
approach the target, stops the movement after entering the target boundary, and then perform the nod and back
action to confirm the selection. The intentional stop, nod and back action help avoid false positives. Meanwhile,
users are familiar with the Nod gesture from daily communication, so learning effort is minimal.
Drag: We modified the HeadGesture with the highest votes for Drag. We still used a delimiter gesture to

switch the mode. But we applied the Forth and Back strategy and modified the delimiter gesture to be "Raise head
and back to the front". Comparing to the original proposal, users could get their focus point back to the front
after performing this HeadGesture, and could drag the objects in all directions. There was a metaphor for this
HeadGesture, which was to load the object onto the head and to release it at the destination.
Hold: We adopted the HeadGesture "Quickly Rotate to the left and back". "Forth and Back" strategy and the

fast speed helped avoid false positives. We suggested users to remember it as a nod to the left.
Home: We adopted participants’ design of "Lean head to the shoulder", which received the highest number of

votes. This gesture is hardly performed in daily life, except for when one feels tired or has neck pain. We regarded
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Operations Most Frequent HeadGestures Proposed by Participants

Drag
Raise head in a large scale as a delimiter gesture.(7/26)
Draw a circle using head as a delimiter gesture. (4/26)
Move head forward/backward as a delimiter gesture. (3/26)

Hold
Move head forward and dwell. (5/33)
Rotate head in one direction and back. (5/33)
Draw a small circle in the front using head. (4/33)

Home
Lean head to one shoulder. (8/36)
Circle head around. (5/36)
Shake head once. (4/36)

Scroll up/down
Raise/Lower head to the highest/lowest position and dwell. (7/29, 7/29)
Draw circles clockwise/anticlockwise using head, as if rotating a pulley. (5/29, 5/29)
First lower/raise head and then raise/lower head in a large scale. (4/29, 4/29)

Select/Double Tap
Slow down, nod and back towards the forward direction.(7/26, 7/24)
Draw a small circle in the front using head. (6/26, 6/24)
Stretch the neck (head) forward and backward. (5/26, 5/24)

Zoom in/out
Stretch the neck forward/backward in a large scale and dwell. (9/32, 9/32)
Raise/Lower head and back for twice. (4/32, 4/32)
Lean head to the left/right shoulder. (4/32, 4/32)

Table 3. The list of top three head gestures that received the most votes for each command. For simplicity, we list Select and
Double Tap, Scroll up and Scroll down, Zoom in and Zoom out together.

this gesture to be suitable for the command "Home", because it was consistent with the concept of having a rest
after interacting with an application for a period of time and one would want to return to the main menu.

Scroll up / down: For this command, we chose the HeadGesture with the second highest number of votes. We
dropped the most popular proposal, because if someone performs Scroll Up several times in a row, the action
was too similar to the delimiter of Drag and led to conflicts. Additionally, the focus point would be moved away,
which may distract the user from her previous focus. Instead, the adopted proposal of drawing small circles could
be distinguished from other HeadGestures and also kept the user’s focus in the original region. The metaphor for
this gesture was to draw small circles as if rotating a pulley to raise the page, and release it by rotating reversely.
Zoom in / out: We modified the HeadGesture with highest number of votes for Zoom command. Participants

proposed to stretch the neck forward to zoom in, as if approaching to look at the content more clearly. We added
a dwell after stretching the neck as confirmation to help the recognition.

Select, Double Tap, Drag, Hold required users to perform them inside the target. Users first move the cursor into
the target, and then perform these HeadGestures to trigger the according functions, e.g., to select it for Select. At
the start and end of these HeadGestures, cursor position was required to be inside the target, otherwise it would
not trigger the functions. For the others, anywhere users performing them can trigger the according functions.

4 IMPLEMENTATION
We implemented an algorithm for recognizing the HeadGestures and avoiding false positives. This recognition
algorithm consisted of four phases. First, we segmented the potential HeadGestures from the continuous head
movement stream. Then we reformed and unified the data into an appropriate format for feature extraction. After
that, we extracted features from statistical characteristics and from the calculation of Dynamic Time Warping
(DTW) algorithm. Finally, we used an SVM-based algorithm to classify the input data into one of the nine
HeadGesture types or unintentional head movements.
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Fig. 3. The final design of the HeadGesture set for the nine commands. The movement of head is indicated by the arrows.
"2×" represents the repeating of the action for twice. "1s" is an illustration for a dwell.

Fig. 4. The steps of the HeadGesture recognition. After the whole process, we classify the input head movement data into
one of the HeadGesture types or the unintentional head movements.

4.1 Data Collection
Two types of data were collected for our machine learning algorithms, which were HeadGesture data and
unintentional movement data. For the unintentional movement data, we designed representative tasks including
walking around the room, browsing websites, and looking for targets which randomly appeared in 5m × 5m
space. For the HeadGesture data, we asked users to perform the HeadGestures of the final set. We recorded their
head movement data, including both head position and orientation.
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We recruited ten participants from a local campus for this data collection process. Their average age was 22.54
(SD = 1.92) and four were female. Participants wore a Hololens headset to record head position and orientation.
For the HeadGesture data, they performed each gesture for twenty times and the gestures were presented in a
randomized order. For the unintentional movement data, we asked users to walk freely around the room, sit on a
chair and browse news websites, and to look around to find the randomly placed targets which appeared every
five seconds. Each of these unintentional tasks was performed for five minutes. Finally, we collected 20 × 9 × 10
= 1800 HeadGestures, and 300 × 3 × 10 = 18000 seconds of unintentional head movements.

4.2 Gesture Segmentation
This phase was to segment potential HeadGestures from the continuous stream of head movements. Head
movement data was in the format of head position (x, y, z) and orientation (roll, pitch, yaw) data at 60 frames per
second. As we observed, when users performed HeadGestures, they often started with an acceleration and ended
with a deceleration. So we applied a simple segmentation algorithm, which required the head movement to start
with the head rotation speed of 20 degrees per second, end with 4 degrees per second, and the whole duration
should not exceed 2 seconds. For Zoom in/out, we set thresholds for head movement speed. We determined these
parameters through a pilot test, which ensured all the HeadGestures that six participants performed could be
extracted correctly. This segmentation was not overly strict, and allowed some unintentional head movements to
pass. We would excluded these data in the following recognition phase.

4.3 Reform and Unification
This phase received the segmented data, then the data were reformed and unified to the required format for
feature extraction. The first frame of the data determined the starting head position and orientation. To assist
users in triggering the gestures at different head positions and orientations, we reformed the data from absolute
coordinates to coordinates relative to this first frame. We set the head position and orientation of the first frame
to be the point of origin, and calculated other frame data to subtract its value. We also calculated movement and
rotation speeds and accelerations based on the position data, we smoothed them using the mean filter and median
filter together[5]. After that, we unified the position and orientation data. Unified data enabled the following
DTW algorithm to calculate the similarities and distances of the movement paths independently from the absolute
rotation speed[13]. We unified the value of each position dimension from (-0.25m, 0.25m) to (0, 1), and each
dimension of orientation (Euler angles [18]) from (-60 degrees, 90 degrees) to (0,1).

4.4 Feature Extraction
This phase was to extract spatial and temporal features from the input gesture data, and deliver these gestures to
the following classifier. For spatial features, we first leveraged the head movement trajectory of the input data
and calculated its similarity to the standard gesture templates. We applied Dynamic Time Warping (DTW) [9] to
compute the similarities. The DTW algorithm received six channels of data, including the head position (x,y,z)
and orientation (roll, pitch, yaw). Two of the authors performed the standard gestures to be the templates. For
input data, we calculated its similarity to each template by the calculated distance between two trajectories. If the
distance to the certain template satisfied the recognition threshold, we could infer that the input gesture belonged
to that class. If the distances were all larger than the required range, the input gesture would be recognized as
unintentional head movements. However, only using DTW was not sufficiently accurate. As we tested, within the
HeadGestures, it resulted in the accuracy of 93.22% on average (SD = 1.7%). However, if we took the unintentional
movements into consideration, the average accuracy dropped to 90.63%.
To improve recognition, we decided to use the results of the DTW algorithm as the basic features for how

templates resemble input gestures [13] and add more statistical features to better characterize the HeadGestures.
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The statistical features were extracted based on our observation of the HeadGesture behaviors. As some of the
HeadGestures applied Forth and Back strategy, the offset of the start position and end position of the user’s head
should be small. So we calculated this displacement as another spatial feature. As some of the HeadGestures
were directional rotations or drawing shapes, which consisted of sharp curves in the trajectory, we calculated
the maximum, average value of curvature of the trajectory. The curvature was calculated only in the 2D x-y
space of the head rotations. Movement_distance was also measured. For temporal features, we calculated the
maximum_speed, average_speed, maximum_acceleration, continuous_acceleration. We calculated the features
of accelerations because some HeadGestures required continuous speed up, like Select and Drag. The detailed
calculations are listed below. We combined these features to be the input vector for the following SVM classifier.

path_similarity = vector o f [DTW (pathn , input_дesture) f or pathn in templates] (1)
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end∑
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∥Positionn − Positionn−1)∥ (2)

displacement = ∥ (Positionend − Positionstar t )∥ (3)

maximum_curvature = max
∀n∈[star t+1,end ]

x ′

n × y
′′

n − y
′

n × x
′′

n


(x

′2
n + y

′2
n )

3
2

(4)

averaдe_curvature =
1

end − start

end∑
n=star t+1

x ′

n × y
′′

n − y
′

n × x
′′

n


(x

′2
n + y

′2
n )

3
2

(5)

maximum_speed = max
∀n∈[star t+1,end ]

∥Positionn − Positionn−1∥ (6)

averaдe_speed =
1

end − start

end∑
n=star t+1

∥Positionn − Positionn−1∥ (7)

maximum_acceleration = max
∀n∈[star t+2,end ]

(∥Positionn − Positionn−1∥ − ∥Positionn−1 − Positionn−2∥) (8)

continuous_acceleration = max
∀i, j ∈[star t+2,end ]

∥j − i∥ s .t . ∀n ∈ [i, j] speedn > speedn−1 (9)

4.5 Classification by SVM
We implemented a linear SVM classifier, with a linear kernel and the decision function type of "OneVSOne". This
algorithm classified the input gesture into ten categories (nine HeadGestures and unintentional movements). It
took the feature vector generated in the feature extraction phase as the input and calculated the most possible
category as the output. We performed five-fold cross validation to evaluate its performance. We balanced the
data by setting the training weight of unintentional movement data to be 0.1, as the unintentional data was
roughly ten times of HeadGesture data. The performance of classification was 97.42% (SD = 1.12%) on average. In
comparison with the performance of only using the DTW algorithm, the accuracy was much improved, which
showed that the statistical features did improve the recognition.

5 EVALUATION
We evaluated the performance of HeadGesture as a mode of interaction with the HMD device. As target selection
is the most frequent and fundamental interaction in AR and VR [47], we conducted a comparison experiment to
compare the selection performance of using HeadGesture ("Select" gesture) to a mid-air hand gesture ("Air Tap"
gesture of Hololens). For the other HeadGestures, we evaluated their performance through different application
tasks. We measured the completion time and the subjective feedback of users.
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5.1 Comparison Experiment
We first compared the performance of HeadGesture and the hand gesture in the target selection task. The selection
task required users to control a cursor by head movements, which was fixed in the center of the view. Two
approaches (HeadGesture and hand gesture) were used as confirmation of the selection after participants moved
the cursor into the target. We measured the completion time and selection accuracy of the tasks and recorded
users’ comments. The experiment was split into three sections to test the learning effects of both approaches.

5.1.1 Participants. We recruited twelve participants from a local campus. To test the learning effect, we
ensured that they had not participated in the HeadGesture Design and had no experience of using an AR headset.
The average age was 23.58 (SD = 1.44). Four participants were female. Five participants reported they experienced
motion sickness [26] when they watched 3D movies.

5.1.2 Apparatus. We used Hololens as the experiment platform and developed our own target selection
application using the Unity 5 engine. The Hololens had a field of view of about 30◦ × 17.5◦ and sensing accuracy
of about 2cm position error in translation and 2◦ in rotation. We developed a program to receive the head
position and orientation data from the headset, through the standard HTTP protocol. We applied the classifier as
introduced in Implementation for HeadGesture recognition.

5.1.3 Task. Participants selected the targets with a cursor. The cursor was fixed in the center of the field
of view and followed the head movement of participants. A successful selection required the user to move the
cursor into the target and perform a gesture, either HeadGesture or a hand gesture, inside the boundary. If the
action occurred outside the target or was not recognized, it was recorded as a miss and the target needed to be
selected again. The required HeadGesture was Select, as shown in Figure 3, the hand gesture was the default
gesture of Hololens, Air Tap. The size of the target was 0.1m × 0.1m × 0.1m cubes. The position of the target
was randomized in a 2m × 2m × 5m space, 2m in the front of the user. If unintentional head movements were
recognized as Select, participants reported this to the experimenter. Overall, participants performed 2 approaches
× 3 sessions × 50 tasks = 300 selections. The three sessions were to test the learning effect of two approaches,
with a five-minute break between the sessions. The order of the two approaches was counter-balanced.

5.1.4 Procedure. On arrival, the Hololens device was introduced to the participants. They went through an
official tutorial to learn the gesture interactions with the Hololens. We emphasized the introduction of "Air Tap"
gesture, as they needed to perform this in the experiment, which was explained as "Make a loose fist, point
up the index finger, quickly tap it down and all the way back up". Then we played videos of users performing
Select HeadGesture to help them understand this gesture. After that, the warm-up session was provided for
them to practice selecting targets with two approaches. Participants were given ten minutes’ practice time to
perform both gestures to select the targets, and then see their results. They could also replay the tutorials or
videos if needed. After participants confirmed that they were familiar with the two approaches, they started the
formal experiment. After the participant’s session was completed, they completed a questionnaire to reflect on
their experience, in the aspects of fatigue, learning effort, sickness and the natural feeling of each approach, in
five-point Likert scale. On average, each participant took about 50 minutes.

5.1.5 Results. In total, we collected 12 participants × 300 tasks = 3600 selections. To measure the performance,
we calculated the completion time and selection accuracy. To study the learning effect of two approaches, we
analyzed the difference in performance between sessions. We also summarized the comments and feedback
participants gave about the interaction experience.

5.1.5.1 Speed and Accuracy. The overall results are shown in Figure 5. We conducted RM-ANOVA test on
completion time of two approaches in three sessions. The results showed that there was a significant difference of
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Fig. 5. The average completion time (left) and number of attempts (right) to complete 50 tasks in each session. The error bars
represent standard deviation.

completion time between sessions (F2, 22 = 16.544, p < 0.002), but no significant difference between two approaches
(F1, 11 = 3.257, p = 0.099). However, the average completion time of Select HeadGesture was higher than Air Tap
in all three sessions. This was partially because the HeadGesture was less accurate, and required more attempts.
Another reason was that selections were performed continuously, without resets. The new target appeared
directly after the previous was selected. As a result, in the sessions of Air Tap, most participants kept their arms
in the air across the selections until they felt tired. If resetting arm position after each selection was necessary,
the completion time of Air Tap may have been longer. To confirm this effect, we calculated the selection time and
the time of approaching the target separately. The average action time of Select HeadGesture was 0.45 seconds
(STD = 0.12 seconds) after the segmentation. For Air Tap, we could not track the exact movement of the hand
on Hololens, and therefore we regarded the time when the cursor entered the target as the starting moment of
the selections. The average action time of Air Tap was 0.65 seconds (STD = 0.20 seconds). So Air Tap with arm
position reset was even slower than HeadGesture. As the Air Tap selections in this experiment consisted of two
types, which were selections with and without arm position resets, we added post tests to measure their speeds
separately. The action time of Air Tap without resets was roughly 0.6 seconds and for Air Tap with resets, the
time was about 1.5 seconds. So the selection time of Select HeadGesture was shorter, and longer completion time
was caused by more attempts and the duration of adjustments after the failed attempts. We could expect, with
improved recognition accuracy in the future, the completion time of HeadGesture could be further sped up.
For selection accuracy, we conducted RM-ANOVA test on the number of attempts of the two approaches in

three sections. The result showed that Select HeadGesture made significantly more misses (F1, 11 = 57.539, p <
0.001) than Air Tap and the difference between sessions were not significant (F2, 22 = 3.386, p = 0.052). We found
that overshoot frequently appeared in the misses, where the cursor was moved outside the target space. In the
future, we could adjust the recognition mechanism to address this issue. For learning effect, the selection speed
and accuracy of Select HeadGesture were improved session by session, meanwhile the best performance of Air
Tap appeared at the second session. As participants reported, they felt tired in the final session even after the
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Fig. 6. The subjective scores that participants reported about their interaction experience, in five-point Likert scale. Higher
scores represent more positive feelings. The error bars represent the standard deviations.

break, and they reset their arms more frequently between selections. The accumulated arm fatigue possibly led
to the drop in performance.

5.1.5.2 Subjective Feedback. The subjective scores are shown in Figure 6. We included sickness in the subjective
measurement, although motion sickness caused by visual-kinesthetic conflicts were observed less on AR headsets
[6]. Our consideration was that participants need to rotate and move their heads frequently, especially in the
sessions of HeadGesture, and we took into account that movements might aggravate visual conflicts and lead
to sickness. We ran Wilcoxon test on the subjective scores, the results showed that using HeadGesture led to
significant less fatigue (Z = 3.58, p < 0.001) than using Air Tap, but there was no significant difference for other
dimensions (Z = -0.09, -1.13, -0.45, p = 0.927, 0.257, 0.654). As we expected, the average score of sickness for
using HeadGesture was higher. However, as the scores showed, participants did not feel significant sickness
using either approach (both averaged above 3.5). Meanwhile, using mid-air hand gestures caused significant arm
fatigue (the average around 2), HeadGesture alleviated this problem.
Most of the participants thought two approaches to be simple, intuitive and easy to learn. P3 commented

that Select HeadGesture was relaxing, and that he would use it if the input task was not urgent. Besides this,
some participants thought that the experience of Select was smooth as they used their heads to both move the
cursor and perform the selections, without switching to the hand. P4 reported that because head movements
were also used to trigger selection, instead of only for navigation, he intentionally moved his head more carefully.
This effect lowered his navigation speed to some degree. P6 was also concerned that if there were dense objects
around the target, whether HeadGesture could still work effectively. We will test these issues in the future.

As recorded, there were 34 cases of false positives in total during the 3600 successful selections. The accuracy
was higher than simulated, possibly because participants did not walk or move their bodies to a great extent
during the experiment, and therefore head movements were more stable. So in the cases where users are sitting,
e.g., working at a desk, the false positive rate would not be the main challenge. In the future, we will also test the
performance of selection in unstable scenarios, e.g., when users walk or are on the bus.
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Fig. 7. Four applications that we developed to test the remaining HeadGestures. The tasks were map navigation (top left),
menu invocation (top right), object translation (bottom left) and document reading (bottom right).

5.2 Application test
For the remaining HeadGestures beyond Select, we developed four applications to test their performance in
different tasks. The applications were typical interaction tasks on HMD devices, including map navigation, menu
invocation, object translation and document reading. Through these tasks, we measured the completion time and
collected the comments of participants.

5.2.1 Participants. We recruited six participants who had also participated in the comparison experiment, so
that they were already familiar with interactions on HMD devices and the HeadGestures. Three of them were
female. Their average age was 22.17 (SD = 1.17).

5.2.2 Tasks. As Figure 7 shows, we developed four applications: 1. Map navigation: the task was to find a
specific country on the map, and participants were required to perform Zoom in/out to adjust the size of the map,
and then performed Hold to confirm the selection; 2. Menu invocation: participants performed Home to invoke
and close the main menu for ten times; 3. Object translation: participants controlled the cursor to approach the
target object, and performed Drag to carry the object and then moved the object to the destination and performed
another Drag to release it; 4. Document reading: participants read an article and performed Scroll up/down to turn
page and back. Participants completed these applications in a random order. Before the tests, they were free to
learn the HeadGestures and practice them. The experiment took about twenty minutes on average to complete.
When the experiment was completed, we interviewed the participants to collect their comments and feedback.

5.2.3 Completion Time. Time to complete each HeadGesture was recorded. The results are presented in Table
4. The average time of performing each HeadGesture was less than one second. Currently on Hololens, to perform
these tasks, users need to click the buttons on the top of the window to choose the operation (among "Zoom
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in/out", "Drag", "Scroll up/down") and then approach the target and perform the selected operation on it. The
entire process took much longer time compared to HeadGestures in our pilot test. This was because HeadGestures
were expressive and saved time from switching to different modes. Within the HeadGestures, Zoom in took the
longest time to perform. Home resulted in the highest standard deviations which suggested that participants
made large difference in efficiency.

Double Tap Drag Hold Home Scroll Up Scroll Down Zoom In Zoom Out

Avg (s) 0.62 0.49 0.51 0.77 0.78 0.79 0.94 0.84

Std (s) 0.10 0.15 0.18 0.30 0.29 0.25 0.26 0.28

Max (s) 0.75 0.68 0.74 1.25 1.19 1.30 1.35 1.28
Table 4. The average, maximum completion time of different HeadGestures and the standard deviations.

5.2.4 Movement Range. Additionally, we recorded the movement ranges of performing different HeadGestures.
The results of head rotation range are shown in Table 5. Because Home required participants to lean their heads,
Zoom In/Out required them to move their heads without rotations, their movement ranges are not listed in the
table. The average movement distances of Zoom In/Out gestures were 20.62 cm (std = 3.89cm) and 20.45 cm (std
= 3.72cm). We calculated the average leaning angle of Home to be 55.05 °(std = 10.93 °). As shown, the rotation
ranges of the HeadGestures were mostly less than 16 degrees, which were quite small and did not distract the
participants’ visual focus significantly. However, the movement of Zoom In/Out was about 20 cm long to ensure
the robust recognition. We will try to shorten this distance in the future by improving the recognition algorithm.

Double Tap Drag Hold Scroll Up Scroll Down Select

Alpha (°) 1.91 1.79 12.08 15.48 15.36 1.61

Std (°) 0.62 0.70 3.07 2.59 2.60 0.89

Phi (°) 10.12 10.43 2.19 12.38 12.46 9.19

Std (°) 1.29 1.64 1.36 2.21 2.34 1.78

Table 5. The rotation ranges of seven HeadGestures in angular coordinate systems, which are measured in alpha and phi
dimensions separately. Alpha dimension is the rotation angle around z axis and phi is the rotation angle around x.

5.2.5 Subjective Feedback. Most participants appreciated the design of the HeadGestures. For example, partici-
pants thought Drag and Hold to be simple and easy to perform. They reported that they could easily understand
the metaphors of Drag, Home, Scroll and Zoom. They confirmed that these metaphors helped them memorize the
HeadGestures. P1 commented the design of Hold and Home to be very interesting.

"To load the object on my head was intuitive (Hold) and to rest the head onto the shoulder was
interesting (Home)." - P1

In the object translation task, users needed to control the cursor to approach the target before performing
Drag. Similar to Select, Some participants reported that to move the cursor into the boundary required high
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concentration and felt it was tiring. A potential solution for this issue would be to apply the selection mechanism
of the area cursor [23], which would reduce the requirement for selection.

In the document reading task, participants suggested implementing a continuous scroll mechanism. Currently,
each time participants drew a complete circle using the head, the document would scroll with a fixed height (half
a page). However, P1 and P3 suggested that the document could be scrolled in a continuous way as they rotated
their heads. To support this, we could use Scroll as the delimiter to change the mode. The continuous scroll would
be triggered after users complete the first circle and then followed the head rotation to scroll up or down.

"It is cumbersome to perform Zoom several times in a row, considering that the movement distance
is not short." - P5

For the design of Zoom, P5 argued the amplitude of the movement was too large to perform them in a row. We
regarded this as a trade-off that the large movement helps us to distinguish it from unintentional movements but
requires more effort of users. In the future, we will also test smaller amplitudes to optimize this trade-off. Besides
this, most participants reported that when their hands were occupied, they would prefer to use HeadGestures.

6 DISCUSSION
Through the process of Exploration-Design-Implementation-Evaluation, we presented HeadGesture as a hands-free
input approach for HMD control. Based on the results, we discuss the design implications for head movement
based interactions, the applicable platform of HeadGestures, head orientation issue and the use case.

6.1 Design Implications
In Design and Evaluation, participants reported that they appreciated the designs illustrated by metaphors. The
metaphors came from previous experience, e.g. nodding to confirm, or mirrored the behaviors of other channels,
e.g. using the head to draw circles as if using the hand. With the metaphors, users could easily understand and
remember the gestures and some users thought the interaction to be more interesting. The elicited metaphors
could be applied to other tasks in the future. For example, using head to swipe a window can be mapped to
command Remove, writing characters with heads can trigger the shortcuts of the applications. In Exploration and
Implementation, we found that to distinguish HeadGestures from unintentional head movements, we needed to
apply specific strategies including infrequent movements, repetition of gestures, special strokes, delimiter gestures,
forth and back. By using these strategies, we proved that users could avoid most false positives in our evaluation.
In Design, We used nine gestures in the final set, but there were more interesting gestures that were proposed by
participants. Participants who like dancing proposed professional head gestures, e.g., the Head Slide [1], which
was to move the head sideways without rotations. The advantages were that with very little possibility, these
gestures would be performed unintentionally. However, it was not easy for regular users to perform. In the future,
we can interview users with different backgrounds, e.g., professional dancers, to generate more usable head
gestures for HMD interaction.

6.2 Applicable Platform
Although we implemented and evaluated HeadGesture on the platform of Hololens, we also tested it on VR
platforms. With very little modification, our algorithm worked on VR headsets. We tested on HTC Vive headset,
and all the HeadGestures were correctly recognized. The results showed that HeadGesture has good scalability and
the potential to work on other HMD devices. The requirement of applying this approach is that the platform can
track the head position and orientation, e.g. by lighthouse technique [28]. The tracking accuracy may influence
the recognition performance and limit the amount of the HeadGestures that it can support. Besides HMD devices,
HeadGesture also has the potential to be applied on other mobile platforms, like iPhone X [3] which can track the
movement of the user’s face. In that scenario, HeadGesture may support one-hand manipulation of smartphones.
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6.3 Head Orientation
As explained in the Implementation, we reformed the absolute gesture data (head positions, orientations) into the
relative data to the start frame. In this way, we enable to trigger the HeadGestures at different starting positions
and orientations. In the Evaluation, users performed Select, Drag, Zoom and Hold at different head orientations, as
the targets appeared at different positions. The classification results proved that these gestures can be correctly
recognized after the data reformation. However, in the tasks of menu invocation and document reading, users
mostly faced to the front and performed the HeadGestures in the same directions. For the HeadGestures evaluated
in these tasks, we tested performing them in different directions after the Evaluation. Six users successfully
triggered Home and Scroll up/down in nine different directions (facing to the left, right, up, down, front and
four corners). Home could only be performed when users faced to the front, and they found it uncomfortable to
lean their heads at other directions. The results inspired us, besides the recognition issue, the comfort level of
HeadGestures may be different when performing them at different head orientations and it is of great value to
further study this factor in the future.

6.4 Use Case
HeadGesture is to supplement hand operations for HMD devices, when users’ hands are occupied or they feel
fatigue, for example, when they wear a headset to read documents, and they want to write notes or draw sketches
while reading. In situations analogous to this, to change the content or to select items in the view, their options will
be to drop the pen and raise their hands to perform an in-air gesture, or to use HeadGesture. Using HeadGestures
in these cases can help save time and reduce focus switches. As we interviewed participants in Evaluation, they
consistently preferred HeadGesture when their hands were occupied or the current task was not urgent. However,
as tested in Evaluation, the time efficiency of HeadGesture did not outperform hand gestures. So it is better not to
use HeadGesture in the tasks that required continuous operations, e.g., text entry. For these tasks, users can still
use hand input or controllers. Additionally, HeadGesture has the potential to be leveraged by users with limited
arm mobility, and can improve their accessibility to the AR and VR headsets.

7 LIMITATION
In this paper, we leave some factors of HeadGesture to be studied in the future. One factor is the vocabulary size of
HeadGesture. We designed nine different gestures to support the basic operations in HMD devices. However, the
maximum capacity of gestures without conflicts was not tested in this paper. The second factor is the performance
of HeadGesture in the daily living environment. Our evaluation experiment was conducted in the lab environment,
and we need to test it in the more realistic environments, e.g. on the railway. In these scenarios, users’ body will
be more unstable and cause unpredictable head movements such as jitters. We will test whether the algorithm
can still recognize the HeadGestures correctly under these circumstances. Another factor is different participant
backgrounds. In this study, we recruited participants from the local campus. In the future, we could invite users
with different cultures to generate more head gestures. For example, we could invite professional dancers to
collect more interesting gestures, and consult the professional gesture designers for suggestions for avoiding
false positives. The last one is the balance between movement range and recognition accuracy. Currently, some
of the HeadGestures required relatively large movement range to perform to achieve robust recognition. This
will limit the use scenarios, as users could not perform them in the crowded environment, e.g., on the bus. In the
future, we will optimize this factor and improve the recognition performance.
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8 CONCLUSION
We propose the HeadGesture approach, with which users perform simple and intuitive gestures using their heads
to accomplish basic tasks on HMD devices. This approach supports hands-free interaction, so it releases the users’
hands to work on other tasks simultaneously, and reduces arm fatigue. Through the process of Exploration-
Design-Implementation-Evaluation, we completed the design and development of this approach. We generated
the inspiration and strategies of the gesture design, which will be helpful for other research of head movement
based interaction; we developed a recognition algorithm with the accuracy of 97.4% of recognizing ten categories
of gestures (including distinguishing unintentional movements); and we evaluated the user performance and
subjective feedback of using HeadGesture. Users thought this approach was easy and interesting to perform. We
concluded that HeadGesture could be a supplementary input approach for HMD devices.
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